ПРОИЗВОДСТВО СУЛЬФАТА АЛЮМИНИЯ ИЗ ОТХОДОВ ШАМОТНОГО ПРОИЗВОДСТВА.
Магистр Удодова О. А., руководитель Трошина Е. А.
В последнее время все больше внимания уделяется комплексной переработке различных видов минерального сырья с целью извлечения всех ценных компонентов, что позволяет достигнуть высоких технико-экономических показателей. Одним из таких видов является алюминийсодержащее сырье — нефелины, алуниты, каолины и глины, минеральная часть углей и т. д., из которых могут быть получены глинозем, соли алюминия, сода, поташ, сернокислый калий, шлам (сиштоф) для получения цемента, а также редкие металлы. Способы переработки алюминийсодержащего сырья можно разделить на кислотные, щелочные и комбинированные [3].
Возможность осуществления селективного разделения трудно растворимого в кислотах кремнезема от глинозема на первом технологическом переделе — сульфатизации позволяет значительно разрабатываемые технологические схемы переработки высококремнистого алюминиевого сырья. Кислотные способы вызывали повышенный интерес еще в конце Х1Х столетия. Однако лишь в последние десятилетия, в связи с появлением хороших кислотостойких материалов, повышенное внимание исследователей вновь направлено на разработку этих методов. Исследования в основном проводятся в двух направлениях: получение солей алюминия, преимущественно сернокислых, и глинозема для металлургических целей. Способы получения сернокислого алюминия, как более простые, вышли за рамки лабораторных исследоианий и в настоящее время применяются в промышленности.
Основными потребителями сернокислых солей алюминия являются коммунального хозяйства, где они применяются как коагулянт для очистки питьевой воды, и целлюлозно-бумажная промышленность, использующая этот продукт для технологических целей ( проклейка бумаги и картона ) и для водоподготовки.
Ассортимент выпускаемой продукции включает очищенный сернокислый алюминий в твердом виде и в растворе, получаемый из AL2O3, и неочищенный нефелиновый коагулянт из нефелинового концентрата. В небольших количествах получают AL2(SO4)3 из бокситов и каолинов, а также алюмокалиевые квасцы из алунитов.
Широкое распространение каолинов, большие запасы и поверхностное залегание, что позволяет организовать открытую добычу, с давних пор иызывают повышенный интерес исследователей к разработке рациональной технологии переработки [1].
Каолинами и глинами называют смесь различных кристаллических минералов, погруженных в коллоидные вещества, которые состоят главным образом из желатинозного силиката алюминия, кремниевой кислоты и гидроокиси железа, реже — гидроокиси алюминия.
Среди минералов глиноземистых глин различаются следующие группы: каолинитовая, монтмориллонитовая, аллофановая. В глинах чаще всего встречается минерал каолинит.
В качестве основных примесей присутствуют кварц, слюды, карбонаты кальция, магния и др.[3]
Современное производство очищенного сернокислого алюминия основано на приьенении в качестве сырья гидроксида алюминия, однако он является дорогостоящим и дефицитным сырьем в нашей стране. Именно поэтому разрабатываются методы переработки каолинов.
Сернокислый алюминий получают из каолинов двух видов: неочищенный и очищенный. Неочищенный сернокислый алюминий раньше получали из необожженой каолиноиой глины, которую сушили в пламенной печи при температуре 300-400 С. Каолин обрабатывали в варочном котле при 105-110 С в течение 6-8 ч и массу, содержащую 6-8 % свободной серной кислоты,затем выдерживали в зрельниках до содержания 2-2,5% свободной H2SO4 . Массу выгружали на кристаллизационный стол. Содержание AL2O3 в продукте составляло 9% , свободной H2SO4 не более 2%, железа (в пересчете на Fe2O3) — не выше 0,8% , нерастворимого остатка — не более 23%. Способу присущи существенные недостатки: большая доля ручного труда и очень низкое содержание оксида алюминия при сравнительно высоком содержании нерастворимого остатка.
При обработке обожженного при 700-800 С каолина серной кислотой разложение завершалось в варочных котлах, что исключало дозревание массы в зрельниках. Предложены различные способы механизации кристаллизации продукта: распыление незастывшей массы, кристаллизация на вращающихся барабанах с внутренним водяным охлаждением или в шнеках, в вагонетках с откидными полыми водоохлаждаемыми стенками, в ковшевых конвейерах и др.
Наиболее удачный способ механизации удаления застывшего продукта удалось разработоть при разложении каолина избытком серной кислоты с последующей рейтрализацией ее нефелином.
Для исключения обжига каолина предлагали сырой природный каолин обрабатывать большим избытком серной кислоты с последующей нейтрализацией избытка нефелиновой мукой. Применение нефелиновой муки позволяет усовершенствовать разложение каолина, но не увеличивает содержание AL2O3 в продукте выше 9-10% и не снижает содержание нерастворимого остатка. Кроме того, значительное количество кислоты взаимодействует с оксидами щелочных металлов. Образующиеся сульфаты натрия и калия не принимают участия в очистке воды и по сущест
Являются балластом, засоряющим питьевую воду.
В Польше разработан способ производства неочищенного коагулянта из глин, заключающийся в том, что сырую глину обрабатывают раствором серной кислоты в автоклавах при температуре 170-190 С. Избыток свободной H2SO4 в пульпе нейтрализуют обожженной глиной. Продукт содержит 7% растворимого AL2O3, 0,5% Fe2O3, 2% свободной H2SO4 и 37% нерастворимого остатка.В работе отмечается,что наличие в коагулянте аморфного SiO2 в виде нерастворимого остатка способствует улучшению коагулирующих свойств продукта.
Производство очищенного сернокислого алюминия из каолинов в небольших количествах было организовано еще в довоенные годы. Каолин обжигали при 750-850 С, разлагали серной кислотой при температуре кипения, пульпу разбавляли и фильтровали. Раствор упаривали и кристаллизовали. Трудность отделения сернокислого раствора от кремнеземистого шлама в процессе фильтрации требует разбавления и упаривания, что сопряжено с усложнением технологической схемы и увеличением тепловых затрат.
Существует также способ, по которому сырую глину смешивают с оборотным маточным раствором и разлагают серной кислотой, взятой в большом избытке, в автоклавных условиях при температуре 170-180 С. Пульпу фильтруют, раствор упаривают в аппаратах с погружными горелками и проводят двухстадийную кристаллизацию. На первой стадии при 50 С кристаллизуют сернокислое железо, содержащее незначительное количество сернокислого алюминия. Продукт используют в качестве коагулянта для очистки сточных и питьевых вод. Во второй стадии кристаллизации после центрифугирования и промывки получают чистый Сернокислый алюминий. Одним из основных затруднений является отделение высококремнеземистого шлама от сернокислотного раствора.
В НИОХИМе разработана схема, по которой каолин обжигают во вращающихся печах, а затем измельчают и разлагают в каскаде реакторов. Суспензия после разложения поступает на фильтрацию и промывку шлама. Фильтрат с содержанием 8% AL2O3 направляют на выпарку и грануляцию в барабанном грануляторе-сушилке (БГС). Получают гранулированный сернокислый алюминий с содержанием 15,3% AL2O3.
В послевоенные годы институтом НИОХИМ предложен и разработан способ получения сернокислого алюминия из обогащенных каолинов, который применялся в промышленном масштабе на Сумском химическом заводе. Сущность его заключается в экстракции оксида алюминия серной кислотой из обожженных частиц каолина циркуляцией жидкой фазы через слой. От слой одновременно является фильтром для очистки готового продукта от нерастворимых примесей. По действующей в настоящее время технологической схеме измельченный каолин подвергают пластификации в валковой дробилке. Каолиновые пластины толщиной 1-3 мм поступают на дегидратирующий обжиг в кольцевую печь с вращающейся подиной. Обжиг проводят при температуре 600-800 С, высота слоя каолина в печи 250 мм. Обожженные каолиновые пластинки загружают в реактор для обработки серной кислотой при температуре 105-115 С. Кристаллизация продукта производится на складе готовой продукции при естественном охлаждении.Закристаллизовавшийся AL2(SO4)3 рыхлят бульдозером с помощью грейферного крана и погрузочной маширой подают в вагоны.
Этот способ по сравнению с ранее известными имеет ряд преимуществ, так как исключаются операции разбавления суспензии после экстрагирования серной кислотой, трудоемкие процессы фильтрования и упаривания растворов сернокислого алюминия. В то же время способу присущи существенные недостатки. Это, прежде всего, сложный процесс подготовки сырья. Применение слоевого обжига приводит к тому,что верхние слои переобжигаются, в нижних слоях происходит недожег. Все это приводит к тому, что из каолина, обожженного в верхних слоях, извлечь полностью оксид алюминия не удается из-за образоиания труднорастворимого в серной кислоте муллита (AL2O3.3SiO2). Из необожженного каолина нижних слоев AL2O3 также не тзилекается полностью. При обжиге каолина в кольцевой печи большое количество обжигаемого материала просыпается через колосниковую решетку, который затем вновь проходит всю систему подготовки и обжига сырья. Продукты сгорания при 700-800 С разбавляются холодным воздухом и выбрасываются в атмосферу, что снижает тепловой к.п.д.
Применение перколяционной экстракции с рециркуляцией сернокислотного раствора не позволяет обеспечить малую длительность процесса (экстракция 24-26 ч, весь цикл — 40 ч ). Дозировка кислоты составляет 70% стехиометрической в расчете на кислоторастворимый AL2O3 в обожженном каолине. Малая дозировка H2SO4 , подача ее в реактор небольшими порциями и большая длительность экстракции приводит к значительной потере реагентов ( AL2O3 и H2SO4 ) вследствие образования труднорастворимых основных сернокислых солей алюминия, которые удаляются со щламом — сиштофом. Общее извлечение оксида алюминия не привышает 50-55%, что приводит к большому расходу каолина. Раствор сернокислого алюминия с содержанием 13,5% AL2O3 не кристаллизуется на столах.
В ИОНХ АН УССР совместно с Институтом газа АН УССР разработан непрерывный способ получения сернокислого алюминия из каолинов (рис. 1.1 )Сущность технологического процесса заключается в том, из каолина и раствора сернокислого алюминия готовится пульпа влажностью 50-55%, которая поступает на грануляцию в аппарат кипящего слоя при температуре 200-230 С. В грануляторе наряду с гранулированием происходит удаление свободной влаги и частичное обезвоживание сернокислого алюминия, подаваемого с промывными водами. Из гранулятора гранулы ячейковым питателм подаются на обжиг в печь кипящего слоя при температуре 560-580 С. Обожженные гранулы охлаждаются воздухом в холодильнике кипящего слоя и выгружаются в приемный бункер. Воздух после холодильника соединяется с дымовыми газами гранулятора и очищается в циклоне и мокром скруббере.Дымовые газы после обжиговой печи ощищаются в циклоне, промывной башне и волокнистом фильтре.
Охлажденные обожженные гранулы подаются на противоточную экстракцию раствором серной кислоты при температуре 100-110 С в барабанный аппарат непрерывного действия, изготовленный из стали ЭИ-943. Навстречу движущимся гранулам непрерывно поступает концентририванная серная кислота ( 93% ) и вода. Вода промывает прореагировавшие гранулы и разбавляет серную кислоту, поступающую на взаимодействие с каолином. Выгрузка прореагировавших гранул происходит с противоположного конца от загрузки обожженного каолина. Таким образом, в одном аппарате одновременно и непрерывно осуществляется взаимодействие каолинита с серной кислотой, промывка и отделение сиштофа. Степень извлечения оксида алюминия в раствор составляет 88-92%.
Концентрированный раствор сернокислого алюминия с содержанием 12-13% AL2O3 и до 4% нерастворимого остатка подвергают контрольной фильтрации через слой прореагировавших гранул в присутствии флокулянта ПАА в количестве 18 г/м3 раствора.
Осветленный раствор сернокислого алюмирия поступает на грануляционное обезвоживание в аппарате кипящего слоя при температуре 180-200 С. После гранулятора получают сернокислый алюминий с содержанием 22-26% AL2O3.
Пыль AL2(SO4)3, уловленная в циклонах, частично поступает на приготовление пульпы, а большей частью подвергается грануляции на тарельчатом грануляторе. Сиштоф после после сушки используют в качестве кристаллизационного компонента при получении цеьента. Добавка кристаллизационного компонента значительно повышает прочность и придает специальные свойства кальциевым цементам, являющимся основным строительным материалом в народном хозяйстве.
Рисунок 1.1— Принципиальная схема непрерывного способа получения гранулированного сернокислого алюминия из каолинов
К преимуществам этого метода следует отнести :
К числу недочетов следует отнести необходимость упаривания воды каолинивой пульпы, что сопряжено с повышенными тепловыми затратами. Однако осуществить грануляцию и даже пластификацию каолинов невозможно. Применяя печи кипящего слоя удается значительно сократить расход тепла по сравнению с кольцевыми печами.
Интересными представляются направления совершенствования технологии переработки каолинов технической серной кислоты отходами производстваю Так, предлагается использовать отработанные тревильные растворы после окисления Fe2+ в Fe3+ продувкой воздухом направляют на втоклавное разложение при температуре 100-300 С и давлении 7-350 атм. В результате реакции обмена получают в растворе сульфат алюминия и в осадке — Fe(OH)3 и SiO2. После фильтрации раствор сульфата алюминия, содержащий примеси FeSO4, обрабатывают каменным углем или пропускают сернистый ангидрид в присутствии 40-47%-ной H2SO4, осаждая из раствора FeSO4.7H2O. При охлаждении раствора кристаллизуют AL2(SO4)3.16—18H2O высокой чистоты.
Из расмотренных ранее способов получения сульфата алюминия следует, что в большинстве из них не решен вопрос глубокой очистки растворов от железа. Между тем в настоыщее время в ряде производст к сернокислому алюминию предъявляются жесткие требования по содержанию железа. Сущность способа получения сернокислого алюминия высокой чистоты (рис. 1.2 ) в том, что каолин смешивают с серной кислотой в колличестве около 20% и промывной водой 2%. Пульпу подвергают грануляционному спеканию при температуре 200-230 С и обжигу при 560-580 С в печах кипящего слоя. Обожженные гранулы разлагаются в бврабанных аппаратах противоточного типа непрерывного действия. Слив поступает на контрольную фильтрацию и затем на восстановление сульфата трехвалентного железа до двухвалентного алюминиевой стужкой при 98-100 С. Из сернокислого раствора в автоклавах кристаллизуют водородный алунит при 230 С в течение 1ч в присутствии восстановленного водородного алунита, который подается в колличестве 60-65% от имеющегося в растворе глинозема. Восстановительный обжиг проводят при 560-580 С. В качестве восстановителя могут использовать конвертированный природный газ, генераторный газ, пары солярного масла, сера и др. Химизм процесса можно представить суммарной реакцией:
H2[AL2(SO4)4(OH)12] + 4CO 3AL2O3 +7H2O + 4SO2 + 4CO2 .
Рисунок 1.2 — Принципиальная технологическая схема производства сернокислого алюминия высокой чистоты из каолинов.
При восстановительном обжиге содержание активного AL2O3 возрастает на 33% , а возврвт безводного сернокислого алюминия на кристаллизацию водородного алунита полностью исключается.
При автоклавном гидролизе осуществляется полный вывод оксида алюминия в твердую фазу в виде водородного алунита. В маточном растворе остается сульфат двухвалентного железа, который отделяется фильтрованием . Это позволяет исключить из технологического передела операции обезжелезивания обожженным каолином, фильтрацию и промывку железистого шлама. В результате потери глинозема в процессе обезжелезивания отсутствуют, упрощается аппаратурное оформление, сокращается колличество промывных вод.
Водородный алунит промывают водой. Промывная вода1 поступает большей частью на промывку сиштофа , а также на приготовление пульпы. Отмытый водородный алунит разлагают серной кислотой в стехиометрияеском колличестве с получением сернокислого алюминия. Для сульфатизации используют раствор серной кислоты такой концентрации, чтобы получить раствор концентрацией до 15% AL2O3, который можно было бы подавать непосредственно на кристаллизацию товарного AL2(SO4)3.
Водородный алунит может выдаваться в виде полупродукта. Он обладает лучшими транспортабельными свойствами, чем 18-водный сернокислый алюминий.
В процессе сульфатизации извлечение глинозема в раствор 90-92%. Из раствора кристаллизуют водордный алунит следующего химического состава, % : 39,8 AL2O3; 42,4 SO3; 17,8H2O; 0,001-0,003 Fe2O3. Из этого полупродукта получали сернокислый алюминий, в котором содержалось 0,0005-0,001% Fe2O3.
Из сопоставления этого способа с ранее известными видно, что он имеет ряд преимуществ, которые заключаются в следующем :
Исходным сырьем для получения неочищенного нефелинового коагулянта является нефелиновый концентрат и контактная серная кислота.Неочищенный нефелиновый коагулянт имеет состав, % : 10-12 AL2O3; 0,5-0,9 Fe2O3 и 23-29 нерастаоримый остаток.
Производство его осуществляется по трем технологическим схемам.
Так, по одной из них нефелиновый концентрат смешивают с купоросным маслом, при этом концентрат с крепкой серной кислотой практически не взаимодействует, полученная суспензия дозируется ковшевым дозатором в горизонтально расположенный шнек-реактор, куда подается вода из расчета разбавления кислоты до 70-73%. После разбавления реакция протекает с разогревом массы и испарением воды. В результате прохождения через три последовательно расположенных шнека-реактора она становится сыпучей, слегка влажной. Выгружаемый из последнего реактора продукт транспортируется на склад, где происходит его дозревание в течение 2-4 суток, после чего он отгружается потребителю. Вызревание на складе необходимо вследствие того, что разложение а шнеках-реакторах проходит лишь на 85-89% и резко замедляется из-за недостатка жидкой фазы. При дозревании степень разложения увеличивается до 91-93%. Этот способ устарел. Он характеризуется низким коэффициентом использования основного оборудования — шнеков-реакторов вследствие интенсивного эрозионно-коррозионного износа материала аппаратуры, необходимостью дозревания продуктов на складе, неудовлетворительными санитарно-гигиеническими условиями.
По второй технологической схеме нефелиновый концентрат разлагается разбавленной H2SO4 ( 35-40% ) в баке с мешалкой в периодических условиях. Суспензия выливается на кристаллизационный стол, где застывает и разрезается на куски. Степень разложения концентрата достигает 95%. Этот способ исключает дозревание продукта на складе, но также характеризуется низким содержанием AL2O3 в продукте и периодичностью процесса.
Третья технологическая схема разработана УНИИХИМом и получила название “камерный способ”. Нефелиновый концентрат непосредственно смешивают с разбавленной серной кислотой ( 65-70% ) в турбинном вертикальном смесителе непрерывного действия. Полученная пульпа вытекает в камеру аналогичную суперфосфатной, где через 25-30 мин. загустевает, образуя так называемый пирог. Время прибывания массы в камере составляет 1ч. Вырезанный фрезой камерный продукт подается транспортером и разбрасывается на склад. Дозревание продукта на складе не требуется, так как степень разложения концентрета на выходе из камеры 92,5%.
“Камерный” способ производства выгодно отличается от первых двух применением высокопроизводительного оборудования, непрерывностью процесса, высоким коэффициентом использования оборудования, несколько лучшими санитарно-гигиеническими условиями. На 1т нефелинового коагулянта расходуется 0,43т серной кислоты и 0,39т нефелинового концентрата [ 1 ].
Рассмотрим щелочные способы переработки алюминийсодержащего сырья.
Получение глинозема способом спекания применительно к каолиновым глинам, аргиллитам и минеральной части углей разработано В.А. Мазелем, Н.И. Ереминым и др.[ 3 ]. Каолин и известняк и спекают из расчета связывания кремнезема в 2CaO.SiO2 и глинозема в 12CaO.7A2O3 при 1375-1400 С с последующим саморассыпанием спеков при охлаждении.
Комплексная переработка нефелинового концентрата и породы на глинозем, соду, поташ и цемент способом спекания осуществлена на ряде предприятий.
По этому способу нефелиновый концентрат или породу смешивают с предварительно измельченным известняком и спекают при 1250-1300 С, При этом глинозем, содержащийся в нефелине переводят в хорошо растворимые в водных и щелочных растворах алюминаты натрия и калия, а кремнезем связывают в нерестворимый двухкальцевый силикат. Охлажденный спек размалывают в шаровых мельницах, где размол совмещен с выщелачиванием оборотными растворами щелочей для извлечения алюминатов. При этом происходит также частичное разложение двухкальциевого силиката, сопровождаемое некоторым переходом в раствор кремнезема. После отделения твердого остатка и очистки от кремнезема алюминатные растворы разлагают с выделением гидроокиси алюминия, после прокалки которой получают глинозем. Содопоташные растворы, свободные от алюминия, выпаривают и разделяют с получением твердой соды и поташа, а двухкальциевый силикат направляют на получение цемента, кроме того, получают еще и галлий.
Гидрохимический способ В.Д. Пономарева и В.С. Сажина состоит в том, что в определенных условиях автоклавной варки нефелинов и других алюмосиликатов в едкой щелочи, окись алюминия почти полностью переходит а раствор и может быть отделена от кремнезема и других примесей
При выщелачивании нефелинов в присутствии извести под давлением 30 атм (260 С ) крепкими щелочными растворами получают алюминатный раствор, содержащий некоторое колличество кремнезема.Раствор обезкремнивают в присутствии оборотного белого шлама при 150 С, отделяют от выпавшего осадка и упаривают до 500-510 г/ Na2O, после чего из него кристаллизуют алюминат натрия, который затем растворяют и направляют на декомпозицию по Байеру. Остаток после выщелачивания промывают и регенерируют из него щелочь обработкой известью в автоклавах или слабыми растворами щелочей. Гидрохимический способ прошел укрупненную проверку. В последние годы В.С. Сажиным с сотрудниками предложен ряд усовершенствований гидрохимического способа [ 3 ].
Способ спекания высокощелочной шихты,предложенный М.Н. Смирновым, заключается в замене половины известняка в обычной нефелиновой шихте эквивалентным колличеством едкой щелочи. При спекании такой шихты образуются алюминаты и ферриты щелочей, а кремнезем связывается не в 2CaO.SiO2, а в Na2O.CaO.SiO2, т.е. одна молекула CaO замещается молекулой Na2O.
Преимущество способа по сравнению с обычным спеканием состоит в уменьшении почти в 2 раза расхода известняка, в хорошей грануляции шихты, большом температурном интервале спекообразования (около 300 С ). Недостатком схемы является большой расход щелочи и сложность регенерации ее из шлама [ 3 ].