
PID Controller Using the TMS320C31 DSK for
Real-Time DC Motor Speed and Position Control

ABSTRACT

 This paper addresses real-time DC
motor speed and position control
using the low-cost TMS320C31 digital
signal processing starter kit (DSK).
A PID controller is designed using
MATLAB functions to generate a set of
coefficients associated with a
desired controller's characteristics.
The controller coefficients are then
included in an assembly language
program that implements the PID
controller. A MATLAB program is used
to activate the PID controller,
calculate and plot the time response
of the control system. When the
MATLAB program is run, it plots the
time response of the system on the PC
screen, assembles the PID assembly
language program, and loads/runs the
resulting executable file on the
TMS320C31 to achieve real-time
control. Both speed and position
control are investigated on a DC
motor system with speed feedback and
position feedback. Results show the
improvement of system outputs as
expected with a PID controller, with
actual system outputs matching
theoretical calculations.

I. INTRODUCTION

 The rapid and revolutionary
progress in power electronics and
microelectronics in recent years has
made it possible to apply modern
control technology to the area of
motor and motion control. The use of
digital signal processors (DSPs) has
permitted the increasingly stringent
performance requirements and fast,
efficient, and accurate control of

servo motor and motion control
systems. DSPs, such as the TMS320C31
(C31) from Texas Instruments, are
currently used for a wide range of
applications from controls and
communications to speech processing.
They continue to be more and more
successful because of available low-
cost support tools. DSP-based systems
can be readily reprogrammed for a
different application.

 The C31-based $99 DSK includes
Texas Instruments' C31 floating-point
digital signal processor, and an
analog interface circuit (AIC) chip
with A/D and D/A converters, input
(anti-aliasing) and output
(reconstruction) filters, all on a
single chip. It also includes an
assembler, a debugger, and many
application examples.

 This paper addresses real-time DC
motor control using the C31 DSK. A
PID controller is designed using
MATLAB functions to generate a set of
coefficients associated with a
desired controller's characteristics.
The controller coefficients are then
included in an assembly language
program that implements the PID
controller. A MATLAB program is used
to activate the PID controller,
calculate and plot the time response
of the control system. When the
MATLAB program is run, it plots the
time response of the system on the PC
screen, assembles the PID assembly
language program, and loads/runs the
resulting executable file on the C31
to achieve real-time control.

Jianxin Tang
Division of Electrical Engineering

Alfred University
Alfred, NY 14802

Email: ftang@bigvax.alfred.edu

Rulph Chassaing
Dept. of Electrical and Computer Engineering

University of Massachusetts Dartmouth
North Dartmouth, MA 02747

Email: rchassaing@umassd.edu

 In Section II, design of the PID
controller is discussed.
Implementation of the PID controller
using the C31 is addressed in Section
III. Test results of the motor system
and comparison with theoretical
calculations are presented in Section
IV. Finally conclusion and future
work are given in Section V.

II. DESIGN OF THE DIGITAL CONTROLLER

 Following is a block diagram of the
system under consideration.

Figure 1. Block diagram of the
digital control system

In figure 1, r(t) is the input (or
set point), c(t) is the output, D(z)
is the digital controller, G(s) is
the plant transfer function, and H(s)
is the sensor transfer function. A
digital PID controller has the
following form [2]:

Tz
z

Dz
zT

IP KKKzD 1
1
1

2)(−
−
+ ++=

 1

2
2

1
10

1 −

−−

−
++=

z

zazaa
 (1)

with

T

KTK
P

DIKa ++=
20

 T
KTK

P
DIKa 2

21 −+−=

T

KDa =2 ,

where ,PK ,IK and DK are the

proportional, integral, and
derivative parameters of the
controller, and T is the sampling
period. For programming convenience,
let

)(
)(

)(
)()()(zX

zY
zM
zMzDzD ==

where X(z) and Y(z) are the input and
output of the controller in the z-
domain, respectively, then

)()()(2
2

1
10 zMzazaazY −− ++= (2)

and

)()1()(1 zMzzX −−= . (3)

Using the inverse z-transformation,

)2()1()()(210 −+−+= kmakmakmaky (4)

and

)1()()(−+= kmkxkm . (5)

III. IMPLEMENTATION OF THE DIGITAL
PID CONTROLLER USING THE C31 DSK

 Figure 2 shows the MATLAB main
program (CONTROL2.M) for a DC motor
control system with a PID controller.
PID parameters and amplifier/motor
transfer functions are pre-calculated
and inputted to the program. PID
parameters can be calculated using
equations in many standard digital
control systems books (see, for
example [2]). The MATLAB program in
Figure 2 does the z-transform,
calculates the system closed-loop
transfer function and the step
response. In the program "numg, deng"
is the amplifier/motor transfer
function, "numf, denf" is the sensor
transfer function, "numd, dend" is
the PID controller transfer function,
"T" is the sampling period, "c2dm"
does the z-transform using zero-
order-hold, "series" multiplies the
PID controller transfer function with
the amplifier/motor transfer
function, "feedback" calculates the
closed-loop transfer function of the
system, "nums, dens" adds an
amplitude of 2.5 to the step input,
and "dstep" calculates the step
response of the system.
 The actual implementation of the
PID controller on the DSK is through
the assembly language program

CONTROL2.ASM (figure 3). This program
is a modification of an IIR filter
program in [1]. After defining
starting addresses for the text and
data, the AIC communication routine
AICCOM31.ASM [1] is included for
input to and output from the C31
(via the I/O routine AICIO_P). The

%CONTROL2.M--Main MATLAB program
%for motor control using the
%TMS320C31 DSK
%
numg=22;
deng=[1 4];
numf=[0.18];
denf=[1];
T=0.0001;
[numz,denz]=c2dm(numg,deng,T, ...
'zoh');
numd=[1.00004 -0.99996];
dend=[1 -1];
[numz,denz]=series(numd,dend, ...
numz,denz);
[numzc,denzc]=feedback(numz, ...
denz,numf,denf);
[nums]=[2.5];
[dens]=[1];
[numc,denc]=series(nums,dens, ...
numzc,denzc);
c=dstep(numc,denc,10001);
t=0:0.0005:5;
dos('dsk3a control2');
dos('dsk3load control2 BOOT');
plot(t,c),grid
xlabel('Time (seconds)')
ylabel('System output (rps)')
title('Time reponse')

Figure 2. Main MATLAB Program
CONTROL2.M

input sample is then processed
according to equations (4) and (5).
One of the features of the C31 is
that it can perform multiplication
and addition/subtraction in parallel.
This is especially suitable for
processing difference equations such
as in (4) and (5). An output signal
y(k) is generated and the delays m(k)
are updated. Continuous processing
takes place within a loop starting at
the label PID in the program in
figure 3. PID parameters are set in
the statement with label COEFF.

Initial delays are set to zero in the
statement with label DLY. The
sampling frequency is configured to
be 10 KHz in the statement labeled
AICSEC.

 From the MATLAB program CONTROL2.M,
the assembly language program
CONTROL2.ASM is assembled, loaded
into and run on the C31 on board the
DSK. While the motor is running, the
MATLAB program CONTROL2.M plots the
time response of the motor system and
displays the response on the PC
monitor.

IV. TEST RESULTS

 Tests were performed on a DC motor
control system, the SFT154,
manufactured by Feedback Inc. The
system includes a power amplifier, a
DC motor, a tachometer as the speed
sensor, a potentiometer as the
position sensor, and a data
acquisition unit to display real-time
system outputs on a PC monitor. Both
speed control and position control
were investigated.

A. Speed Control

 The transfer function of the motor
for speed control is

 .)(4
22
+=

ss sG

This transfer function was derived
based on the time constant and the DC
gain of the motor, which were
obtained from a simple open-loop
test. The speed sensor has a ratio of
0.18. The input signal was 2.5 volts,
representing a desired output speed
of 15 rps or 900 rpm.

 1. The first test was to run the
motor without a controller (D(z)=1).
The output speed was only about half
of the desired output as shown in
figure 4a. This is due to the fact
that the system is a type 0 system
and large steady-state error exists.
This result was also confirmed from
theoretical calculations as shown in
figure 4b.

 2. The second test was then
performed with a PID controller
added, with PID parameters PK =1,

IK =0.8, and DK =0. This corresponds

to 0a =1.00004, 1a =-0.99996, and 2a =0

in equation (1) since the sampling
period T=0.0001. Notice that one
cannot approximate 0a with 1 and 1a
with -1 otherwise the integral part
of the PID controller will not be in
effect. This achieved a steady-state
output speed of 900 rpm as desired
and shown in figure 5a. In other
words, the system type was increased
by 1 and steady-state error was
eliminated. However the rise-time is
longer with the controller added, as
confirmed from theoretical
calculations as shown in figure 5b.
The rise-time can be reduced by
increasing IK with a possibility of

having an overshoot.

B. Position Control

 The transfer function for position
control is

)4(

22)(+=
ssP sG

which is
ss sG 1)(× (speed to position

conversion). The position sensor has
a ratio of 0.625. The system input
was ± 5v, representing a desired
output of ± 90 degrees (or a total of
180 degrees). Again, the system was
run without (D(z)=1) and with a
controller. Since the system is
already of type 1, no steady-state
errors were expected. Figure 6a shows
that the system output had an
overshoot of about 12% without a
controller, which matched the
corresponding theoretical results as
shown in figure 6b. When a PID
controller was added with parameters

PK =1, IK =0, and DK =1.9, the

overshoot was reduced to zero (figure
7a), which matched the corresponding
theoretical results (figure 7b).

V. CONCLUSION AND FUTURE WORK

 A digital PID controller was
successfully implemented using the
C31 DSK and tested on a DC motor
speed and position control system for
real-time control. For speed control,
the test results showed that with the
PID controller added, the steady-
state error was eliminated and the
desired output speed was obtained.
For position control, the results
showed that, with the PID controller
added, the desired output position
was obtained without overshoot.
Actual system outputs also agreed
with theoretical results, indicating
the accuracy of the system transfer
functions. At the present time the
controller parameters have to be set
in the assembly language program
CONTROL2.ASM and cannot be adjusted
in real-time. Future work includes
designing the PID controller within
the MATLAB program CONTROL2.M and
adjusting the PID parameters in real-
time.

REFERENCES

 1. R. Chassaing, Digital Signal
Processing, Laboratory Experiments
Using C and the TMS320C31 DSK , Wiley,
1999.

 2. C. L. Phillips and H. T. Nagle,
Digital Control System Analysis and
Design , Prentice Hall, Inc., 1995.

 3. J. Tang, "Laboratory Development
for a Digital Control System Course,"
Journal of Engineering Technology,
Vol. 14, No. 2, fall 1997.

*CONTROL2.ASM - PID controller using the C31 DSK
 .start ".text", 0x809900 ;starting address of text
 .start ".data", 0x809C00 ;starting address of data
 .include "AICCOM31.ASM" ;include AIC comm routines
 .entry BEGIN ;start of code
 .text ;assemble into text
BEGIN LDP @COEFF_ADDR ;init to data page 128
 CALL AICSET ;initialize AIC
PID LDI @COEFF_ADDR,AR0 ;AR0 points to coefficients address
 LDI @DLY_ADDR,AR1 ;AR1 points to addr of delay samples
 CALL AICIO_P ;call AIC for polling
 FLOAT R6,R3 ;stage input
 MPYF3 *AR0++,*AR1++,R0 ;b[0]*dly[0]
 LDI STAGES-1, RC ;initialize stage counter
 MPYF3 *AR0++,*AR1--,R1 ;b[1]*dly[1]
|| SUBF3 R0,R3,R3 ;input-b[0]*dly[0]
 MPYF3 *AR0++,*AR1++,R0 ;a[1]*dly[0]
|| SUBF3 R1,R3,R2 ;dly=input-b[0]*dly[0]-b[1]*dly[1]
 MPYF3 *AR0++,*AR1--,R1 ;a[2]*dly[1]
 ADDF3 R0,R1,R3 ;a[2]*dly[1]+a[1]*dly[0]
 LDF *AR1,R4 ;dly[2]
|| STF R2,*AR1++ ;dly[0] = dly
 MPYF3 R2,*AR0++,R2 ;dly*a[0]
|| STF R4,*AR1++ ;dly[1] = dly[0]
 MPYF3 *AR0++,*AR1++,R0 ;b[0]*dly[0]
|| ADDF3 R2,R3,R3 ;controller output
 FIX R3,R7 ;convert output to integer
 BR PID
 .data ;b[0] b[1] a[1] a[2] a[0]
COEFF .float -1.0000E+0, 0.0000E+0, -0.99996E+0, 0.0000E+0, 1.00004E+0
DLY .float 0, 0 ;init delay var for each stage
STAGES .set 1 ;number of stages
COEFF_ADDR .word COEFF ;address of COEFF
DLY_ADDR .word DLY ;address of DELAY
AICSEC .word 162Ch,1h,3872h,63h ;AIC config data, Fs = 10 kHz
 .end ;end

Figure 3. Assembly language program CONTROL2.ASM for a PID controller

Figure 4. System output speed without a controller

Figure 5. System output speed with a PID controller

Figure 6. System output position without a controller

Figure 7. System output position with a PID controller

