A Genetic Algorithm for Automatic Generation of Test Logic
for Digital Circuits

Fulvio CorNO, Paolo RINETTO, Matteo ®NzA REORDA

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino,

Abstract”

Italy

monly used, especially fdfinite State MachingFSM)
synthesisDeeply embeddedyutomatically synthesized

Testing is a key issue in the design and production FSMs acting as Control Units caoften be found in

of digital circuits: the adoption of BIST (Built-In Self-

current designsand resorting t@BIST is anattracting

Test) techniques is increasingly popular, but sometimesapproach fotheir test. Fig. Ishowsthe structure of a

requires efficient algorithms for the automatic genera-
tion of the logicwhich generateshe test vectors ap-

BIST circuit (or macro):.during the normalorking
mode,the Unit Under Test(UUT) is fedwith the val-

plied to the Unit Under Test. This paper addresses theues coming fromthe circuit Primary Inputsand its

issue of identifying a Cellular Automaton able to gen-
erate input patterns to detect stuck-at faults inside a
Finite State Machine(FSM). A suitablehardware
structure is first identified. A Genetic Algorithm is then
proposed, which directly identifies a Cellular
Automaton able to reach a very good Fault Coverage

of the stuck-at faults. The novelty of the method con-

sists in combining the generation of test pattemnith

the synthesis of a Cellular Automaton ablerépro-
duce them. Experimental results are providedhich
showthat in most of the standard benchmark circuits
the Cellular Automaton selected by the Genetic Algo-
rithm is able to reach a Fault Coverage close to the
maximum one. Our approach is the first attempt of
exploiting evolutionary techniques for identifying the
hardware for input pattern generation in BIST struc-
tures.

1. Introduction

Built-In Self-Test (BIST) [ABFr90hasbeenwidely
recognized as aeffective approach for testing of Ap-
plication Specificintegrated Circuits (ASICs). In the
last decadesuccessful adoption of BlShasbeen re-
ported for circuits as a wholend for embedded mac-
ros. In the meantime, design technigwe®lved sig-
nificantly, andautomatic synthesis too&e now com-

* This work hasbeen partially supported by Italtel.
Contact address: Matteo SONZA REORDBiparti-
mento di Automatica e Informatica, Politecnico di
Torino, Corso Duca degli Abruz2i4, 1-10129 Torino
(Italy), e-mailsonza@polito.it

outputs drive the circuit Primary Outputs. When the
Test Mode is selectetirough the Normal/Test signal,
the UUT is fed by aspecial circuitry namethput Pat-
tern Generatorproducing thevectors which activate
the possible faultanside theUUT. The Output Data
Evaluator checks whethethe output behavior of the
UUT matches thexpected valuesThe BIST Control-

ler manages thahole test circuitryand posbly gen-
erates the Good/Faulty signal to the outside.

Primary Inputs

)

Input Pattern

Generator
A

A J Normal/Test

5.1
BIST
uuT Contro ller Good/Faulty
»
1y

Output Data

L

Evaluator

_

Primary Outputs v

Fig. 1:Architecture of a BIST circuit.

One of thetoday main issues inthe BIST area is
how to exploit BIST to test embedded FSMs, facing the
problems coming fromheir limited accessibility and
their highly sequential behavior.

Several solutions have been proposedrtial and
full scan [Jett95], CSTP [KrPi89RILBO [KMZw79].
Most of the approaches tend to transform the circuits

into combinational onesTheir effectivenesscan be
evaluated from many points efew: how much area

and performance overhead they introduce, which fault

coverage theguaranteehow easilyand automatically

they can be introduced into the original design struc-

tures, etc.
When devising a BIST techniquiyo main issues

have to be addressed: howgenerate the test patterns,

and how to evaluatehe output behavior. WhelRSMs

are not transformed into combinational circuits during
test, the formeissue is by fathe most critical one, as

many faults can bdetected only providethat specific
sequencesire applied to the inputs. Thesequences

can be generated by Automatic Test Pattern Genera- IPG

tors, but hardware structures able to reprodiesm
(e.g., based on ROMS) are very expensive filoenarea
and performance points ofiew. Cellular Automata
(CA) have been already proposed mmdom input
pattern generatorgHMPM89] and for reproducing
deterministic unordered inputvectors [BoKa95]
[SCDM94]. Previous attempts to exploit CA tepro-
duce deterministic orderethput vectors [BoKa95]
limited themselves to provéhe difficulty of attaining

any usefulresult. Someexperimental results we gath-

ered confirmthat it isvery difficult to identify any CA
able to reproduce a given sequence, whéenis longer
than some tens of vectors.

In this paper wepropose a new solution to the

problem of automatically synthesizing CA famput

ports somepreliminary experimental resultand Sec-
tion 5 eventually draws some conclusions.

ATPG

IPG |
Synthesize

Modified
Circuit

ATPG

Synthesize

Modified
Circuit

(@) (b)

Fig. 2: Proposed approach with respect to traditional
one

2. Cellular Automata

Due totheir versatility and ease of reconfiguration,

vector generation for FSMs. Previous approaches as-in this paper we investigate these of Cellular Auto-
sumethat suitable inputsequences (e.g., generated by mata for implementing IPG blocks.

an Automatic Test Pattern Generator, or ATPG) are

available,anddescribe howthe logic implementing an
Input Pattern Generator (IPGple to generat¢hem
can besynthesized (Fig. 2.a). Thmeain novelty of our
approach is in combining the ATP&dIPG synthesis
steps (Fig. 2.b). Inhis way, asingle process is acti-
vated, focused atgenerating aneffective hardware
structure forthe IPG; theprocess issimilar to an
ATPG one, inthat it aims at reaching the highéasult

coverage; however, hardware structure is generated,

instead of a test sequence. A Genetic Algori(iGa)

A cellular automaton [ToMa87] is aystem com-
posed of cells, whose behavior advancedinme in
discrete steps. Cells acennected imegular structures
(grids), where thecells directly connected to a given
cell are referred to as itseighbors A stateis associ-

ated to each cell. Each cell communicates its present

state to itscloseneighborsand computes its new state
from its current state and from that of its neighbors.
The new state computation law is given byrde
[Wolf83] characterizing each cell in tlsystem. In the
case obinary Cellular Automata, the state of eamdll

is adopted for this task. Furthermore, we propose a newcan be either 0 or 1: in thisasethe evolution rule is

architecture forthe synthesized CAable to generate
longer ordered sequencéBan traditional solutions.

best expressed as a truth table, which listséve state
of the cell as 8oolean function. Theseuth tables are

Our approach does not require transforming the circuit, often expressed as decimal numbers,irigrpreting

but just adding the BIST logic.

Section 2 reports some basics about @Ad de-
scribesthe hardware structure we adopt&kction 3
describesthe Genetic Algorithm welevised for the
automatic synthesis of the Cellular Automastarting
from the netlist of the addressed FSBSkction 4 re-

them as a binary code.

The behavior of a CAan therefore bepecified by

giving:

» the structure of the interconnection grid. The
most usedare one-,two- or three-dimensional
square grids, buthyper-cubes, triangulated
meshes, and trees can also be found.

Fig. 3: Proposed CA structure

« the neighborhoodof each cell. Given grid, the example, it is impossible to repeat any singlput

neighborhood is usually defined the set ofunit vector at alater time [BoKa95] without repeating all
distance cells, where the distance usually thefollowing ones. To improvéhe ability of the CA to
counted as the number lobpsover the grid. generate complex sequencesjntsinsic memory must

« the boundary conditionsWhenever thegrid is be increased. Two possibilities can be exploited:
not infinite, boundary conditionspecify how the * a one-dimensional structure withore than one
neighborhood of boundary celfthat would oth- cell for each circuiinput. A common case is to
erwise be incomplete) should be constructed. Null add adummy cell foreveryreal CA cell. The
boundary conditions (i.e., assumititat the grid state of dummy cells isot fed into the circuit,
is surrounded by cellshosestate is invariably rather itcontributes to thglobal state othe CA
zero) orcyclic boundaryconditions (i.e., assum- and enhances ifoperties. Experimental results
ing that the CA grid is circular, and theglls show again that this is not a general solution.
lying on opposite boundaries thfe grid are adja- * a two-dimensional structure can lexplored,
cent) are usually adopted. where the X-dimension is given by the number of

+ the evolution rulesfor each cell inthe grid. A inputs, while the Y-dimensiomives the extra
CA is defined asuniform when all of hiscells memory. Due tathe increased number aklls
follow the sameevolutionrule. More often, cells and the number afeighbors (4 or 8, depending
follow different rules, taken from th&hole space on the grid), thissolution usually gives aery
of admissible functions or from some subset of high area overhead.
functions with particular properties. In this paper, déybrid solution is proposed. H is

« theinitial conditions It is usually assumethat the number of Primary Inputs of the circuit, we build a
the evolution ofthe CA starts fronsome prede- 2xn CA. The two-dimensionajrid (Fig. 3) has there-
termined configuration. fore only two rows. Tdurther simplify the hardware

When cellular automata are adoptedngmit pattern implementationpnly cells onthe secondow are con-

generators, a mappingetween CA celland Primary nected to circuit inputs, while cells ¢ine firstrow are
Inputs of the circuit must be establishétsually, one- forced to evolveaccording to afixed rule This rule
dimensional CA with one cell for each circinput are corresponds to copyinipe previous state athe corre-
adopted. Inthis case each cellastwo neighbors, and sponding cell in the secomdw: with this choice, the
therefore its next state is determined a8a@olean first row of cells just remembeilthe previous state of
function of 3 bits: the present state of the egltl that all the secondow cells.Each cell in the second row
of its neighbors. The rule of each cell is therefore se- has a5-cell neighborhood, consisting of the adjacent
lected among a set of 2°(273)=256 differ&uolean cells on itsrow and on thefirst row: each cell has

functions. therefore access tbe present statend to theprevious
Experimentalevidence showghat CA built in this state of itselfand its right andeft neighbors.Cyclic
way are notpowerful enough to generatedered se- boundary conditionsare assumed. For theake of

guences, necessary to test sequential circuits. As arsimplicity, in thefollowing the termstageis used to

indicate thetwo cells inthe same column. Theehav-
ior of each stage (Fig. 4) is defined the Boolean
function f; which computeghe evolution rulefor the
lower cell.

With this choices, for am-input circuit, 2 flip-
flops are usedbut only n cells need combinational
logic for their new state functiofi to be implemented.
Each of then cells ofthe seond row is specified by a
Boolean function selected in a space of 2*(276)=
1.84x10" different ones.

3. The algorithm

In our approach, a Genetic Algorithm (GA) is ex-
ploited to search in thepace of 2°(2"6) rulethat can
be used for each stage, looking filbe CA which
maximizes the attained FaWbverage. Irthis Section
we will describe the devised algorithm.

Let us consider a gate-level description of an FSM.
In our BIST approach, we assurtfeat the Input Pat-
tern Generator is an-stages CA whose outputs are
connected to the FSM inputs. Our goal is to identify a
CA that isable to generate aimput sequence, which
detectsthe highest number of faults. By detecting a
fault, we mearthat theoutput values produced by the
goodandfaulty circuits differduring at leasbne clock
period. We do not discuss hehow to analyze the
circuit outputs. The permanent single stuck-at fault
model is adopted.

Our algorithm reads thESM netlistand thefault

fault simulating it. Efficient fault simulation techniques
[NCPa92] have been exploited to implemtre proce-
dures performing this task. The initial state of the CA
is the all-Os state.

sk
A
1
S Sh1
SZi—l] \ SZi
Fir1
to i-th circuit inputy

Fig. 4: Architecture of thé-th stage.

The fitness function is obtained from the evaluation
function vialinearization the individuals areorted in
decreasing order with respecttteeir evaluation func-
tion, and thevalueNUM_INDis assigned to thitness
of the first individual (beingqNUM_INDthe total num-
ber of individuals), thevalue NUM_IND-1 to the sec-
ond, and so on.

The pseudo-code ofhe algorithm is reported in

Fig. 5

list, and chooses a rule for each CA stage: it is also able

to providethe number of faultsletected bythe input
sequence generated thys structure when it rurfer a
given number off clock cycles.

The algorithm isbased on a Genetialgorithm:
each chromosome corresponds to a CA: the value of th
i-th gene identifies the rule foinei-th stage of the CA.
As described irthe previous Sectionthe adopted CA
structure allows for 2°(276) different rules for each
stage: therefore, each gene @@sume any value be-
tween 0 and 2*(2"6)-1.

The adopted crossover operatortiie uniformone:
two parentchromosomesare selected,and for each
gene, thevalue coming from onparent or the other is
randomly chosen. Parenselection is performed
through theroulette-wheel mechanism. Mutation is
implemented by randomly selecting a geaad ran-
domly changing its value.

The evaluation functioassociated to each chromo-
some isthe FaultCoverageattained by thesequence
generated by the corresponding CA whem for T
clock cycles.Therefore, evaluation function computa-
tion is performed by generating tsequenceand then

4. Experimental Results

We implemented thdescribedalgorithm in C and

dun it on aSun SPARCstation 20/50 with a 64byte

memory. The ISCAS’89 circuits [BBKo89],and the
ones known agddendumnto thelSCAS’89 benchmark
set [Adde93] have been used to evaluhteeffective-

ness of our approach.

We runthetool using the parametemalues reported
in Tab. 1. In Tab. 2 wgive some=xperimental results:
for each circuit, we computetie FaultCoverage (FC,
column 2) attained by fault simulating tlsequence
obtained by making the Cavolving for T=800 clock
cycles. Tab. 2 also reports the requir€PU time in
seconds (colum#d), which is comparable with the one
required by an ATPG tool to obtaithe same fault
coverage. Finally, we compareithe attained Fault
Coverage withthe Fault Coverage obtained with a
state-of-theart ATPG tool [Sunr94] (ATPG FC, col-
umn 3).Despitethe enormous dimension of the search
space faced bthe Genetic Algorithm, the results ap-

Parameter Meaning Value
MAX_GEN Maximum Number of Generations 100
NUM_IND Population Size 10
NEW_IND | Number of new individuals for each generatiopn 4
Pm Mutation activation probability 0.2

Tab. 1:Parameter values.

pear very promising, as for most circuits the tool is able of a veryimportant problem irthe field of Electronic
to identify a CA which detects motban 90% of all CAD, i.e., the identification of théeststructure of a
the faults detected by a state-of-the-art ATPG. We Cellular Automaton in charge of generating the input
expectthe total faultcoverage to be evdmgher if we vectors within a BIST structure.
also consider the faulthat a longersequence gener- Despitethe enormous size of the seasgmace con-
ated by the same CA could detect. sidered by the Genetic Algorithm, the experimental
In order to evaluate the area overhead introduced byresults showthat thetool we wrote is able to identify
the generated CA, we first evaluated the aveiag very good solutions: in fact, with the generated CA it is
for implementing a CA stage #ie gate-level. Experi- possible to reach a Fault Coveragey close tahe one
mental results obtained by synthesizing filfeinctions obtained with thevectors generatewvith an ATPG.
for a number of sample CA stages indicatkdt the Testing ofembedded FSMs igkus madepossible with
average cost for their implementation is about 20 gates.a BIST approach whicboesnot require any interven-
This makes our approacery convenient forFSMs tion from theoutside unless test activati@md result
where the number of inputs isw with respect to the gathering.
number of gates. Whkelievethat acareful choice of a Work is currently being done to restrict the set of
subset ofthe allowed rules for CA implementation CA rules among which the GA caosethe one for
would allow further improvements to theonvenience each stage; in thiway, itwill be possible to reduce the
of our method even in terms of area overhead. search spaceand todecreasehe area overhead re-
quired to implement the hardwarfer input vector
generation.

5. Conclusions

We described a Genetlgorithm for the solution

CA genetic_algorithm(NETLIST n, FAULT_LIST f)
{
initial population P o={S 10,.-,S Num_IND,} iS randomly generated;
for (i=0; i<KMAX_GEN; i++)
{ for (each individual s i OPi)
compute the fitness function F(s i nD;
A ={the best NUM_IND-NEW_IND individuals from P i}
for (w=0; w<NEW_IND; w++)
{ select two individuals in P i
apply the crossover operator, and generate a new individual s;
apply the mutation operator to s with probability p m
A=A{s};
}
Piv1 =A;
}
return (select_best_individual_in(P i));
}

Fig. 5:GA pseudo-code.

References

[ABFro0]

[Adde93]

[BBK089]

[BoKa95]

[CCPS92]

[Gold89]

M. Abramovici, M.A. Breuer, A.D. Fried-
man: “Digital SystemsTesting and Test-
able Design,” Computer Science Press,
1990

These benchmark circuitan be down-
loaded from the CAD Benchmarking
Laborarory at the address http:/
www.cbl.ncsu.edu/www/CBL_Docs
/Bench.html

F. Brglez, D. Bryant, K. Kozminski,
“Combinational profiles of sequential
benchmark circuits,’Proc. Int. Symp. on
Circuits And Systems1989, pp. 1929-
1934

S. Boubezari, BKaminska, “A Determi-
nistic Built-In Self-Test GeneratoBased
on Cellular Automata Structures/EEE
Trans. on Comp Vol. 44, No. 6, June
1995, pp. 805-816

P.Camurati, F. Corno, P. Prinetto, M.
Sonza Reorda, “A simulation-based ap-
proach to test pattern generatifum syn-
chronous circuits,’Proc. IEEEVLSI Test
Symposiumnl992, pp. 263-267

D.E. Goldberg, “Genetic Algorithms in
Search, Optimization, and Machine
Learning,” Addison-Wesley, 1989

[HMPM89] P.D. Hortensius, R.DMcLeod, W. Pries,

[Jett9s]

[KMZw79]

[KrPigo]

[NCPa92]

D.M. Miller, H.C. Card, “CellularAuto-
mata-Based Pseudorandom Number Gen-
erators for Built-In Self-Test,” IEEE
Trans. on Computer-Aided Desigviol. 8,
No. 8, August 1989, pp. 842-859

JETTA, Journal of Electronic Testing,
Theory and Applications, special Issue on
Partial Scan Method¥,olume 7, Numbers
1/2, August/October 1995

B. Konemann, J. Mucha, GZwiehoff,
“Built-In Logic Block Observation Tech-
nique,” Proc. IEEE International Test
ConferenceOctober 1979, pp. 37-41

A. Krasniewski, S. Pilarski, “Circuld®elf-
Test Path: Aow-cost BISTTechnique for
VLSI circuits,” IEEE Trans. on CADVol.

8, No. 1, January 1989, pp. 46-55
T.M.Niermann, W.-T. Cheng, J.H. Patel,
“PROOFS: AFast, Memory-Efficient Se-
quential Circuit Fault Simulator, IEEE
Trans. on CAD/ICASVol. 11,No. 2, Feb-
ruary 1992, pp. 198-207

[SCDM94] J. van Sas, F. Catthoor, H. Ddan,

[Sunr94]

[ToMa87]

[Wolf83]

“Cellular Automata Based Deterministic
Self-Test Strategies for Programmable
Data Paths,"IEEE Trans. on CADVol.
13, No. 7, July 1994, pp. 940-949
TESTGEN Reference Manual, Sunrise
Test Systems - A Viewlogic Company, De-
cember 1994

T. Toffoli, N. Magolus, “Cellular Auto-
mata Machines: ANew Environment for
Modeling,” MIT Press, Cambridg@JSA),
1987

S. Wolfram, “Statistical Mechanics of
Cellular Automata,”Rev. Mod.Phys 55,
1983, pp. 601-644

Circuit FC ATPG FC | CPU Time
% % [S]

5208 67.29 67.77 68p
5298 87.66 88.64 961
s344 99.44 99.44 42p
5349 97.27 97.88 49§
5382 87.96 94.99 169B
5386 73.38 81.18 9y
s400 86.55 93.63 192p
5420 46.24 46.85 225D
s444 86.28 92.62 237p
5499 73.18 73.18 88y
s510 100.0Q 100.00 2p
s526 79.27 83.96 297p
s526n 79.74 84.27 281
635 0.15 0.15 8649
s641 87.31 87.31 124B
s713 82.61] 82.62 158
5820 59.80 94.98 344Pp
832 48.44 100.00 356
5838 34.93 34.93 586|
5953 98.29 99.0% 239p
5967 97.59 98.17 264p
5991 99.31] 99.32 229p
51196 86.32 99.75 530p
51238 81.23 94.57 5956
51269 99.69 99.69 303b
51423 88.18 89.64 19075
51488 89.52 97.07 5307
51494 87.78 96.44 5427
51512 70.23 65.69 8414
53271 98.00 99.66 19441
53330 78.89 81.47 23980
53384 92.52 93.54 20206
54863 95.26 95.84 25787

Tab. 2:Experimental results

