
A Genetic Algorithm for Automatic Generation of Test Logic
for Digital Circuits

Fulvio CORNO, Paolo PRINETTO, Matteo SONZA REORDA

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy

Abstract*

Testing is a key issue in the design and production
of digital circuits: the adoption of BIST (Built-In Self-
Test) techniques is increasingly popular, but sometimes
requires efficient algorithms for the automatic genera-
tion of the logic which generates the test vectors ap-
plied to the Unit Under Test. This paper addresses the
issue of identifying a Cellular Automaton able to gen-
erate input patterns to detect stuck-at faults inside a
Finite State Machine (FSM). A suitable hardware
structure is first identified. A Genetic Algorithm is then
proposed, which directly identifies a Cellular
Automaton able to reach a very good Fault Coverage
of the stuck-at faults. The novelty of the method con-
sists in combining the generation of test patterns with
the synthesis of a Cellular Automaton able to repro-
duce them. Experimental results are provided, which
show that in most of the standard benchmark circuits
the Cellular Automaton selected by the Genetic Algo-
rithm is able to reach a Fault Coverage close to the
maximum one. Our approach is the first attempt of
exploiting evolutionary techniques for identifying the
hardware for input pattern generation in BIST struc-
tures.

1. Introduction

Built-In Self-Test (BIST) [ABFr90] has been widely
recognized as an effective approach for testing of Ap-
plication Specific Integrated Circuits (ASICs). In the
last decade, successful adoption of BIST has been re-
ported for circuits as a whole and for embedded mac-
ros. In the meantime, design techniques evolved sig-
nificantly, and automatic synthesis tools are now com-

* This work has been partially supported by Italtel.

Contact address: Matteo SONZA REORDA, Diparti-
mento di Automatica e Informatica, Politecnico di
Torino, Corso Duca degli Abruzzi 24, I-10129 Torino
(Italy), e-mail sonza@polito.it

monly used, especially for Finite State Machine (FSM)
synthesis. Deeply embedded, automatically synthesized
FSMs acting as Control Units can often be found in
current designs, and resorting to BIST is an attracting
approach for their test. Fig. 1 shows the structure of a
BIST circuit (or macro): during the normal working
mode, the Unit Under Test (UUT) is fed with the val-
ues coming from the circuit Primary Inputs and its
outputs drive the circuit Primary Outputs. When the
Test Mode is selected through the Normal/Test signal,
the UUT is fed by a special circuitry named Input Pat-
tern Generator producing the vectors which activate
the possible faults inside the UUT. The Output Data
Evaluator checks whether the output behavior of the
UUT matches the expected values. The BIST Control-
ler manages the whole test circuitry and possibly gen-
erates the Good/Faulty signal to the outside.

UUT

Input Pattern
Generator

Primary Inputs

Normal/Test

Good/Faulty
BIST

Contro ller

MPX

Output Data
Evaluator

Primary Outputs

Fig. 1: Architecture of a BIST circuit.

One of the today main issues in the BIST area is
how to exploit BIST to test embedded FSMs, facing the
problems coming from their limited accessibility and
their highly sequential behavior.

Several solutions have been proposed: partial and
full scan [Jett95], CSTP [KrPi89], BILBO [KMZw79].
Most of the approaches tend to transform the circuits

into combinational ones. Their effectiveness can be
evaluated from many points of view: how much area
and performance overhead they introduce, which fault
coverage they guarantee, how easily and automatically
they can be introduced into the original design struc-
tures, etc.

When devising a BIST technique, two main issues
have to be addressed: how to generate the test patterns,
and how to evaluate the output behavior. When FSMs
are not transformed into combinational circuits during
test, the former issue is by far the most critical one, as
many faults can be detected only provided that specific
sequences are applied to the inputs. These sequences
can be generated by Automatic Test Pattern Genera-
tors, but hardware structures able to reproduce them
(e.g., based on ROMs) are very expensive from the area
and performance points of view. Cellular Automata
(CA) have been already proposed as random input
pattern generators [HMPM89] and for reproducing
deterministic unordered input vectors [BoKa95]
[SCDM94]. Previous attempts to exploit CA to repro-
duce deterministic ordered input vectors [BoKa95]
limited themselves to prove the difficulty of attaining
any useful result. Some experimental results we gath-
ered confirm that it is very difficult to identify any CA
able to reproduce a given sequence, when this is longer
than some tens of vectors.

In this paper we propose a new solution to the
problem of automatically synthesizing CA for input
vector generation for FSMs. Previous approaches as-
sume that suitable input sequences (e.g., generated by
an Automatic Test Pattern Generator, or ATPG) are
available, and describe how the logic implementing an
Input Pattern Generator (IPG) able to generate them
can be synthesized (Fig. 2.a). The main novelty of our
approach is in combining the ATPG and IPG synthesis
steps (Fig. 2.b). In this way, a single process is acti-
vated, focused at generating an effective hardware
structure for the IPG; the process is similar to an
ATPG one, in that it aims at reaching the highest fault
coverage; however, a hardware structure is generated,
instead of a test sequence. A Genetic Algorithm (GA)
is adopted for this task. Furthermore, we propose a new
architecture for the synthesized CA able to generate
longer ordered sequences than traditional solutions.
Our approach does not require transforming the circuit,
but just adding the BIST logic.

Section 2 reports some basics about CA and de-
scribes the hardware structure we adopted. Section 3
describes the Genetic Algorithm we devised for the
automatic synthesis of the Cellular Automaton starting
from the netlist of the addressed FSM. Section 4 re-

ports some preliminary experimental results, and Sec-
tion 5 eventually draws some conclusions.

Circuit

ATPG

Input
Vectors

IPG
Synthesizer

Modified
Circuit

Circuit

ATPG IPG
Synthesizer

Modified
Circuit

(a) (b)

Fig. 2: Proposed approach with respect to traditional
one.

2. Cellular Automata

Due to their versatility and ease of reconfiguration,
in this paper we investigate the use of Cellular Auto-
mata for implementing IPG blocks.

A cellular automaton [ToMa87] is a system com-
posed of cells, whose behavior advances in time in
discrete steps. Cells are connected in regular structures
(grids), where the cells directly connected to a given
cell are referred to as its neighbors. A state is associ-
ated to each cell. Each cell communicates its present
state to its close neighbors and computes its new state
from its current state and from that of its neighbors.

The new state computation law is given by a rule
[Wolf83] characterizing each cell in the system. In the
case of binary Cellular Automata, the state of each cell
can be either 0 or 1: in this case the evolution rule is
best expressed as a truth table, which lists the new state
of the cell as a Boolean function. These truth tables are
often expressed as decimal numbers, by interpreting
them as a binary code.

The behavior of a CA can therefore be specified by
giving:

• the structure of the interconnection grid. The
most used are one-, two- or three-dimensional
square grids, but hyper-cubes, triangulated
meshes, and trees can also be found.

• the neighborhood of each cell. Given a grid, the
neighborhood is usually defined as the set of unit
distance cells, where the distance is usually
counted as the number of hops over the grid.

• the boundary conditions. Whenever the grid is
not infinite, boundary conditions specify how the
neighborhood of boundary cells (that would oth-
erwise be incomplete) should be constructed. Null
boundary conditions (i.e., assuming that the grid
is surrounded by cells whose state is invariably
zero) or cyclic boundary conditions (i.e., assum-
ing that the CA grid is circular, and that cells
lying on opposite boundaries of the grid are adja-
cent) are usually adopted.

• the evolution rules for each cell in the grid. A
CA is defined as uniform when all of his cells
follow the same evolution rule. More often, cells
follow different rules, taken from the whole space
of admissible functions or from some subset of
functions with particular properties.

• the initial conditions. It is usually assumed that
the evolution of the CA starts from some prede-
termined configuration.

When cellular automata are adopted as input pattern
generators, a mapping between CA cells and Primary
Inputs of the circuit must be established. Usually, one-
dimensional CA with one cell for each circuit input are
adopted. In this case each cell has two neighbors, and
therefore its next state is determined as a Boolean
function of 3 bits: the present state of the cell and that
of its neighbors. The rule of each cell is therefore se-
lected among a set of 2^(2^3)=256 different Boolean
functions.

Experimental evidence shows that CA built in this
way are not powerful enough to generate ordered se-
quences, necessary to test sequential circuits. As an

example, it is impossible to repeat any single input
vector at a later time [BoKa95] without repeating all
the following ones. To improve the ability of the CA to
generate complex sequences, its intrinsic memory must
be increased. Two possibilities can be exploited:

• a one-dimensional structure with more than one
cell for each circuit input. A common case is to
add a dummy cell for every real CA cell. The
state of dummy cells is not fed into the circuit,
rather it contributes to the global state of the CA
and enhances its properties. Experimental results
show again that this is not a general solution.

• a two-dimensional structure can be explored,
where the X-dimension is given by the number of
inputs, while the Y-dimension gives the extra
memory. Due to the increased number of cells
and the number of neighbors (4 or 8, depending
on the grid), this solution usually gives a very
high area overhead.

In this paper, a hybrid solution is proposed. If n is
the number of Primary Inputs of the circuit, we build a
2×n CA. The two-dimensional grid (Fig. 3) has there-
fore only two rows. To further simplify the hardware
implementation, only cells on the second row are con-
nected to circuit inputs, while cells on the first row are
forced to evolve according to a fixed rule. This rule
corresponds to copying the previous state of the corre-
sponding cell in the second row: with this choice, the
first row of cells just remembers the previous state of
all the second row cells. Each cell in the second row
has a 5-cell neighborhood, consisting of the adjacent
cells on its row and on the first row: each cell has
therefore access to the present state and to the previous
state of itself and its right and left neighbors. Cyclic
boundary conditions are assumed. For the sake of
simplicity, in the following the term stage is used to

s2
i

s1
i

s2
i+1

s1
i+1

s2
1

s1
1 s1

i-1

s2
i-1

s2
n

s1
n

s2
n

s1
n … …

s2
1

s1
1

Row 1

Row 2

Stage i

Fig. 3: Proposed CA structure.

indicate the two cells in the same column. The behav-
ior of each stage (Fig. 4) is defined by the Boolean
function fi which computes the evolution rule for the
lower cell.

With this choices, for an n-input circuit, 2n flip-
flops are used, but only n cells need combinational
logic for their new state function fi to be implemented.
Each of the n cells of the second row is specified by a
Boolean function selected in a space of 2^(2^6)=
1.84×1019 different ones.

3. The algorithm

In our approach, a Genetic Algorithm (GA) is ex-
ploited to search in the space of 2^(2^6) rules that can
be used for each stage, looking for the CA which
maximizes the attained Fault Coverage. In this Section
we will describe the devised algorithm.

Let us consider a gate-level description of an FSM.
In our BIST approach, we assume that the Input Pat-
tern Generator is an n-stages CA whose outputs are
connected to the n FSM inputs. Our goal is to identify a
CA that is able to generate an input sequence, which
detects the highest number of faults. By detecting a
fault, we mean that the output values produced by the
good and faulty circuits differ during at least one clock
period. We do not discuss here how to analyze the
circuit outputs. The permanent single stuck-at fault
model is adopted.

Our algorithm reads the FSM netlist and the fault
list, and chooses a rule for each CA stage: it is also able
to provide the number of faults detected by the input
sequence generated by this structure when it runs for a
given number of T clock cycles.

The algorithm is based on a Genetic Algorithm:
each chromosome corresponds to a CA: the value of the
i-th gene identifies the rule for the i-th stage of the CA.
As described in the previous Section, the adopted CA
structure allows for 2^(2^6) different rules for each
stage: therefore, each gene can assume any value be-
tween 0 and 2^(2^6)-1.

The adopted crossover operator is the uniform one:
two parent chromosomes are selected, and for each
gene, the value coming from one parent or the other is
randomly chosen. Parent selection is performed
through the roulette-wheel mechanism. Mutation is
implemented by randomly selecting a gene, and ran-
domly changing its value.

The evaluation function associated to each chromo-
some is the Fault Coverage attained by the sequence
generated by the corresponding CA when run for T
clock cycles. Therefore, evaluation function computa-
tion is performed by generating the sequence and then

fault simulating it. Efficient fault simulation techniques
[NCPa92] have been exploited to implement the proce-
dures performing this task. The initial state of the CA
is the all-0s state.

s2
ifi

s1
i

s2
i-1

s1
i-1

s2
i+1

s1
i+1

to i-th circuit input

Fig. 4: Architecture of the i-th stage.

The fitness function is obtained from the evaluation
function via linearization: the individuals are sorted in
decreasing order with respect to their evaluation func-
tion, and the value NUM_IND is assigned to the fitness
of the first individual (being NUM_IND the total num-
ber of individuals), the value NUM_IND-1 to the sec-
ond, and so on.

 The pseudo-code of the algorithm is reported in
Fig. 5.

4. Experimental Results

We implemented the described algorithm in C and
run it on a Sun SPARCstation 20/50 with a 64 Mbyte
memory. The ISCAS’89 circuits [BBKo89], and the
ones known as Addendum to the ISCAS’89 benchmark
set [Adde93] have been used to evaluate the effective-
ness of our approach.

We run the tool using the parameter values reported
in Tab. 1. In Tab. 2 we give some experimental results:
for each circuit, we computed the Fault Coverage (FC,
column 2) attained by fault simulating the sequence
obtained by making the CA evolving for T=800 clock
cycles. Tab. 2 also reports the required CPU time in
seconds (column 4), which is comparable with the one
required by an ATPG tool to obtain the same fault
coverage. Finally, we compared the attained Fault
Coverage with the Fault Coverage obtained with a
state-of-the art ATPG tool [Sunr94] (ATPG FC, col-
umn 3). Despite the enormous dimension of the search
space faced by the Genetic Algorithm, the results ap-

pear very promising, as for most circuits the tool is able
to identify a CA which detects more than 90% of all
the faults detected by a state-of-the-art ATPG. We
expect the total fault coverage to be even higher if we
also consider the faults that a longer sequence gener-
ated by the same CA could detect.

In order to evaluate the area overhead introduced by
the generated CA, we first evaluated the average cost
for implementing a CA stage at the gate-level. Experi-
mental results obtained by synthesizing the fi functions
for a number of sample CA stages indicated that the
average cost for their implementation is about 20 gates.
This makes our approach very convenient for FSMs
where the number of inputs is low with respect to the
number of gates. We believe that a careful choice of a
subset of the allowed rules for CA implementation
would allow further improvements to the convenience
of our method even in terms of area overhead.

5. Conclusions

We described a Genetic Algorithm for the solution

of a very important problem in the field of Electronic
CAD, i.e., the identification of the best structure of a
Cellular Automaton in charge of generating the input
vectors within a BIST structure.

Despite the enormous size of the search space con-
sidered by the Genetic Algorithm, the experimental
results show that the tool we wrote is able to identify
very good solutions: in fact, with the generated CA it is
possible to reach a Fault Coverage very close to the one
obtained with the vectors generated with an ATPG.
Testing of embedded FSMs is thus made possible with
a BIST approach which does not require any interven-
tion from the outside unless test activation and result
gathering.

Work is currently being done to restrict the set of
CA rules among which the GA can chose the one for
each stage; in this way, it will be possible to reduce the
search space, and to decrease the area overhead re-
quired to implement the hardware for input vector
generation.

CA genetic_algorithm(NETLIST n, FAULT_LIST f)
{

initial population P 0={s 1,0 ,...,s NUM_IND,0} is randomly generated;
for (i=0; i<MAX_GEN; i++)
{ for (each individual s j,i ∈ P i)

compute the fitness function F(s j,i ,n,f);
A ={the best NUM_IND-NEW_IND individuals from P i };
for (w=0; w<NEW_IND; w++)
{ select two individuals in P i ;

apply the crossover operator, and generate a new individual s;
apply the mutation operator to s with probability p m;
A=A∪{s};

}
Pi+1 =A;

}
return (select_best_individual_in(P i));

}

Fig. 5: GA pseudo-code.

Parameter Meaning Value
MAX_GEN Maximum Number of Generations 100
NUM_IND Population Size 10
NEW_IND Number of new individuals for each generation 4

pm Mutation activation probability 0.2

Tab. 1: Parameter values.

References

[ABFr90] M. Abramovici, M.A. Breuer, A.D. Fried-
man: “Digital Systems Testing and Test-
able Design,” Computer Science Press,
1990

[Adde93] These benchmark circuits can be down-
loaded from the CAD Benchmarking
Laborarory at the address http://
www.cbl.ncsu.edu/www/CBL_Docs
/Bench.html

[BBKo89] F. Brglez, D. Bryant, K. Kozminski,
“Combinational profiles of sequential
benchmark circuits,” Proc. Int. Symp. on
Circuits And Systems, 1989, pp. 1929-
1934

[BoKa95] S. Boubezari, B. Kaminska, “A Determi-
nistic Built-In Self-Test Generator Based
on Cellular Automata Structures,” IEEE
Trans. on Comp., Vol. 44, No. 6, June
1995, pp. 805-816

[CCPS92] P. Camurati, F. Corno, P. Prinetto, M.
Sonza Reorda, “A simulation-based ap-
proach to test pattern generation for syn-
chronous circuits,” Proc. IEEE VLSI Test
Symposium, 1992, pp. 263-267

[Gold89] D.E. Goldberg, “Genetic Algorithms in
Search, Optimization, and Machine
Learning,” Addison-Wesley, 1989

[HMPM89] P.D. Hortensius, R.D. McLeod, W. Pries,
D.M. Miller, H.C. Card, “Cellular Auto-
mata-Based Pseudorandom Number Gen-
erators for Built-In Self-Test,” IEEE
Trans. on Computer-Aided Design, Vol. 8,
No. 8, August 1989, pp. 842-859

[Jett95] JETTA, Journal of Electronic Testing,
Theory and Applications, special Issue on
Partial Scan Methods, Volume 7, Numbers
1/2, August/October 1995

[KMZw79] B. Konemann, J. Mucha, G. Zwiehoff,
“Built-In Logic Block Observation Tech-
nique,” Proc. IEEE International Test
Conference, October 1979, pp. 37-41

[KrPi89] A. Krasniewski, S. Pilarski, “Circular Self-
Test Path: A low-cost BIST Technique for
VLSI circuits,” IEEE Trans. on CAD, Vol.
8, No. 1, January 1989, pp. 46-55

[NCPa92] T.M. Niermann, W.-T. Cheng, J.H. Patel,
“PROOFS: A Fast, Memory-Efficient Se-
quential Circuit Fault Simulator,” IEEE
Trans. on CAD/ICAS, Vol. 11, No. 2, Feb-
ruary 1992, pp. 198-207

[SCDM94] J. van Sas, F. Catthoor, H. De Man,
“Cellular Automata Based Deterministic
Self-Test Strategies for Programmable
Data Paths,” IEEE Trans. on CAD, Vol.
13, No. 7, July 1994, pp. 940-949

[Sunr94] TESTGEN Reference Manual, Sunrise
Test Systems - A Viewlogic Company, De-
cember 1994

[ToMa87] T. Toffoli, N. Magolus, “Cellular Auto-
mata Machines: A New Environment for
Modeling,” MIT Press, Cambridge (USA),
1987

[Wolf83] S. Wolfram, “Statistical Mechanics of
Cellular Automata,” Rev. Mod. Phys. 55,
1983, pp. 601-644

Circuit FC ATPG FC CPU Time
% % [s]

s208 67.29 67.77 689
s298 87.66 88.64 961
s344 99.44 99.44 426
s349 97.27 97.88 497
s382 87.96 94.99 1698
s386 73.38 81.18 997
s400 86.55 93.63 1922
s420 46.24 46.85 2250
s444 86.28 92.62 2376
s499 73.18 73.18 887
s510 100.00 100.00 29
s526 79.27 83.96 2975
s526n 79.74 84.27 2813
s635 0.15 0.15 8649
s641 87.31 87.31 1248
s713 82.61 82.62 1581
s820 59.80 94.98 3449
s832 48.44 100.00 3560
s838 34.93 34.93 5867
s953 98.29 99.05 2390
s967 97.59 98.17 2649
s991 99.31 99.32 2290
s1196 86.32 99.75 5305
s1238 81.23 94.57 5956
s1269 99.69 99.69 3035
s1423 88.18 89.64 19075
s1488 89.52 97.07 5307
s1494 87.78 96.44 5427
s1512 70.23 65.69 8414
s3271 98.00 99.66 19461
s3330 78.89 81.47 23980
s3384 92.52 93.54 20206
s4863 95.26 95.84 25787

Tab. 2: Experimental results.

