Load Balancing for Response Time

Jeffery Westbrook™

July 11, 1995

Abstract

A centralized scheduler must assign tasks to servers, processing on-line a sequence of task
arrivals and departures. Each task runs for an unknown length of time, but comes with a weight
that measures resource utilization per unit time. The response time of a server is the sum of
the weights of the tasks assigned to it. The goal is to minimize the maximum response time,
i.e., load, of any server. Previous papers on on-line load balancing have generally concentrated
only on keeping the current maximum load bounded by some function of the maximum off-line
load ever seen. Our goal is to keep the current maximum load on an on-line server bounded
by a function of the current off-line load. Thus the loads are not permanently skewed by
transient peaks, and the algorithm takes advantage of reductions in total weight. To achieve this,
the scheduler must occasionally reassign tasks, in an attempt to decrease the maximum load.
We study several variants of load balancing, including identical machines, related machines,
restricted assignment tasks, and virtual circuit routing. In each case, only a limited amount of
reassignment is used but the load is kept substantially lower than possible without reassignment.

1 Introduction

This paper examines on-line or dynamic load balancing problems that arise in heterogeneous dis-
tributed systems containing workstations, I/O devices, and variable-bandwidth communication chan-
nels. A typical instance consists of a fixed set V of n servers and a set of tasks U to be processed
by those servers. Each task u € Uis made up of a sequence of subtasks, or basic steps, and has a
weight, w,,, which is in some way a measure of the amount of service needed to perform a basic step.
The tasks arrive and depart on-line, that is, arrival time and the number of subtasks are unknown
in advance.

For example, the servers may be communication channels between two sites, the tasks a video
transmission made up of a stream of packets, and the weight of a task will be the time required to
transmit one packet, generally a linear function of the packet size. The total number of packets to
be sent 1s unknown, however, as is the start time of each task. As another example, the servers may
be distributed database platforms, the tasks application programs performing a sequence of accesses
to the database, and the weights the time for an individual access. Again, the start time of each
application is unknown, as is the total number of queries per task.

The load on a server is the sum of the weights of the tasks assigned to it. The response time for
a task 1s the time required to perform a basic unit of the task, such as transmit a single packet or

*Department of Computer Science, Yale University, New Haven, CT 06520.

answer a single database query. Assuming that a server timeshares fairly among the tasks assigned
to it, the response time is bounded by the load. Response time is important when a task involves an
interaction between a human user and the servers, such as audio or video transmission or database
queries. Response time is also important when each task is a thread of a parallel computation,
comprised of subtasks separated by synchronization barriers. Each task to should get to the syn-
chronization barriers at roughly the same rate. The load balancing problem is the problem of keeping
the tasks distributed over the servers so that no server has too high a load, i.e., the maximum load
is minimized.

More formally, a load-balancing problem consists of a game between an algorithm and an adver-
sary. At the start of round ¢, there is a set of active tasks, U(t). In a round, the adversary may add
a new task to U(t), or it may remove a task from U(t). In response, the algorithm must assign each
new task to some server or set of servers. It may also reassign tasks among servers. We refer to ¢ as
the tizme. An optimal assignment of the active tasks minimizes the maximum load. Let A} be the
maximum load in an optimal assignment of the tasks active at time ¢. For an on-line load-balancing
algorithm A, let A(¢) denote the maximum load on any server at time ¢ if A is used to determine
assignment of tasks to servers. Note that A} depends only U(t), whereas A(t) in general depends on
the entire history of task arrivals and departures.

We say A is c-competitive against peak load if at for all ¢, A(t) < maxy<scA}. That is, the
maximum load on an on-line server is bounded by ¢ times the maximum optimal load ever seen. We
say A is e-competitive against current load if for all ¢, A(t) < ¢A}. That is, the maximum load on an
on-line server is no more than ¢ times the maximum load in an optimal assignment of the currently
active tasks.

Almost all previous papers on competitive on-line load balancing have dealt only with peak load.
In [1, 3, 5], tasks never depart, in which case current and peak load are equivalent. In [2, 4], tasks
may depart but the algorithms are competitive against peak load only. In this paper, we examine
the design of algorithms that are competitive against current load.

The distinction between peak load and current load is quite significant. The peak load mea-
surement is useful in network design, where it can be used, in conjunction with an estimate of the
peak optimum load, to determine how fast a server must be to ensure a given upper bound on
response time. The current load measurement is important when the system is actually running.
Suppose a large number of video transmissions across a network start simultaneously. Viewers will
see Jerky images, since each individual frame in the image is slow to arrive through the network.
Nothing can be done, since the network is heavily loaded. But suppose that most of transmissions
are short and end quickly, leaving only a few long-term transmissions. The algorithm that assigns
tasks to channels may have assigned all the long transmissions to the same channel, not knowing in
advance which transmissions were long and which were short. Even if the load on this channel is
competitive with the prior peak load, it is of little consolation to the viewers, who must continue to
watch a jerky transmission even though the short-term jobs have left and there is enough capacity
to send the long-term transmissions at a fast rate. The behavior of load-balancing algorithms that
are competitive against current load cannot be skewed by an initial peak. The current load measure
is also used in the application of load balancing to network flow described in [10]. Naturally, an
algorithm that is e-competitive against current load is c-competitive against peak load.

The video transmission example suggests that to be competitive against current load, the on-line
scheduler must sometimes reassign tasks to different servers. This should not be done too often,

however. Usually, a certain amount of preprocessing is done in assigning a task, such as setting the
switches in a virtual network circuit, or building search data structures for database queries. The
cost of doing this work is called the restart cost. By constantly reassigning tasks, the algorithm can
achieve the optimal maximum load, but all the server time will be taken up by restarts. Our results
explore the tradeoff between restart cost and load balance.

We consider the following specific load balancing problems. The survey paper by Lawler et al.
[9] lists many others.

e Identical Machines: Each task u has an associated weight w, and can be served by any one of
the servers. All servers run at the same speed. The load on server v is the sum of the weights
of tasks assigned to it.

e Related Machines: The same as the previous problem, except that each server » runs at a
different speed, or has a capacity, cap,. The load on v is the sum of the assigned weights
divided by the capacity.

o Restricted Assignment: Each task has a unit weight but can only be served by one of some
subset of the machines. The load on a machine is the number of assigned tasks.

e Virtual Circuit Routing: The servers are the edges of an undirected graph. Each edge has
an associated capacity cap,. A task u is a request for a connection between two nodes sy, .
The set of servers assigned to the task must form a path between s, and ¢,. Each task has an
associated weight w,. The load on an edge 1s the sum of the weights of the connections using
that edge divided by its capacity.

For all these problems, an algorithm that never reassigns tasks is at best n-competitive against
current load. Each problem contains the identical machines problem as a restriction. In the identical
machines problem, an adversary may generate n? unit cost tasks, after which some server v must
have load at least n. The adversary then deletes all tasks except for those on v. On the other hand,
as noted in [4], Graham’s [7] list processing heuristic for identical machines, which simply assigns
each new task to the least loaded server, and never reassigns a task, is 2-competitive against peak
load.

To measure the cost of reassignment, we assume that each task u has an associated restart cost
ry. The restart cost is incurred every time u is assigned or reassigned to some server or connection
path. We assume that r, depends only on u. That is, r, does not vary with the time of assignment
or the servers to which u is assigned. In addition, in all but the last section of this paper we assume
that r, = ¢ - w, for a fixed constant c. In the final section we give a general method to remove this
last restriction, at the price of an increase in the competitive ratio. Dealing with restart costs that
depend upon time and server is an intriguing open problem. The algorithms in this paper keep the
total cost of reassignments bounded by some small function, usually linear, of the sum S = EUEU Ty
Since each task incurs its restart cost at least once, when it is first assigned, any algorithm must
incur a total restart cost of at least S.

We first present a simple algorithm for the case of identical machines that is 6-competitive against
current load, with total restart cost either 25 or 35, depending on whether the restart costs are unit
or equal to a constant times the weight of a task, respectively. Section 3 gives a general witness-
based strategy for constructing algorithms competitive against current load, and uses it to derive an

(8 + ¢)-competitive algorithm for related machines, € an arbitrarily small constant, with total restart
cost O(S). Previously, Azar et al. gave an algorithm for related machines that is 20-competitive
against peak load [3], but not competitive against current load. Their algorithm never reassigns a
task.

In Section 4 we study the restricted assignment problem, and give a rebalancing scheme that is
parameterizable to trade off competitive ratio against restart cost; its best competitive ratio is O(1)
at a restart cost of O(Slogn). Previously, Phillips and Westbrook [10] give a preemptive algorithm
that is O((log n)/p)-competitive against current load while incurring restart cost pS, where 0 < p <1
is a user-specified parameter. Their algorithm works for arbitrary weights. Azar et al[2] give an
eager algorithm for the case of unit weights that is O(1) competitive against peak load, but only
if the optimum peak load is Q(logn). This algorithm reassigns each task O(logn) times, but is no
better than n-competitive against current load.

In Section 5 we give an algorithm for virtual circuit routing that is O(log n)-competitive against
current load, with restart cost O(S lognlog(C/cap,,;,)), where C' is the sum of edge capacities and
cap,;, 1s the minimum edge capacity. This algorithm is based on an algorithm of Azar et al.[2] that
is O(logn) competitive against peak load, not competitive against current load, and reassigns each
task O(logn) times. Finally, in Section 6 we give a general method to handle restart cost functions
of the form r : U — R*.

2 Identical Machines

In this section we give an algorithm that is 6-competitive against current load. It performs 25
reassignments in the case that the restart cost r, = 1 for all u € U, and 35 reassignments in the
case that r, = cw,, ¢ a constant, for all u € U. There are several previous algorithms that are
competitive against peak load with a ratio 2 — ¢ for a small constant ¢ [6, 7, 8. None of these
reassign tasks, and none are better than n-competitive against current load.

First, consider a particularly simple case: w, = w for all u € U, w a constant. It is easy to show
that A} = w[|U(t)|/n]. Furthermore, it is easy to maintain on-line an assignment of the active tasks
that achieves this optimum load, and incurs total reassignment cost 25. When a task arrives, it is
placed on a server with minimum load. When a task departs from server v;, a task is moved from
some server with maximum load to server v;, unless v; itself has maximum load. The restart cost
of the reassignment is charged to the departing task.

Now suppose that the tasks weights are not all equal. At time ¢, let wyi, = minueU(t) w, and
let Wmax = Max, .y (¢) Wu- Let a = |logwmin| and b = [log wmax|. Partition the jobs by size into
b— a+ 1 classes, so that class i contains all jobs u € U(¢) such that 2 < w, < 2t a <i <b.

We treat each class independently. Within class 7, we treat each job as if it had size 2*!, and run
the unit-weight algorithm. If a new task arrives, it is assigned into the appropriate class, adjusting
the partition upwards or downwards as necessary if the new task changes the bound @ or . When
a task departs, the appropriate reassignment is done within its class, and the partition is again
adjusted if the task departure changes a or b. Let U} denote the set of tasks in class i.

Since class b contains at least one job, A; > 2°. Also, A} > Z?:a 2¢|U#|/n; this sum is a lower

bound on the average total weight per processor. Conversely, the maximum load on any on-line
server is at most the sum of the maximum loads in each class. Hence

b

Aty < DTEHU@ /] < 372U /0 + 1)

i=a

< 2 (Zziw(tﬂ/n) +4.2°

i=a

Theorem 1 The algorithm maintains load within 6 times the current optimum. Quver all as-
signments and reassignments, the total cost of reassignments is order 2S5, where S = EUEU Ty, tf
ry = 1VYu€eU, or3S, if ry, = cwy, Yu € U, ¢ a constant.

Proof: The competitive ratio is maximized when the two lower bounds on A} are equal, which
gives a ratio of 6. Each departing job is charged for at most one reassignment. In the case that
Ty = cwy, however, the reassigned job may be as much as twice as large as the departing job, in
which the departing job is charged twice its own restart cost. O

3 Related Machines

In the related machines problem, each machine v;, 1 < j <n, has a particular capacity or through-
put, cap;. Without loss of generality, let cap; > cap;;; for all 1 < j < n. Let W;(t) denote the
sum of the weights of tasks assigned to server v; at time ¢. The load on server j at time ¢ is given
by W;(t)/cap;. An algorithm for the special case that tasks never depart is given in [1].

3.1 Witness-based partitions.

The paradigm used here and in the remaining sections of this paper is as follows. Assume the
existence of a load-balancing algorithm, A, parameterized by A, with the following properties. When
a new task u is added to the active set Uy, A either assigns u so that the maximum load is at most
e(n)A, or reports (correctly) that in any assignment of U; U {u}, the maximum load is greater
than A. In the first case A accepts u, and in the second case A rejects u. Algorithm A may perform
rebalancing after task arrivals or departures, but the restart cost incurred will be limited. Algorithm
A is called the one-level algorithm and is used as a subroutine.

We maintain a partition of the active tasks, U(t), into “levels,” U;(t), a < i < ¢, where ¢ <
[log A7]. The lower bound a depends on the particular application, but in general is chosen so that
the restart cost can be bounded.

The partition changes as jobs arrive and depart, but will always satisfy the following condition:
the load on a server due to jobs in U;(t) is at most e(n)A;, where ¢(n) is some function of n and
A; = 2°. A partition that satisfies this conditions is called a ¢(n)-witness partition.

Lemma 2 An on-line algorithm that maintains a c(n)-witness partition is 4c(n)-competitive
against current load.

Proof: The on-line load is at most Y_./__ 2c(n) < S./___ 2'c(n) < 27F1¢(n) < c(n)?z‘HOg)‘t.
O

Each level in the partition is regarded as a separate instance of the load-balancing problem, and
managed using the one-level algorithm. To assign a new task u, we proceed as follows. The value
of a is adjusted as necessary. For related machines, we will set a = mmueU(t) [log wy /(e(n)capy)],

so @ can only decrease. Then, starting at level ¢ = a, we attempt to put u into level ¢, using the
one-level algorithm. If the one-level algorithm accepts u, we are done. If it rejects u, we increment
i by 1 and repeat. Once i = [log A7], the insertion must be accepted by definition of the one-level
algorithm. Finally, we set ¢ = max{q,i}.

To delete task u, we remove it from whatever level it belongs to, using the one-level algorithm.
This may cause local rebalancing within that level. The value of a is adjusted upward, if necessary.
Then a global rebalancing phase occurs. Each task u in level-q is selected in turn, and an attempt
is made to insert u into any level 7 < q. If u is accepted by a lower level, then the next task in level
q 1is selected and rebalancing continues. If level ¢ is emptied of tasks, then ¢ is decremented and
global rebalancing resumes on the new maximum level. If u is rejected by all lower levels, and by
level ¢ — 1 in particular, then u is left in level ¢ and global rebalancing terminates. By the definition
of the one-level algorithm, a rejection implies A} > 2971 which implies ¢ < [logA;]}. Task u is
called a witness for load 29. By using witnesses, the algorithm can avoid compute the exact value
of A} (although it could be computed by brute force simulation, if necessary).

The partition limits the restart cost incurred during global rebalancing in the following way.
Suppose task u is reassigned from ¢ down to ¢’. When u first arrived, it must have been rejected
by level ¢’ to end up in ¢q. Since ¢’ now accepts u, it must be that some number of tasks have
departed from level ¢’ in the meantime. The restart cost of moving u can be amortized against the
restart costs of the departed jobs. The precise details of the amortization argument depend on the
application.

3.2 Algorithm ONE-LEVEL.

In this section we give a one-level algorithm for related machines, called ONE-LEVEL. Given a
parameter A, ONE-LEVEL keeps the load bounded by (1 + 8)A where § > 1 is any constant. If
the total weight of all tasks ever accepted is W, then ONE-LEVEL reassigns a total weight of
W(l+ 1/(8—1)). This scheme is an adaptation of the algorithm of [1].

Recall W;(t) is the total weight assigned to processor v; at time ¢. We also define a quantity
M; (t), which will roughly be the maximum weight ever on processor v; since it was last rebalanced.
For convenience, we will often drop the time parameter, when the time is fixed, and simply refer to

W; and M;.

Insertion. Let u be a new task, with weight w,. Let j be the maximum index such that (W; +
wy)/cap; < (14 B)A. If there is no such j, then reject task u. Otherwise, assign task u to processor
J, increase W; by wy, and set M; = max{W;, M;}.

Deletion. Let u be the job that is departing, say from processor j. Decrease the value of W; by
wy. Then apply the following rebalancing procedure:

1. Let £ = max{k | Y}_, M; — BW; >0}
2. If there is no such £, then stop.

3. Otherwise, for all j < £, set M; = 0, W; = 0. Preempt all jobs assigned to servers vy, ..., v
and reassign them by re-inserting them one by one, using the above insertion algorithm.

The insertion and deletion routines preserve the following two properties:
Prop. 1. M;(t) > W;(t) Vt,j.

Prop. 2. Ele(MZ —2W;) <0, forall 1 <k < n.
Lemma 3 Let u be a task assigned to processor vy. For all j >k, (M; +wy)/cap; > (14 F)A.

Proof: Let ¢ be the current time and ¢’ < ¢ be the time at which ONE-LEVEL assigned u to vy.
Then M;(t) > M;(t') for all j > k. Otherwise, M; must have been decreased at some time ¢ > ¢'.
But Mj can only be decreased in a rebalancing operation, at which time all jobs on servers numbered
lower than j are reassigned, contradicting the assertion that u was assigned to v; at time t' < ¢”.
Since u was not placed on server v;, it must be that (M;(t") + wy)/cap, > (W;(t') + wy)/cap, >
(I+3A. O

Lemma 4 Suppose task u is rejected upon attempted insertion at timet. Let A* be the mazimum
load in the optimum assignment of the active tasks, U(t), including u. Then X* > A

Proof: Let £ be minimal such that M;/cap, < SA. If there is no such £, define £ =n + 1.

Suppose £ = 1. Since u is rejected it must be the case that wy)/cap; > (14 8)A — (Wi /cap;.
Since A* > wy/cap; and Wy /cap; < My /cap, < 3, it follows that A* > .

Suppose £ > 1. For all servers j < £, M;/cap; > fX. Let X be the set of tasks currently assigned
by ONE-LEVEL to servers vy, ..., v,—1. Given some optimal assignment of tasks to servers, consider
where the tasks in X are located.

Suppose that in the optimal assignment, all tasks in X are also assigned to servers vy, ..., vp_1.
Let W} be the weight on v; in the optimal assignment. We have A* > I/V;/capj for all j < n. Hence
=1 -1 -1 . -1 -1 -1
A" isycap; >) ioy Wi > 350y Wi By Prop. 3.2, 3550, Wi > 5050y Mi/B > A 72, cap;. Thus
A* >
Now suppose that in the optimal assignment there is some task z € X that is assigned to some

server vy, k > £. Suppose ONE-LEVEL has assigned z to vy, k' < £. By Lemma 3, (M;+w;)/cap, >
(14 B)A. Since My/cap, < B, it follows that A* > wy/cap;, > wy/cap, > A. O

Lemma 5 QOver a series of m task insertions and departures, if the total weight of all tasks s
W, the total weight of assigned and reassigned tasks is (1 + ﬁlj)W

Proof: We perform an amortized analysis. Let M (t) = Z?zl M;(t) and let

Y M)
8-1

When task u is assigned to processor v;, the amortized assigned weight is . w,(1 + ,6%1) When
u departs, ¥ does not change and the amortized weight reassigned is zero. Suppose a rebalancing
step reassigns all tasks on servers vy, ..., v;. Let AW = Z§:1 W; and AM = Z;Il M;. The actual
weight reassigned is AW. The potential initially decreases by AM/(8—1) as M;’s are set to zero, and
then increases by at most AW/(8 — 1) as the tasks are reassigned. By definition, AM — AW > 0,
which impliess AW —AM f < —(3—1)AW. The net potential change is (AW —-AM)/(8—1) < —AW.

Thus the amortized reassigned weight is zero. O

3.3 A witness-based algorithm for related machines.

Algorithm ONE-LEVEL is used to maintain a witness-based partition for related machines. To
derive a good amortized bound on the restart cost, several modifications are made to the basic
definitions of a witness based strategy.

First, call a task u new if it has never been assigned to a processor, otherwise old. Algorithm ONE-
LEVEL is allowed to accept a new task into level ¢ if it can be placed on some processor v; without
increasing the load beyond (1 + 8+ a));, where @ > 0 is any constant. As before, ONE-LEVEL
rejects an old task unless it can be placed without increasing the load beyond (1+ 8)A;. Recall that
the partition has levels a < i < ¢q. The lower bound a is set to minueU(t) [log wy /(14 B+ a)cap,)].

Second, in global rebalancing, determine ¢, the maximum occupied level, and v;, the minimum
numbered processor holding a task in level q. Select any task u’ assigned to j at level q. Attempt
to insert u into level ¢ — 1 using algorithm ONE-LEVEL. If u is rejected, terminate rebalancing. If
u is accepted, and reassigned from processor v; in level ¢ to processor vy in level ¢ — 1, then Wy;
and My; are decreased by w,,.

Theorem 6 The witness-based algorithm is 4(1+ 5+ «)-competitive against current load. If the
total weight of all tasks is W, then the total weight that is reassigned is W(1+ (8% +8+a)/a(B-1)).

Proof: It is not hard to verify that Lemma 4 still holds for the modified algorithm. Proposi-
tions 3.2 and 3.2 remain true when M,; and W,; are reduced during global rebalancing. Lemma 3
also remains true: as long as task u is assigned to vy in level ¢, no My;, j > k, can be reduced except
in a ONE-LEVEL rebalancing. (M,; can be reduced in global rebalancing only if there are no tasks
on processors vg, k < j.) Finally, if ONE-LEVEL rejects a new task u from level 4, it is certainly
true that for all j, (Wi; + wy)/cap; > (1 + §)A;. Hence the modified algorithm correctly maintains
a witness partition, with ¢(n) = (1 + 8 + «). The competitive ratio follows from Lemma 2. To
show the bound on total weight reassigned, we extend the amortized analysis of Lemma 5. Define
a new value, Mij, which will roughly be the maximum total weight on processor v; due to tasks in
level i, since 7 was last the top level. This value is used only for purposes of analysis, and is not
maintained by the algorithm. Upon any assignment of a task u to processor v; in level ¢ at time ¢,
set Mij = maX{Mij, Wi;(t)}. During global rebalancing, if task u is reassigned from processor v; in

level ¢ to some processor in level ¢ — 1, set My; = qu — Wy

Let M =371, E;:l M;j and M= > izo Z?:l MZJ Define

1 ~ 1 1
(8 — «

The amortized weight assigned in inserting new task u is wy (1+(8%+8+a)/a(B—1)). The amortized
weight assigned in a deletion is zero. Consider a ONE-LEVEL rebalancing, with reference to the
proof of Lemma 5. First M decreases by some amount AM, and then M and M increase by at most
AW, where AW is the total weight reassigned in the rebalancing. The change in ® is therefore

“AM 1+8\ 148 AW 140
ﬁ_1<1+ - >+ - AW—l—ﬁ_l(l—i—)

Since AW — AM < —(8 — 1)AW (see Lemma 5) the net change in potential is —AW, which pays
for the actual weight reassigned.

Finally, consider a global rebalancing step, in which task u is moved from processor v; in the top
level, ¢, processor vy, in level ¢ — 1. The value of M is non-increasing, since M,; decreases by w,

while M(,_1); increases by at most w,. The value of qu decreases by w,, while M(q—l)k increases

by w, — s, where s, the slack, is the difference between M(q—l)k and W,_1y; prior to reassigning u.

We claim that s > aA,_1cap;, for the following reason. If is the current time, consider the time
t' < t at which u was new. The choice of a guarantees that level ¢ — 1 existed when u was new. Since
u was rejected by level ¢—1, (Wi _1)x(t')+wy)/cap; > (1+3+a)r;—1. Since level g—1 has not been
the top level since time t/, M(q—l)k has not decreased since time #'. Hence M(q_l)k > Wig—n(t').
On the other hand, since u can fit on v;, (W,_1)r(t) + wu)/cap; < (1 + B)Ag—1. Combining these
observations yields s > aA,_jcap;.

We have that w, < (1+ ﬂ)/\q_lcap]» < s#. Therefore the potential decrease by at least w,,
and the amortized weight reassigned in a global rebalancing step is 0. O

Corollary 7 For any € > 0 there is a load-balancing algorithm for the related machines problem
with competitive ratio 8 + ¢ that incurs O(S) startup cost.

The corollary follows from Theorem 6 by choosing « and 3 sufficiently small, and using the restriction
that S = ¢W for some constant c.

4 Eager Load Balancing for Restricted Assignment

In the restricted assignment problem, each task u has an associated subset of servers on which it
can be executed. It must be assigned to one server in that subset. If no tasks ever depart and tasks
cannot be preempted, the best possible competitive ratio for both randomized and deterministic
algorithms is Q(logn); this ratio is achievable with a simple greedy strategy [5]. Azar et al[4]
showed that when tasks both arrive and depart, no non-preemptive algorithm can be better than
O(4/n) competitive against peak load. An non-preemptive algorithm that is O(y/n) competitive
against peak load is given in [3].

In this section we give an eager algorithm for the case of unit weights. It is eager because tasks
may be reassigned after both arrival and departure of other tasks. The previous lazy algorithms
reassigned tasks only in response to other tasks being deleted from the system. In the restricted
assignment problem, no lazy algorithm can improve on the Q(logn) bound for permanent tasks
without reassignment. The competitive ratio of the eager algorithm is parameterized by a value
1 < ¢ < logn, which determines both the ratio and amount of reassignments. It may be as good
as O(1)-competitive against current load. The algorithm maintains a witness-based partition using
the following one-level algorithm parameterized by A.

Regard the problem as a game on a dynamic bipartite graph. On one side are the servers,
V, called columns in this section; on the other side are the tasks, U. An edge (u,v) indicates
that u can be assigned to v. Edge (u,v) is matching if u is assigned to v. Given X C U, let
Y(X)={veV|Hu,v) € Fue X}. In other words, Y is the set of columns v such that some
element in X has an edge to v. By the pigeonhole principle, A > maxxcy |X|/|Y(X)].

Let load(v) denote the load on v € V, i.e., the number of matching edges incident on v. In
this section we will also use the term height to mean the load. A balancing path is an even-length

sequence of alternating matched and unmatched edges {v1,u1}, {u1,va}, {ve, us},. ., {ttmo1,vm}
with the property that load(v;) < load(vy) for 1 < i < m — 1 and load(vy,) < load(vi) — A. A
balancing path can be used to reduce the maximum load on vy, vs, ..., vy by reassigning u; to v;41

for 1 < ¢ < m — 1. The servers are r-balanced if there is no balancing path of length r or less.

Lemma 8 If the n servers are 2q-balanced, 1 < q <lInn, then the mazimum on-line load is cA,
where ¢ satisfies the inequality

Inn/qg>c(lne—1) (1)

Proof: Let h be the maximum j such that there is an on-line server of height at least jA. For
all 7 >0, let Yl-j be the set of columns v € V' that are reachable by an alternating path of length at
most 2¢, 1 < ¢ < ¢, starting from a column of height at least jA. Thus Yoj is the set of columns of
height at least jA. Let yf = |YZ]|

No column in Yij has height less than (j — 1)A, since otherwise there would be a balancing path
of length 2i < 2q. Let X; be the set of items on columns of height at least Ai. We have |X;| > iAy}.
For any j and i < (¢—1), the set YZJ+1 contains all servers adjacent to some item that is currently

placed on a server in YZ] There are at least A(j — 1)%7 such items, and hence by the pigeonhole
principle

Yl (= DAyl <A (2)

We also have (2) yé > yé‘*‘l. This follows from the observation that no server of load less than jA is
reachable in 2¢ or fewer steps from a server of load (j + 1)A, or else there must be a 2¢-balancing
path. Combining equations 2 and (2) we derive the following recurrence:

wo> WY w=n

Solving the recurrence, we find n > y"(h!)?. Since y” is at least 1, this implies n > (h!)?. Applying
the natural logarithm and Stirling’s approximation yields Inn/q > A(lnh—1). O

10

Lemma 9 For any q, all servers can be kept 2q-balanced using O(qh) reassignments per insertion
or deletion.

Proof: To insert an item u, place it on any server v to which 1t is adjacent. This increases the
height of v and may create a balancing path starting at v. It cannot, however, create a rebalancing
path originating at any other node. Rebalance along any balancing path starting at v and terminat-
ing at v;. At the conclusion of rebalancing, v is returned to its initial height, server v, has increased
in height by 1, and all other servers have unchanged height. Recursively apply the same procedure
starting at v;. By the definition of a rebalancing path, load(v1) = load(v) — X after rebalancing.
Hence the procedure can only be applied O(h) times before reaching a column of height 1. Each
call performs O(gq) reassignments.

The case of deletion is similar, except that deleting an item from v may create a rebalancing
path terminating at v, and recursive calls occur at servers that are increasing in height by A. O

We use the eager rebalancing algorithm as a one-level algorithm in a witness-based algorithm.
As in the related machines problem, a series of levels are maintained, with load parameter A; = 27,
a <1 <b, witha = 0. After a deletions, rebalancing is performed within the affected level, and then
repeatedly a task from the most heavily loaded column in level ¢ is chosen, and an attempt is made
to insert it into a lower column. As before, if the insertion fails, the element is a witness for load
29. Observe that removing a task from the most heavily loaded column cannot create a balancing
path. Let h be the competitiveness constant selected for the eager algorithm. An insertion fails if
the task cannot be placed without increasing the load on some column above hJ;.

Theorem 10 The eager rebalancing witness-based algorithm is O(h) competitive against current
load and performs O(qh) rebalances per item, where h is the value of ¢ satisfying equation 1 for
parameter q.

Proof: For the purpose of analysis, define M;; for each column 1 < j < n and each level
0 < i < ¢q. When a task is inserted onto column j, set M;; = max{M;;, W;;}. When a task is moved
from column j in level ¢ to column k in level ¢ — 1, decrease My; by 1.

Define .
b33,
i=0j=1
We make an additional definition, also solely for the purpose of analysis. Each task, u, is given a
bit, b(u). The potential associated with a task is ¥(u) = qh - b(u). When a task u is new, b(u) = 1.

The bit may be set to 0 at various times during rebalancing steps, to be described below. If u is
inserted into a lower level, its bit 1s set to 0.

The potential increase when an item is new is O(qh), and so the amortized weight assigned is
O(gqh). The amortized weight of a task departing is zero, since the potential can only decrease.

Finally we consider the amortized cost of reassigning a task u from v; in level ¢ to v; in level
q¢—1. The value of My; decreases by ¢gh. It remains to show that there is no increase in the potential
due to the insertion of u into level ¢ — 1. This proof is rather intricate. We say a column j refuses the
insertion of u in level ¢ if u cannot be placed on v; because load(v;) = hA; and there is no balancing
path. A column j is called completed in level 7 if it has ever refused an insertion in that level. A

11

task u is called free in level 7 if, for any column j to which u can be matched, M;; > (h — 1)A;.
(It is then free to be moved anywhere as part of rebalancing without increasing M;;, since no task
can be rematched to a column with load greater than (A — 1));, by the definition of the rebalancing
algorithm.)

Given these definitions, several observations can be made.

i. A task that has been assigned to level ¢ is free in all lower levels, since by the insertion procedure,
it must have been refused by all eligible columns in lower levels.

ii. Suppose column j refuses the insertion of task u. Let u’ be any task already matched to column
J at the time of the refusal. Then u’ is free in level i. Otherwise, u’ is adjacent to some column
k such that M;; < (h—1)\;. But then there is a balancing path from j to £, and the insertion
would not be refused.

The bit values of tasks are maintained so that the following two properties are invariant.

A. Tf u is assigned to a completed column j, but u is not free, then b(u) = 1.

B. If task u is moved from v; to vy, then at the time it is moved either u is free or b(u) = 1.

We give rules for maintaining bit values, and show that, if the invariants hold at the start of a
single move during a rebalancing step, they hold at the end of a single move. Suppose u is moved
from column j to k. One possibility is that rebalancing terminates at k. If v; 1s complete, then M;y
cannot increase. Invariant A remains true at k, because either u is free or b(u) = 1, by Invariant B.
If vy is not complete, then u cannot be free. Hence b(u) = 1, by Invariant B. If M;;, increases, bit
b(u) is set to zero. Invariant A does not apply.

A second possibility is that rebalancing continues, and an item u’ is chosen to move off k. In this
case, M;;, does not increase. If k is complete, then by Invariant A, either u’ is free or b(u’) = 1. In
either case, Invariant B is satisfied as u’ moves. Invariant A holds at k, since by Invariant B either
u is free or b(u) = 1. If k£ is not complete, then u cannot be free, and so by Invariant B, b(u) = 1.
Invariant A is not applicable. If b(u’) = 0, then set b(u’) = 1 and b(u) = 0. Otherwise, no bits are
changed. This ensures that Invariant B holds.

When a column j first becomes complete, Invariant A holds, because all items on j are free.

(Refer to Observation (i)).
In the one case above that M;; increases, ¥ decreases by a matching amount. Therefore, the

change in total potential due to moving item down pays for the cost of the insertion. 0O

Corollary 11 For any ¢ < 1, there is an algorithm that performs O(logn/loglogn) reassign-
ments and keeps the on-line load within a factor of O((logn)®/loglogn) of the current load.

Corollary 12 There is an algorithm that performs O(logn) reassignments and keeps the on-line
load within a factor of O(1) of the current load.

Corollary 11 follows from setting ¢ = (logn)!~=¢, and Corollary 12 from setting ¢ = logn. This

improves on the results of [2] in two ways: it works for all values of the optimum load and it is
competitive against current rather than peak load.

12

5 Virtual Circuit Routing

In the virtual circuit routing problem one is given a communication network modeled by an undi-
rected graph. Each edge e € E has an associated capacity cap,. A task u is a triple (wy, Sy, tu),
indicating the need for a weight w,, connection between nodes s, and ¢,,. An on-line algorithm must
choose a path in the graph between s, and ¢, to serve as the virtual connection. The current weight
on each edge, We, is increased by w,. The load on an edge is W,./cap,. Recall we assume that the
restart cost, 7, = ¢ - w,. This restriction can be eased using the method of Section 6.

Azar et al. [2] give a one-level algorithm, parameterized by A, that is O(logn) competitive and
reassigns each task O(logn) times. We use this in a witness-based algorithm that is competitive
against current load.

Let C' =} .pcap, and let W(t) = ZueU(t) wy. Let A7 be the optimum maximum load. We

have

Af > W./cap, Ve€ E

A D ele) = YW W()
eeE ecE
x> WO

On the other hand, A} < W(t)/cap,,;,, Where cap,,;,, = min.cg{cap,}.

In the witness partition, the lowest level, a, is approximately [log(W(¢)/C|. The value of a
is only adjusted, however, if the value of W(¢) has doubled or halved since a was last set. In
particular, a value W is maintained. Initially, W = 0, and at at all times, a > Llog(W/C)J — 1. If
ever W > 2W(t) or W(t) > 2W, the algorithm resets W = W (), and recalculates a. The value
of a changes by plus or minus one. If @ increases, all jobs assigned to the former bottom level are
reassigned using the standard reassignment algorithm.

If the new value of @ increased The highest level, ¢, is at most [log W (t)/cap,,;, |- During global
rebalancing, select tasks to move down from level ¢ in any order. Deleting a task from g and inserting
it into j < ¢ may cause rebalancing within levels ¢ and j.

Theorem 13 The witness-based virtual circuit algorithm is is O(logn)-competitive against cur-
rent load. If the total weight of all tasks is W, the total reassigned weight is O(W lognlog C/cap,in)-

Proof: We give an amortized bound on the total weight reassigned. For task u € U(t), let £(u)
be the level containing u and a(u, i) be the number of times u has been reassigned by the one-level
algorithm for level 7. Define

U, = [(e1logn + 1)(b(u) —a+ 1) — a(u, i)]wy,

where ¢; log n is the maximum number of reassignments within a level, due to the one-level algorithm.
Define a potential function

®(t) = 2(1+ c1lognlog C/cap,,;,,)IW(H) — W]+ > ¥,
uEU(t)

13

When u is newly arrived,
((u) - a = O(log W (t)/capnin — log(W(t)/C)) = Ollogn1og C/capyuiy).

Hence the amortized weight assigned on a new insertion is O(wy logn log(C/cap,y,;,,)). The amortized
weight reassigned when u is reassigned within a level or across levels is 0, since the decrease in ®
pays for the reinsertion.

If @ increases by 1, then at most 1 (¢) weight is reassigned. This weight increases in level by
at most logC'/cap,,;,. Hence the increase in potential due to increases in ¥ terms is at most
(c1lognlog C/cap,,;,)W (t). Since 2W < W (%), the decrease in potential after 1 is reset is at least

2(1 + ¢1 lognlog(C/cap,,:,))W (t)/2.

Hence the decrease pays for the increase in ¥ as well as the reassignment of all tasks, for a net
amortized cost of 0.

If a decreases by 1, then W > 2W(¢). No weight is reassigned, but the value of £(u) — a increases
by 1. The potential increase due to ¥ terms is therefore (¢1logn + 1)(Wt). This is paid for by the
decrease of 2(1 + ¢1 lognlogC/cap,,;,)W (t) in the first term. O

Under the assumption that r, = ¢ - w, the total reassignment cost is O(SlognlogC/cap,,;,,)-

6 Unrelated Weights and Startup Costs

In the previous sections we gave algorithms that provide competitive bounds while guaranteeing that
the total weight that is assigned and reassigned is bounded by a small function f of the total weight
of the input tasks. Under the assumption that w, = ¢ - ry, this implies that the total assignment
cost 1s bounded by the same function f on the total startup cost. In this section we show how
to extend these algorithms to handle any restart cost function of the form r : u — R* (but still
not independent of ¢ and the servers involved in the restart.) Tasks are partitioned by startup cost
per unit weight, r,/w,. Let a be the minimum value of this ratio over all input tasks and b the
maximum value.

Choose a parameter 1 < § < (b/a). Partition the input tasks into O(logs(b/a)) classes such that
task u is in class ¢ if o, '
ad’ < - < ad't
Wy

Within each class run the load-balancing algorithm appropriate to the problem being solved.

Lemma 14 Let A be an algorithm that achieves a competitive ratio of ¢ while the total weight
of reassigned items is bounded by g(W), where W =3 ., wy and g(x) = Q(x). Then there exists
an algorithm As that achieves a competitive ratio of clogs(b/a) and incurs a total reassignment cost

ad*1g(S/as"), where S =3 e Tu-

Proof: Within each of the classes, the algorithm i1s ¢ competitive with the optimum load for
tasks within that class. Let A* be the maximum over classes of the optimum load within that class.
This is a lower bound on the true optimum load of all tasks. Since within each class no server has

14

load greater than eA*, the maximum on-line load is O(clogs(b/a). Within class ¢, the reassignment
cost per unit weight is at most aé’*1, hence the total cost of reassignments is aé'*1g(W). On the

other hand, W > S/(aé’). O

Using Lemma 14 we have the following:

Algorithms for identical and related machines that are O(logs(h/a)) competitive against current
load and incur total assignment cost O(4.5).

An algorithm for the restricted machines problem that is O(logs(b/a)) competitive against
current load and incurs reassignment cost O(6 log n) when all weights are unit, and an algorithm
for the restricted machines problem that is O(% logn logs(b/a) competitive against current load
and incurs a reassignment cost O(pdS) for arbitrary weights, where p is any parameter between

0 and 1.

An algorithm for virtual circuit routing that is O(lognlogs b/a) competitive against peak load
and incurs a reassignment cost O(85lognlog(C/cap,,;,)-

All results follow by applying the lemma to algorithms presented herein, with the exception of the
algorithm for general weights in the restricted subset case, which follows by applying the lemma to
the algorithm in [10]

While the bounds of this section are not ideal, in that they depend on the value of a ratio between

input costs, they are independent of the number of tasks. An interesting open problem is to find a
scheme with competitive ratio solely a function of the number of machines, n.

References

[1]

[2]

[3]

[4]

[5]

[6]

J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing with applications
to machine scheduling and virtual circuit routing. In Proc. 25th ACM Symp. on Theory of
Computing, pages 623-631, 1993.

B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts. Competitive routing of virtual circuits with
unknown duration. In Proc. ACM/SIAM Symp. on Discrete Algorithms, pages 321-330, 1994.

Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, and O. Waarts. Online load balancing
of temporary tasks. In Proc. 1993 Workshop on Algorithms and Data Structures (WADS 93),
Lecture Notes in Computer Science 709. Springer-Verlag, Aug. 1993.

Y. Azar, A. Karlin, and A. Broder. On-line load balancing. In Proc. 33nd Symp. of Foundations
of Computer Science, pages 218-225, 1992.

Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. In Proc. 3rd
ACM-SIAM Symp. on Discrete Algorithms, pages 203-210, 1992.

Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient scheduling problem.
In Proc. 24nd ACM Symp. on Theory of Computing, 1992.

15

[7] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal,

45:1563-1581, 1966.

[8] D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for an ancient scheduling problem.
In Proc. 1994 ACM/SIAM Symp. on Discrete Algorithms, 1994. To appear.

[9] E. L. Lawler, J. K. Lenstra, A. H. Rinnooy Kan, and D. B. Shmoys. Sequencing and scheduling;:
Algorithms and complexity. In S. C. Graves, A. Rinnooy Kan, and P. Zipkin, editors, Hand-
book of Operations Research and Management Science, Volume IV: Production Planning and
Inventory, pages 445-522. North-Holland, 1993.

[10] S. Phillips and J. Westbrook. On-line load balancing and network flow. In Proc. 1993 Symp.
on Theory of Computing, pages 402-411, Apr. 1993.

16

