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Abstract — Design verification via simulation is an im-
portant component in the development of digital systems.
However, with continuing increases in the capabilities of
VL Sl systems, thesimulation task hasbecome a significant
bottleneck in the design process. As aresult, researchers
are attemptingto exploit parallel processing techniquesto
improve the performance of VLSI logic ssimulation. This
tutorial describes the current state-of-the-art in paralle
logic simulation, including parallel simulation techniques,
factorsthat impact simulation performance, performance
resultsto date, and thedirections currently being pursued
by the research community.

I. INTRODUCTION

The benefits of faster logic ssimulators are self evident to
just about anyone in the electronic design automation field.
Due to increased complexity in the VLS| system design pro-
cess, logic simulation has taken on an essential rolein the ver-
ification of designs prior to fabrication, yet the time required
to complete simulations has grown. Larger designs require
longer simulationrunsfor two primary reasons: agreater num-
ber of test vectorsare needed to verify the correctness of larger
systems and each test vector requires more computation to
simulate the effects of the vector. The result is that simula-
tion has become a significant bottleneck in the development
of VLSI systems.

To address this important issue, the research community
has expended considerable effort investigating the use of par-
allel processing to accelerate logic simulation. Thiswork was
recently surveyed by Bailey et al. [4]. In addition, agreat deal
of effort has been expended on parallel techniquesfor general
discrete-event simulation (e.g., the Workshop on Parallel and
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Digtributed Simulation isin its ninth year [1, 2, 3, 5, 19, 22,
24, 30, 31]). An excellent survey of thiswork is described by
Fujimoto [13].

Thistutorial providesan introductionto the problem of par-
allel logic smulation, including the logic simulation model,
parallel simulation techniques, factors that impact simulation
performance, performance results, and the directionscurrently
being investigated by the research community.

Il. PARALLEL SIMULATION MODEL

During design verification, VLS| systems are frequently
simulated across a wide variety of abstraction levels, from
continuousmodel s at thecircuit level to block-structured mod-
els a the behaviora level. Here, the term logic simulationis
used to refer to any discrete-event simulation of a VLS| sys
tem, where the system components can vary from the transis-
tor level (modeled as idea switches), through the gate level
(e.g., NANDs, flip-flops), to the behavioral level (e.g., multi-
pliers, functional units).

In discrete-event simulation, system state variables are
model ed as discrete-valued quantitiesthat changevalue at dis-
crete pointsin time. In logic simulation, the state variables
typically represent signa levels on wiresthat interconnect cir-
cuit elements. In the simplest two-valued logic simulations,
state variables are constrained to two quantities representing
Boolean values (i.e, 0 or 1). Most modern logic simulators
use multi-valued variablesto represent additional information.
For example, many switch-level smulatorsadd an X state to
represent unknown or floating signals, and gate-level simula-
torsadd statesto represent drive strength and high impedance
conditions. The |EEE standard logic system for VHDL simu-
lation (STD_LOGIC_1164) uses a 9-valued logic [6].

There are a number of ways in which paralelism can be
exploited to improve simulator performance. Algorithm par-
allelism uses pipelining techniques to accelerate the smula-
tion loop by executing individua program steps on different
processors (e.g., event queue management, functional evalua-
tion). A limited amount of parallelism is available using this
technique, sincethereare alimited number of stepsinthesim-
ulation loop. Data parallelism uses different processors to
simulate the circuit for distinct input vectors. This technique



isquiteeffectivefor fault simulation, where alarge number of
independent input vectors need to be simulated. It isless ef-
fective, however, during design verification, where thegoal is
to minimize the completion time of an individual input vec-
tor. Model parallelismusesdifferent processorsto performthe
functional evaluationsfor distinct logicelements. Thistutorial
concentrates on techniques for exploiting model parallelism.

Tofacilitate paralel execution of thesimulation, thesystem
components (at whatever level of abstraction) are considered
to be atomic elements that are each encapsulated into alogical
process (LP). Many implementations combine more than one
component into asingle LP, but this does not impact the basic
simulationmodel described below. It can, however, impact the
performance of the simulator.

The LPs are responsible for managing locd state informa-
tion for their component(s), processing simulation events, and
maintaining a loca simulated time reference.  The compo-
nents, or LPs, interact via communications channels, which
model the circuit connectivity of the VLS| system. A change
in the output of an LP (eg., a0 to 1 transition at a gate out-
put) is communicated to the fanout LPs by delivering atime
stamped message to each fanout LP,

For parallel execution, the LPs are partitioned and assigned
to the available processors, and some time synchronizationa-
gorithm (anumber are described below) is used to ensure cor-
rect coordination of the simulated timeswithin each LP.

Although a functionally correct parallel logic simulationis
relatively straightforward to design and implement, the pri-
mary purpose of paralelism is improved performance. Bai-
ley et d. [4] identified five primary factors that influence the
performance of parale logic ssimulation: timing granularity
(the resolution of simulated time), circuit structure (topol ogy,
component fanouts, etc.), target architecture, partitioning and
mapping (assignment of L Psto processors), and time synchro-
nization al gorithm (used to coordinate simul ated time between
LPs).

Since the first two are typically determined by the simula
tionmodeler (e.g., atiminggranularity of 1 nsisof limited use-
fulnessfor very high frequency designs), the ssimulator design
must react to variationsin these factors, but it cannot control
them. Clearly, course timing granularity provides for greater
event simultaneity, simplifying the task of extracting para-
lelism. The relationship between circuit structure and simu-
lator performanceisnot at all understood well; however, there
definitely is a connection between thetwo. With al other fac-
tors equal, parallel simulator performance can vary dramati-
cally from one circuit to the next.

The architecture of the execution machine clearly impacts
the performance of any paralld agorithm. Due to the fine
grain nature of logic simulation, communications capability
inthe parallel system is often the discriminating property be-
tween candidate execution platforms. Although implemen-
tations exist on both SIMD and MIMD machines, MIMD is
clearly superior when many different component models are

present in a circuit (e.g., hierarchical systems). A number
of implementations exist on networks of workstations, often
taxing the communications performance of the interconnect-
ing local-areanetwork. Emerging high-performance networks
(e.g., ATM based) are seen an opportunityto help aleviatethis
communications performance bottleneck for the workstation
network execution platform.

I11. CIRCUIT PARTITIONING

When assigning L Ps to processorsfor execution, two com-
peting requirements need to be balanced, a uniform computa-
tional load across the processors and a minimum of commu-
nications volume between processors. Since finding an op-
timal partitioning is computationally complex (NP-hard), the
emphasis has been on devel oping efficient heuristicswith near
optimal results. Many of these heuristics are based on di-
rect graph-partitioning algorithms or iterative adjustment al-
gorithmsthat attempt to minimize a given cost function. They
are often derived from agorithms originally developed for
physical partitioning (e.g., min-cut algorithms and/or simu-
lated annedling).

Oneof theearliest partitioningal gorithmsdescribed specif-
ically for logic simulationisthe stringsalgorithm of Levendel
et d. [17]. Starting a a primary input component, the compo-
nent output i sfollowed to afanout component, thefanout com-
ponent’s output is followed to one of its fanout components,
etc. until aprimary output isreached. The “string” of compo-
nents formed aboveis assigned to a processor, and the process
repeats, forming another string. Anaogous to the depth first
search implicit in string partitioning, fanin and fanout cones
(proposed by Smith et . [25]) spread out from an initial gate
in abreadth first manner.

Many logic partitioning algorithms borrow ideas from
physica partitioning algorithms originaly developed to ad-
dress the placement problem. For example, Fiduccia and
Mattheyses' [12] min-cut algorithm and other graph-based bi-
section algorithms [16] have been used extensively for logic
partitioning with good results. In addition, simulated anneal -
ing has been used; however, its results are mixed. Simulated
annealing has suffered from two problems: (1) the execu-
tiontimerequired of the partitioningal gorithmis prohibitively
long, and (2) itisdifficultto devel op appropriate cost functions
to guidethe annealing process.

One of themgjor difficultiesimplicit in any partitioningal -
gorithm for logic simulation isthe fact that the computational
workload associated with each LP isafunction of its evalua-
tion frequency. If theinputsto a gate are stable, event-driven
simulation algorithms do not evaluate the gate. Since the in-
put signalsto theindividual gatesareafunction of thetest vec-
torsused for a particular simulation execution, the evaluation
frequency of each gate and, therefore, its computational work-
load requirements are unknown prior to execution. To address



this issue, the idea of pre-simulation has been proposed [9].
Essentially, the simulation is run for a period of time and the
evaluation frequency of each gateismeasured. Thismeasured
evaluation frequency isthen assumed to persist for theremain-
der of the smulation execution. Although it is unclear how
well thistechniquewill work in the general case, it has proven
successful when using random test vectors.

Another important i ssuetypically addressed during the par-
titioning process is the granularity of the LPs (i.e., how many
atomic components are contained within each LP). Only one
gate per LP can result in high overhead processing incoming
messages, whileonly oneL P per processor can result inunnec-
essarily blocked computation or high rollback overheads (see
below). Asaresult, the optimum granul arity issomewhere be-
tween these two extremes.

IV. TIME SYNCHRONIZATION

One topic that has clearly dominated paralel simulation
research is the algorithm used to coordinate simulated time
acrossthe L Ps. Although not an ideal classification, time syn-
chronization algorithms are often put into one of four cate-
gories: oblivious, synchronous, conservative asynchronous,
and optimistic asynchronous. Each of these categoriesis ex-
plained below initsbasic form; however, there are many vari-
ations of each of these agorithms[13].

The oblivious agorithm is not event driven at all. At ev-
ery point in simulated time, every LP is evaluated, whether
or not its inputs have changed. This completely eiminates
the need for an event queue, and if the evaluations of LPs are
properly scheduled, correctness can be guaranteed (compo-
nents are evaluated after their inputs values are known). The
appropriateness of this style of algorithmis highly dependent
upon the activity (frequency of state changes) within a cir-
cuit. Atlow activity levels, redundant eval uations are an enor-
mous overhead. At higher activity levels, the eimination of
the event queue (and itsassociated overhead) can lead to aper-
formance advantage.

The simplest event-driven agorithm is the synchronous
technique. Here, the simulated time at all of the LPsis con-
strained to be the same. The LPs process their events at the
present simul ated timeand then coordinate(typically viaabar-
rier synchronization) to determine the next point in simul ated
time that has eventsto be processed. Thistechniqueisaso re-
ferred to as a global-clock agorithm, since thereis one glob-
ally consistent value of simulated time.

The two asynchronous a gorithms (conservative and opti-
mistic) allow simulated timeto vary from one LP to the next.
They differintherulesused to processincoming messages and
advance simulated time at individual LPs. Conservative algo-
rithms process messages in strictly non-decreasing order, pre-
serving causality constraints at all times [11, 20]. This safety
conditionisenforced by advancing local simulated timeto the

smallest time stamp received from any neighboring LP. This
rule (called the input waiting rule) can lead to blocking and
even deadl ock; therefore, techniques are needed to prevent (or
detect and resolve) deadl ock.

Deadlock preventionis usually accomplished vianull mes-
sages, messages with a time stamp but no other content. Es-
sentially, anull message isaway for an LP to notify itsdown-
stream neighborsthat their inputs are stable up to the time of
the time stamp. Deadlock detection is often accomplished via
circulating marker agorithms that invoke a deadlock resolu-
tion algorithm when a marker completes an entire cycle with-
out detecting simulation activity.

The original optimistic agorithm is the Time Warp ago-
rithm of Jefferson [15]. In the optimistic approach, simula
tion messages are processed immediately upon receipt at an
LP If a straggler message is received with atime stamp ear-
lier than the local simulated time, then the LP executes aroll-
back. The rollback restores the state of the LP to an earlier
state so that the straggler message can be processed without vi-
olating causality. Thus each LP must save state so that it can
rollback. Since state saving can be a time consuming opera-
tion, frequently only the change in state is saved, not a com-
plete copy of the state. Thistechniqueis referred to asincre-
mental state saving. As part of arollback, if outgoing mes-
sages have been delivered to downstream LPs, they are sent
anti-messages to cancel the original message. The receipt of
an anti-message at an LP will aso trigger rollback, since the
effects of the origina message must now be canceled.

If the simulation runsfor along time, and memory isfinite,
then saved state must be reclaimed. Therefore, optimistic al-
gorithms periodically compute a bound (called globa virtual
time, or GVT) such that al but one state that has time stamp
lessthan GVT can bediscarded. GVT issimply the minimum
of theloca simulated times at each L P and the time stamps of
messages currently in transit.

Gafni’ slazy cancellation strategy reduces theimpact of roll
back on the performance of simulation [14]. Instead of ag-
gressively cancelling previously sent messages whenever roll
back occurs, the lazy cancellation agorithm waits to cancel
the message until it isknown that the wrong message had been
sent. Thus, if theright event had been cal culated for thewrong
reasons, the receiving processor isnot i nhibited because of ex-
cessive causdlity constraints.

V. SIMULATOR PERFORMANCE

The biggest difficulty in comparing the performance of dif-
ferent parallel logic simulatorsisthe fact that there are no ac-
ceptable benchmarks to standardize the workload across dis-
tinct implementations. Although both the ISCAS-85 combi-
national benchmarks [8] and the |SCA S-89 sequentia bench-
marks [7] have been pressed into service, they were not origi-
nally designed to be simulation benchmarks. Asaresult, they
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Figure 1: Representative performance results[4].

do not include test vectors (they are typicaly smulated using
random vectors), they are al at the gate level of abstraction,
and they are insufficient in size to satisfactorily evaluate per-
formance on large circuits.

In spite of the difficultiesin comparing results, anumber of
implementations exist. One of the first successful implemen-
tations was the optimistic asynchronous simulator of Briner
et d. [10]. He reported speedups of up to 23 on 32 proces-
sors of a BBN GP1000 system. Bailey et a. [4] combine re-
ported speedup results(for 8 processors) from anumber of im-
plementationsusi ng Ssynchronous, conservativeasynchronous,
and optimistic asynchronous agorithms. These results are
presented in Figure 1.

Note that there are a large number of differences between
these implementations, including different abstraction lev-
els, timing models, example circuits, execution platforms,
and implementors (e.g., Briner et a. [10], Mueller-Thuns et
al. [21], Soule and Gupta[26] Sporrer and Bauer [27], and Su
and Seitz [29]). This limits the ability to draw firm conclu-
sions; however, a number of trends are evident. First, none
of the conservative asynchronous implementations reported
good performance, while a number of synchronous and op-
timistic asynchronous implementations performed well. The
timing granularity of the optimistic results varies from fine
grain to coarse grain, but al of the synchronous implementa-
tions use coarse grain timing.

One problem that is of concern with the optimistic asyn-
chronous algorithmsis inconsistency in performance. Seem-
ingly small variations in circumstances can trigger dramatic
swingsin performance results. Thisproblem hasal so been ob-

served in simulations of other application domains[18]. The
synchronous algorithm does not seem to be proneto thistype
of behavior. In addition, incremental state saving iscrucia to
achieving good performance with optimistic a gorithms.

Synchronous agorithms have their own problems, how-
ever. They have difficulty scaling to large numbers of proces-
sorssincethetimerequiredto performthebarrier synchroniza-
tion grows with processor population. Also, they are proneto
load imbalance. An even distribution of LPs across the pro-
cessors is insufficient to balance the computational workload
if the evaluation frequency of individual LPs varies.

V1. FUTURE DIRECTIONS

The performance results to date seem to indicate that for
coarsetiming granularity asynchronousal gorithmissufficient
and for fine timing granularity an optimistic asynchronousd-
gorithm is needed. Thisis an oversimplification of the situ-
ation, however, since there are circumstances that can signifi-
cantly impact the performance resultsthat go well beyond tim-
ing granularity. As aresult, there are no known implementa-
tionsthat consistently perform well independent of the circuit
simulated and the test vectors applied.

This pointsto an important body of ongoingwork. In parti-
tioning, pre-simul ation hasbeen proposed to estimate the com-
putational workload of components for load balancing pur-
poses. Appropriate cost functions are being investigated for
both simulated annealing and other iterativeimprovement par-
titioning algorithms. Also, dynamic load balancing is being
considered to react to variationsin computational workload.

In the area of time synchronization algorithms, the syn-
chronous agorithm is being expanded to include many of the
features found in asynchronous al gorithms, with an attempt to
avoid the performance instabilitiesfound in the asynchronous
algorithms. Positive results have been presented for other ap-
plication domains (military simulation and queueing network
simulation) by Steinman[28] and Nobleet a. [23]. Optimistic
asynchronous agorithms are being extensively studied in an
attempt to understand how they can be effectively controlled
to deliver consistent performance.

Hybrid agorithms are also under investigation. ldeas in-
cludehierarchica synchronization, using either asynchronous
or conservative asynchronous agorithm within a cluster of
processors and using an optimistic asynchronous algorithm
across clusters. Thisappears especially attractivefor naturally
hierarchical execution platforms (e.g., networks of worksta-
tions where the individual workstations are bus-based multi-
processors).

Finally, thereis a strong need for a benchmark set that ad-
dresses the needs of the logic simulation research community.
Thisset should havelargecircuits, at varying level sof abstrac-
tion, with varying timing granularity, and test vectors typical
of those used during the design verification process.
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