Parallel Logic Simulation
on Distributed Memory Multiprocessors
Classification and Ewvaluation of different Approaches *

Peter Luksch
Institut fir Informatik
Technische Universitat Miinchen
D-80290 Miinchen
Germany
e-mail: luksch@informatik.tu-muenchen.de
Tel.: +49-89-2105-8164; Fax: +49-89-2105-8232

Abstract

A test environment is presented that allows for different methods of executing discrete
event simulations in parallel to be evaluated in a uniform environment. A great variety of
parallelizations have been proposed in the past. Up to now, however, an unbiased comparative
evaluation of different approaches has been impossible because run-time measurements pub-
lished in the literature have been obtained with different simulators on different multiprocessor
systems and therefore cannot be compared.

Our approach to an unbiased comparison of different parallelization methods is as follows:
The variety of existing methods is structured by classifying them according to the way how
the simulation task is subdivided into processes and how these processes synchronize. Thus a
small number of fundamentally different approaches to distributed simulation can be identified
each of which comprises a whole class of parallel algorithms. As a basis for the testbed, one
representative from each approach has been implemented. Thus a comparison of different
approaches is possible while at the same time a library of functions is provided that allows
further parallelizations to be implemented easily.

1 Introduction

Discrete event simulation (DES) is a widely used method to analyze complex systems or to validate
them during the design phase. In VLSI design, simulation has become the only practical way to
validate the logic and timing behavior of a system under construction. While logic validation is
facilitated by the use of high level behavioral specifications which are transformed into gate level
descriptions by synthesis tools, timing verification will require the system to be simulated at the
gate level. Gate level simulation generally requires some orders of magnitude more computational
power than simulation at a high level behavioral abstraction.

Sequential computers no longer can cope with the increasing demand for computational power
that emerges from the desire for more comprehensive simulation of increasingly complex systems.
Currently, parallel simulation on general purpose multiprocessors is the most promising and cost-
effective way of providing the necessary compute power.

A great variety of methods for executing discrete event simulation in parallel have been pro-
posed in the literature. For most of them, prototype implementations have been reported with

*This work has been partially funded by the DFG (“Deutsche Forschungsgemeinschaft”, German science foun-
dation) under contract No. SFB 342, TP Al.

factors that are to be evaluated

method of parallelization

« function/model partitioning
* process synchronization

parallel
simulation
efficiency

simulation problem target architecture

ratio computation/communication power
communication bandwidth/latency
network topology

network communication protocol
programming model

3

« complexity of event evaluation

« timing resolution

« distribution of activity in the model

» model topology (feedback loops, etc.)

3

3

3

3

parameters (environment)

Figure 1: Factors that contribute to parallel simulation performance

different simulators on different target architectures. Run-time measurements ranging from no
speedup at all to super-linear speedup do not clearly favor any specific approach. Table 2 in
the appendix gives an overview of studies published in the literature. The main reason for the
divergence of efficiency results in previous experiments is the fact that efficiency does not only
depend on the method of parallelization but is also determined by the type of simulation problem
considered and by parameters of the target architecture. Figure 1 summarizes the most important

factors that contribute to a parallel simulator’s performance.

2 Classifying DDES Methods

The discrete event simulation algorithm, which is displayed in fig. 2, can be parallelized in various

ways. DDES algorithms are characterized by the following properties:

e the general approach to parallelization, i.e. the distribution of functions and data structures

(AP).
e the way how global control is organized (CN).

e the synchronization protocol used to coordinate processes (SY).

determine elements to be, element
fanout el ements evaluated evaluation

updated

signals
saneA eubis
indino mau

signal list event
update generation

current events
—
SJUS/AS MBU

event list

administration = je==———

Figure 2: The discrete event simulation algorithm

Based on these criteria, DDES algorithms can be subdivided into a small number of fundamentally
different approaches as explained in the subsequent sections.

2.1 General Approach to Parallelization

Generally, there a two ways of parallelizing a given algorithm: function decomposition and data
partitioning.

In the function decomposition approach (AP = FD), the algorithm is subdivided into functions
each of which is implemented a process. Applying this strategy to the DES algorithm means
to implement the subtasks represented as boxes in fig. 2 as processes that process the stream of
events in a pipeline. Global control is performed by the event list administrator which advances
the simulation clock to the next event time as soon as all events for the current clock tick have
been processed by the pipe.

In the data partitioning approach (AP = MP), the problem description, which generally is
represented as a set of data, is distributed among several processes. Each process executes one
instance of the sequential algorithm which, of course, has to be complemented by some functions
for communicating data and synchronizing processes. If a digital logic simulator is parallelized
that way, the circuit is divided into partitions each of which is worked on by one process. Such
a process will also be called a simulator. This approach is referred to as model partitioning and
is illustrated in fig. 3. Signal that connect elements of only one partition are referred to as local
signals while signals connecting elements in different partitions are referred to as cut signals. A
simulator that generates an event at a cut signal must communicate the event information to all
simulators having fanout elements of that signal.

Both approaches can be combined. In a simulator parallelized by function decomposition,
subtasks (e.g. element evaluation) may be replicated and assigned different partitions of the circuit.
Such an approach is denoted by AP = FD+MP. In contrast, if a simulator has been parallelized by
model partitioning, each simulator may be further parallelized by function decomposition. This
approach is denoted by AP = MP+FD in our classification scheme. Both types of combination can

model description pProcess communication graph

P
$1) Py
S10 Es
S16
NAND
83 E2
> Nodes are labelled with partition
5 numbers, edges are labelled with

S5 _@Q— 15 the number(s) of the cut signal(s)
connecting the partitions in the

respective direction.

Sg E3
E;
513 s
NAND)O 17
E
ss s
Sg NAND 14

P,

Figure 3: The model partitioning approach

be found in hardware accelerators [9]. Depending on the multiprocessor architecture considered
as a target system for distributed simulation, these combination may also be promising on general
purpose parallel computers.

2.2 Global Control

While global control is centralized at the event administration subtask in the AP = FD approach,
AP = MP offers several options to coordinate processes. Control may either be centralized or
distributed. With distributed control there is a wide range of possible synchronization protocols.

2.2.1 Centralized Control

In this approach, denoted by CN = GC, a global (simulation) clock is used to synchronize the
simulators. At simulated time ¢, all current events can be processed in parallel. Before simulation
time can be advanced to the next event time, a barrier synchronization has to be performed. All
hardware accelerators with AP = MP implement centralized control.

2.2.2 Distributed Control

For a parallel simulation to be correct, it is sufficient that events depending on each other are
processed in the correct sequence. Independent events with different time stamps may be processed
concurrently.

This motivates the distributed control approach (CN = LC) which relaxes the strong synchro-
nization restriction imposed by CN = CG and thus may exploit a higher degree of parallelism.

Py Py P3 wants to simulate an event at
@ signal S3 with time stamp 4:00 and
therefore needs signal values Sy, Ss

?
R |
: 'S, @ at 4:00. These signals, however are
_—,_DA:_I_:;‘;{_ < computed by P; and P,, respectively.
Ss ! P3 does not know Py’ and
:' il L,_:__‘____/_ | Ps’s simulation clocks.
:l : |
|

S If Py, P, have not yet reached
- - ‘@" 4:00 in their simulations, they might send

events time stamped before 4:00.
As a consequence, P3 cannot
process its event safely.

Figure 4: The synchronization problem with distributed control

Decentralized control generally can be expected to outperform centralized control if time is mod-
eled at a high degree of resolution (e.g. nano/pico seconds in logic simulation) which results in a
relatively small number of events to be executed per simulation tic. Also, if barrier synchronization
is expensive on the target system, decentralized control is to be preferred.

Control is distributed by having each simulator have its own local clock which it advances
autonomously. Local simulation clocks give rise to a synchronization problem which is illustrated
in fig. 4. Two approaches to its solution have been proposed: the conservative one by Chandy,Misra
and Bryant [12] (SY = C0) and the optimistic one by Jefferson [20] (SY = TW) which is also known
as Time Warp.

The Conservative Approach to Synchronization

The conservative approach assumes communication channels to deliver messages in FIFO order.
All the local simulation clocks are required to increase monotonically. Event messages carry the
simulation clock of their sender at the time of generating the event. Thus, if a process P; has
received an event message P;, the generation time ¢; from that message is a lower bound for P;’s
current simulation clock.

Each simulator P; remembers the generation time from the last event received from each of its
predecessors P; in a variable [;[j], called the link time for channel ¢;;. l;[j] is P;’s lower bound on
the local simulation time of P;. P; can only process its next event (at time T;) if [;[j] > T; for
all its predecessors P;. In the example of fig. 4, P; would suspend its simulation until an event
message tells him, that Ty > T3 ATy > T3, i.e. the next event can be processed safely.

Deadlock may occur if some process P; is waiting for another process P; which, however, will
not send any events to P; because no signal connecting from P;’s partition into P;’s changes value.
Another source of deadlock are feedback loops which may result in a cycle of processes each waiting
for its predecessor to send an event message. Conservative protocols can be subdivided further
according to how deadlock is handled.

Deadlock avoiding protocols (DH = DA) make sure that no deadlock can arise. This may be
done by using null messages that are sent periodically in the absence of “real” events on a channel
(DA-NM). Null messages, however, do not work for simulations where zero-delay feedback loops may
occur such as in digital logic simulation. Another method to prevent deadlock are time requests
which essentially are null messages that are sent on demand (DA-TR). A time request protocol that
works for zero-delay feedback loops, too, has been published by Bain and Scott [3]. It will be

described in section 3.2.1.

Deadlock recovery protocols (DH = DR) do not take any precautions to prevent deadlock.
Instead, they periodically check for deadlock. Upon deadlock detection, deadlock recovery is
started. At least one process (the one with minimum next event time) can be resumed. There is
a variety of algorithms to detect deadlock and to recover from it [30]. Of course, one may think of
combining deadlock recovery with some precautions that are not guaranteed to avoid deadlock but
considerably reduce its probability, as is the case for null messages in simulations were zero-delay
feedback loops can occur.

The Optimistic Approach to Synchronization

In Time Warp, no simulator ever waits for receiving an event message form a predecessor. In-
stead, simulation proceeds regardless of the predecessor’s simulation clocks making the optimistic
assumption that P; has received all events up to time T; when processing its next event at T;.
This assumption turns out to have been wrong if later on a straggler arrives, i.e. an event message
with a time stamp ¢, in the past of the current local simulation time T;. Then, P;’ simulation is
rolled back to T; = t,, i.e. local simulation time decreases, which is why this approach commonly
is referred to as Time Warp.

In order to undo the potentially wrong simulation, P; has to cancel all events generated during
[tr, T;]- Local events are cancelled by restoring the local state at time ¢,. Events sent to other
processes are canceled by sending anti-messages which will cause the corresponding event’s effects
to be undone by the receiving process. Thus, the possibility of rollbacks requires the simulator to
keep track of previous states and of sent event messages. Sent messages generally are stored in a
queue. Two different approaches exist for state saving: checkpointing (CP) and incremental state
saving (ISS).

With checkpointing, the simulator periodically saves its state as a whole. Incremental state
saving, in contrast, saves state changes rather than snapshots of the simulation state as a whole.
ISS reduces memory requirement at the price of extra computation for restoring a previous state.
If state information is large and state changes can be described easily, as is the case in logic
simulation, ISS clearly is to be preferred over CP.

Upon rollback, a sent event can either be cancelled immediately (agressive cancellation, AGC)
or it not cancelled before it is sure that the event will not be generated once again in the simulation
of the rolled-back period of simulated time (lazy cancellation, LAC).

Global progress is measured by the global virtual time (GVT) which is defined as the minimum
of all local simulation times and the time stamps of all un-processed events in the system. No
rollback can occur to a point before GVT. An approximation of GVT is computed periodically
in parallel to the simulation in order to detect termination and to free memory used to store
information about states before GVT (fossil collection). A great variety of algorithms for GVT
approximation can be found in the literature (e.g. [36, 22, 27, 11, 30, 4]).

2.3 A Classification Scheme for DDES Algorithms

The set of options for parallelizing discrete event simulation sets up a classification scheme that
assigns a given parallel simulator to one of the approaches illustrated as a classification tree in
fig. 5. This tree is the basis for the test environment to be described in the next section.

3 A Portable Test Environment for Distributed Logic Sim-
ulation

The goal of the testbed described in this section has been to provide a portable environment that
allows a great number of DDES algorithms to be analyzed in detail under uniform conditions.
As mentioned in section 1, there are mainly three factors that contribute to the performance
of a parallel simulator: the parallelization method which is our primary object of investigation,

distributed discrete event simulation

FD AP MP

function decomposition model partitioning
(data distribution)

GC CN LC
centralized control distributed control
(global clock) (local clocks)
o SY W
conservative approach optimistic approach
(Chandy/Misra) (Time Warp [Jefferson])
DH LC/ AC lazylaggressive
DA DR cancg? aion
| SS/ CP incremental state
saving/checkpointing
deadlock deadlock
avoidance recovery

NM null messages CM circulating marker
TR time requests VM vector method

legend:

AP: (general) approach to parellelization
SY: synchronization (global/local)

SP synchronization protocol

DH: deadlock handling

Figure 5: Classification of methods for distributed discrete event simulation

parameters of the target architecture and properties or the simulation application (see fig. 1).
They span up a three-dimensional space, as depicted in fig. 6, which is to be covered by the test
environment.

The testbed has been designed to cover the full range of parallelization methods as described in
the section 2. For a flexible testbed it is necessary that the environment parameters be modifiable
in a controlled manner over a wide range. However, a commitment to a certain application of DES
is inevitable. Because of its practical importance we have selected digital logic simulation. The
basis of the testbed is a (sequential) gate level logic simulator which has been developed at our
university’s EE department [25]. The simulator implements most of today’s techniques in digital
system modeling, e.g. various timing models, spike handling etc. A number of ISCAS benchmark
circuits have been available as work-loads.

Flexibility with respect to the target system is achieved by implementing all parallelizations
based on a machine-independent parallel programming library. Although message passing today is
the generally accepted paradigm for programming distributed memory multiprocessors (DMMP),
there is not yet a standardized programming model. Basic communication primitives such as

space covered
by the testbed
5
g=1
MP-TW S R
| 9
% =1
g | MP- LC- CO DR %%
T ‘ =8
S 7 ”;;:’ﬁig
5 e > [VP-LC-CO DA T? g7
B o 5@ | g
N & W N j i 8
o) ‘(\\ @\ & o
- RO & FD L
E ,&Q .és\ e
o X 6\ e
@0 -
=)
gueueing networks | logic simulation | factory modeling
application of discrete event simulation
Figure 6: The parameter space of DDES covered by the testbed

(non)blocking send/receive, however, are available in virtually all of today’s DMMP programming
models. Our testbed is based on the parallel programming library MMK[7] which is available on
the iPsC/2 and iPSC/860 DMMP’s and, as an experimental version, on networks of Sun SPARC
workstations. As only basic communication primitives are used in our parallel programs, the
testbed can easily be ported to almost every other message passing programming model.

Based on the classification tree of fig. 5, four parallelizations, each belonging to another leaf
of the tree, have been selected for implementation. Thus, the parallelizations implemented in
our testbed are distributed evenly over the parallelization axis of fig. 6, enabling a comparative
study of different approaches. In addition, a comprehensive library of functions is provided that
supports easy implementation of further parallelization methods. It is summarized in tab. 2 in
the appendix. The following parallelizations have been implemented [41, 42, 23, 1]:

e FD

e MP-CO-DA-TR

e MP-CO-DR-VM

MP-TW-ISS with both LAC and AGC

They will be described in more detail in the following sections.

3.1 Function Decomposition (FD)

The sequential simulator is decomposed into six tasks that process the stream of events in a
pipeline:

e Input: read stimuli for primary inputs.

e Qutput: write result.

e Event administration: event list management, advancing simulation time.

e Event generation: events are generated from new values at output signals, preliminary signal
values (see [25]) are computed for current events.

e Event execution: compute new signal values, update signal list, determine fan-out elements.

e Element evaluation

The process graph is similar to that depicted in fig. 2.

3.2 Model Partitioning

In the model partitioning approach, a partitioning procedure is needed to assign elements to
simulators. Our testbed currently implements two algorithms:

e natural partitioning: elements are assigned in the order in which they appear in the net-list.

e min-cut partitioning: A generalization of Fiduccia/Mattheyses’ min-cut procedure for the
case of non-bipartitioning has been implemented which has been proposed by Vijan [40].
In our implementation, elements and signals can be weighted individually to account for
different, activity rates and evaluation complexities.

Efficient communication is a key factor to parallel simulation performance. Today’s distributed
memory multiprocessors have quite high communication latencies — costs that have to be paid for
each message irrespective of its length. This is why in our testbed an event buffering mechanism
has been implemented which is controlled by two parameters, l,;i, and @45 Instead of sending
each event as one message, events are collected in a buffer which is sent as soon as its length
reaches l,,;, events.

To prevent events from being withheld too long in the buffer, a second parameter is used. If
sending an event is deferred for too long a time, synchronization overhead increases because simu-
lators keep suspended unnecessary in the conservative approach while in the optimistic approach
more speculative computation has to be undone by rollbacks. Therefore, if an event has been in
the buffer for more than a,,4; units of simulated time, the buffer is sent regardless of its length.

The partitioning procedure and the event buffering mechanism described above have been used
in all of the parallelizations based on model partitioning that have been implemented within the
test environment. They will be described below.

3.2.1 Deadlock Avoidance with Time Requests (MP-CO-DA-TR)

Based on an algorithm proposed by Bain and Scott [3], a conservative protocol has been imple-
mented that avoids deadlocks by means of time requests. A time request (T;, P;) is issued by a
simulator P; to all P; with [;[j] < T, i.e. all predecessors P; that prevent P; from advancing its
simulation time to T; which is the time stamp of the next event in its event list.

A time request (T}, P;) asks the the receiving process P; whether its simulation time has already
reached time T;. If so, a YES reply is sent back. As an optimization, a YES reply carries the
local simulation time of the replying process to keep the sender’s link time up to date. Otherwise,
the request is queued and the requesting process is left waiting for the reply. If there are any
predecessors Py, of P; with [;[k] < T;, P; sends a request (T;,P;) to these P,. Note that the
simulator P; originating the request is entered as the second component, not the sender P;. Note,
that the request has P; as its second component — the simulator that has generated the request
for T;. Its identity is needed for cycle detection, as explained below.

A cycle is detected if a simulator P, receives a request (7T}, P;) from some process P; while it has
an identical request in its queue. Then an RYES (“reflected yes”) reply is sent to P; irrespective
of the current local simulation time 7;. P, has, however, to keep in mind that an RYES reply has
been given to P;. If later on an event e; with time stamp ¢; < Tj is sent to P;, the queued copy of
request (T;, P;) which had been received, say, from P,,, must be answered by a NO reply, because

event e; might cause an event e, with time stamp ¢2 < T; to be generated and sent to P;. This is
the only situation where NO replies are generated.

A request by P; is completed if all predecessors to which the request has been sent have sent
their replies. If the request has been originated by P;, the replies decide whether simulation time
can be advanced: If all replies are either YES or RYES, simulation will proceed. If any NO replies
have been received, simulation must remain suspended. Having updated its channel times I;[5]
according to the replies, P; generates a new time request.

If a request (Ty, Py) has been completed which had been originated by another process, Py, a
reply is sent to the process P; from which the request had been received: If there is at least one
NO reply, a NO reply is sent. Otherwise, if all replies are YES, a YES reply is sent as soon as
T; > Ty. Otherwise, i.e. if there are no NO replies but at least one RYES reply, an RYES reply is
sent. If T; > T}, the RYES can be converted to YES.

3.2.2 Deadlock Recovery with the Vector Method (MP-CO-DR-VM)

In the conservative approach, the alternative to deadlock avoidance is to allow for deadlock to
occur, detect it an recover from it. Our implementation of deadlock recovery is based on Mattern’s
vector method [30]. Two variants of this deadlock detection algorithm have been implemented: a
circulating control vector and a parallel version of the vector method. During deadlock detection
the next event time is collected from each simulator. Deadlock is recovered from by computing
the minimum of these times. All simulators with minimum next event times are restarted.

The circulating control vector The vector method detects deadlock by having each process
count the number of messages that are sent to and received from other processes. Each simulator
P; has a (local) vector L;. If P, sends a message to P;, L,[j] is incremented by one; if P; receives
a message, L;[i] is decremented by one. A circulating control vector C collects this information
on its way through the simulators.

A simulator P; that has received the control vector keeps it until it has to suspend its simulation
because [; [j] < T; for some j. Then it updates c by adding its local vector to it which then is
reset, i.e. C:=C+ L,7 L; = 0. The control vector is passed to a process P; with C[j] > 0. If
C=0 upon update, deadlock has been detected: all processes have suspended simulation and
there is no event message in transit.

The parallel vector method In this variant of the vector method, the control vector Cis kept
by a designated control process, Pc, to which the simulators send their local vectors if they have
to suspend their simulation. Pg updates C in the same way as with the circulating control vector.
Also, a simulator resets its local vector after sending it to Po. Again, if Po finds C =0, parallel
simulation is deadlocked.

3.2.3 Time Warp (MP-TW-ISS-{AGC,LAC})

In our Time Warp parallel simulator, state information is saved incrementally instead of periodi-
cally saving the state as a whole (checkpointing). Upon execution events are not removed form the
event list. Instead, the signal value prior to event execution is stored in the event data structure.
If a rollback to time ¢, occurs, a forward search is started in the event list beginning at time ..
The value of a signal s is restored from the first event affecting s that is found in this search.

Incremental state saving is preferred checkpointing checkpointing in logic simulation because
checkpointing would result in very inefficient memory usage since each event changes only a small
part of the system state.

Both methods for undoing external events have been implemented: aggressive and lazy can-
cellation. With aggressive cancellation, an anti-message m™~ is sent for each event message m*
generated in the rolled back period immediately upon rollback. With lazy cancellation, an anti-
message m~ is not sent before local simulation time (LVT) reaches the time stamp of m™. Only

10

if m* is not generated once again in the re-simulation, m~ will be sent.! The idea behind lazy
cancellation is that re-simulation will re-generate most of the events undone in the rollback.?

Global virtual time (GVT) is approximated using Samadi’s GVT2 algorithm [36]. Despite
being one of the earliest GVT algorithms, run-time measurements have shown a sufficiently close
approximation of GVT. GVT2 outperformed a newer algorithm proposed by Lin/Lazowska [28]
which does not require simulators to stop computation temporally but requires more messages to
be sent. In our implementation of GVT2, however, the requirement of stopping simulation could
be relaxed so that simulators may continue computation but must refrain from sending messages.
Anyway, investigating newer GVT algorithms such as the one proposed in [4] will be an interesting
application of the test environment.

Two extensions to the basic Time Warp mechanism have been implemented within our testbed:

¢ Being motivated by the same assumption as lazy cancellation optimized re-simulation aims
at reducing the number of element evaluations during re-simulation, which is especially useful
for circuits containing elements whose evaluation is computationally complex.

e Dynamic re-partitioning attempts to compensate uneven load distribution by moving ele-
ments from a heavily loaded processor to a lightly loaded one. Even if static partitioning
has generated equally sized partitions, load may be distributed unevenly if elements have
different rates of activity or if activity distribution in the circuit changes over time.

Optimized Re-Simulation

Assume, an element E has been evaluated during the rolled-back simulation at (simulated) time
t resulting in an event e; to be generated. If during re-simulation, E is evaluated once again at
time ¢, e; will be generated again if the state of E is the same as in the corresponding evaluation
before rollback. The state of an element is defined as the vector of its input signals and its internal
state variables. In the example of fig. 7, E’s state is defined by the triple (a,b,c)3.

The idea of our optimization is to re-use the event generated before rollback instead of evaluat-
ing the element once again if the above condition is met. More precisely, optimized re-simulation
works as follows:

During “normal” simulation, the simulator keeps track of the causality relationship between
events and element evaluations, i.e. it stores information of the form “event e; caused elements
E,, E> to be evaluated. Evaluation of E; generated e3, evaluation of E, generated es.” (es, e
are called follow events of e; caused by the evaluation of E; and Es, respectively.) In addition
the element state has to be remembered for each evaluation.

At rollback, local events are marked as “undone” instead of removing them from the list. If
during re-simulation element E; is evaluated at time ¢, the simulator checks if there is information
stored about follow events. If so, it compares E;’s state at the corresponding evaluation before
rollback to its current state. If states are identical, follow event es is re-scheduled by removing the
“undone” mark. Only if there is no follow event information stored or states do not match must
FE be evaluated.

As long as state transitions during re-simulation are identical to transitions in the rolled-back
simulation, “undone” events are “redone” instead of evaluating the element once again. In fig. 7
simulation is illustrated as a sequence of state transitions. As long as the lines for both simulations
coincide, optimized re-simulation is in effect. The rolled-back simulation is represented by a dashed
line, re-simulation by a solid line.

Dynamic Re-Partitioning There are three alternatives for implementing load balancing at
simulation time:

1. There are several simulator processes on each node. The operating system determines the
load on each node and migrates processes as necessary.

1By re-simulation we mean the renewed simulation of the rolled back period of simulated time, see also fig. 7.

28trictly speaking, this assumption doubts Time Warp’s efficiency. However, several studies have shown that
lazy cancellation can be more efficient than aggressive cancellation.

3For simplicity, we assume that E does not have an internal state.

11

» &
0
2b— M L OUTPUT
X z
C pu—
optimistic 2 re /' abe
simulation S smulation =, 111 —
. A 110
|; PR 101 —
/ \ ()
2 g | z 100 —|
g K » 011 —
=])/ i 010 —
B ’ 001 —
ﬁ // ‘\
=S y 000 —
e /!
a5l
/’ | | RE-SIMULATION | |
/
! simulated time
real time re-use events B evaluate elements

Figure 7: Optimized re-simulation of a rolled-back period of simulated time

However, currently no multiprocessor operating system supporting dynamic load balancing
is available for production use. In addition, the Time Warp protocol makes it hard for an
operating system to measure load since Time Warp simulators are ready to compute all the
time. Moreover, optimal scheduling of several simulators on one node, i.e. lowest LVT first,
cannot be implemented with any of today’s operating systems.

2. Each simulator processes several partitions each of which has its own LVT. They are sched-
uled such that the partition with minimal LVT is simulated first. If load imbalance is
detected, a heavily loaded process gives one or more of its partitions to a lightly loaded
process.

Load is measured as the minimum LVT of a simulator’s partitions as reported in the snap-
shots taken for GVT computation. As LVT’s may move forth and back quickly due to
speculative computations followed by rollbacks, mean values taken over a number of snap-
shots provide a more realistic image of load distribution.

Since partitions have their own LVT’s, migrating them is relatively straightforward. How-
ever, as partitions may only be moved as a whole, their number must be much larger than the
number of processors in order to be able to balance load exactly. Since the communication
structure is fixed to a great extend by statically clustering elements into partitions, a good
static partitioning policy is required.

3. To compensate for load imbalance, a set of elements is selected from the partition of a
heavily loaded simulator and is moved into that of a lightly loaded one. Load is measured
by observing LVT’s like in 2). Compared to 2), element-wise re-partitioning allows very fine-
grained redistribution of computational load. Communication relations between processes
can be rearranged freely because there are no restrictions due to static partitioning.

However, migrating elements is not as straightforward as migrating partitions which have
their own LVT’s. Usually, the source partition’s LVT, T, is lower than the destination
partition’s LVT, Ty.s. Therefore, the simulator processing the destination partition, Pgest,
must perform a modified form of rollback to T, in order to simulate un-processed events for
the “new” signals. (This rollback does not require local events to be undone.) Un-processed
events for signals that migrate into the destination partition have to be sent from Py, to

12

Time Warp with lazy cancellation
min-cut partitioning, circuit: c6288

Speedup

Parameter s:

number of simulation time
units between application of
successive input vectors

to primary inputs

0
factor by which 1000 F]
the number of element maximum
evaluationsin a partition 800 - J
is reduced with respect [
to sequential simulation 600 - ' 4
400 1
200 - P]
minimum
0 USSR AR [T A
1 2 4 6 8 10 12 14 16

partitions

Figure 8: Time Warp: experimental results

Pyest- Also, rollback at Pges; may require the signal history for [GV T, Tsyc] to be transferred
to Pdest-

In the current version of the testbed, method 3 has been implemented. Comparison of meth-
ods 2 and 3 will be an interesting point for applications of and extensions to our testbed.

4 Experimental Results

The testbed has been implemented based on the parallel programming library MMK [7]. Run-
time measurements were performed on the iPSC/2 and iPSC/860 DMMP’s. Tab. 1 summarizes the
communication performance of our implementation platform.

Function decomposition did not achieve significant speedup on these systems. The maximum
possible speedup is between three and four. Parallelization overhead without communication costs
has been measured to be nearly 50%. High communication latency makes sending short messages
extremely costly. However, packing many items into one message reduces pipeline efficiency. For
most of the benchmark circuits, simulation runs completely sequentially if items are combined to
form messages that are long enough to achieve an acceptable effective bandwidth. (To achieve
more than 80% of the maximum bandwidth, messages must be longer than about 6 kByte.)

Run-time measurements with the three parallel simulators that are based on model partitioning
have shown a quite surprising result: Variations in speedups achieved for simulations of different

13

Deadlock recovery, natural partitioning

Speedup P

2 1 ,»"O © O""o,_oi“on
Parameter s: ° ‘@,_0 c6288 év)
number of simulationtime 15 | . o °T0 S
units between application of F ""*\\' oo 5=10
successive input vectors . "’,i.-~»-~——o~-..,,,,,‘ e e-+ =50
toprimaryinputs 1+ il o The *u ., e-es=100
05 + e
0 T T T T T T T T T T T T T T
Speedup
2 \ O“o@ circuits:
% e
15 + \/,D\\ ;k,_,_g6288
SN /
- \ t)“e;\ |
o Frelg e 7552
| *eeal, 003540
05 + b / o 5315
¢ = 41355
0 T T T T T T T T T T T T

12 4 6 8 10 12 14
partitions

Figure 9: Deadlock Recovery: experimental results

| [ipsc/2(MMK) | iPSC/860(MMK) |
latency (time needed to transfer a O-byte 1.95 ms 0.6 ms
message)
maximum bandwidth (achieved for maximum | 1.35 MByte/sec | 2.79 MByte/sec
length message [32kB])

Table 1: Communication performance of the implementation platform

circuits using the same parallelization method have been stronger than variations between different
parallelization strategies. In addition, speedup often does not depend linearly on the number of
nodes. Fig. 8 and 9 display some sample results for MP-TW and MP-CO-DH, respectively. Although
these examples might suggest Time Warp to be superior to the conservative approach, none of the
three methods that have been implemented can be clearly favored if all our run-times measurements
are taken into account.

The reason for this somewhat strange result is that load has been distributed unevenly upon
the processors. Although both partitioning procedures tend to produce partitions of almost equal
size, the total number of element/event evaluations differs by more than an order of magnitude
from node to node for most of the benchmark circuits. Fig. 10 and 11 show how activity varies in
both space and time.

14

digtribution in space

1000

8=

SUOQEN|BAB JO 'OU

SUOEN|BAB JO 'QU

alamant no.

alamant no.

Figure 10: Distribution of activity in space

distributien in time

‘au juewe| s

simulation tic

in time

Figure 11: Distribution of activity

Fig. 10 displays the total number of evaluations of each element for different values of s.
Parameter s is defined in fig. 8. A dot (z,y) in fig. 10 means: element x has been evaluated y

times. For simplicity, no scale labels are given at the axes. As all axes begin at 0 and are scaled
linearly, the diagram gives an impression of the relative variations even without scale labels. Fig. 11

axis) which elements have been evaluated.

xT

(

shows how Time Warp’s behavior is affected by an uneven distribution of load. The
diagram has been obtained from an observation of LVT’s and GVT using the TOPSYS distributed

shows for each simulation tic
Fig. 12

[8] which provides the best approximation to a global time base that is available

monitoring system

15

Time Warp with lozy concellotion, min—cut portitioning
simuloted time circuit c1355
. . . : T T
250000 |]
200000 | L 1
150000]
100000]
b — T
f — YT 1
. — LYT 2
50000 : — L%T 3 1
i — v 4
g
D 1 1 1 1 1 1 1
150 200 250 300 350 400
regl time [sec]
Figure 12: LVT’s and GVT observed using the TOPSYS distributed monitoring system

on the iIpsc DMMP’s. LVT’s diverge extremely due to load imbalance. While one simulator
advances slowly but without rollback, others advance rapidly but roll back frequently. The first
process is overloaded while the latter are only lightly loaded which results in much speculative
computation that has to be rolled back later on. As a consequence of LVT’s running far ahead
of GVT, these processes run out of memory for large simulations because the amount of state
information increases with the difference LVT-GVT. In order to be able to run large simulations,
Time Warp’s optimism has been limited as follows: as soon as a simulator starts to run short of
memory it will be blocked whenever it tries to advance its LVT by more than some predefined
amount of units ahead of GVT.

5 Conclusions and Future Work

Based on a classification of DDES methods, a test environment has been designed which allows
easy implementation of a great number of parallelization strategies by providing a comprehensive
library of functions and enables an unbiased evaluation of different parallelization strategies. Four
parallelization have been implemented and analyzed. However, the number of run-time measure-
ments has been limited by the instability of both the iPSC multiprocessors and the programming
environment.

Since some of the results obtained have been quite unexpected, further run-time measurements
should be carried out in the future including larger circuits and circuits of known function for which
input stimuli can be provided that “make sense”. As the function of the ISCAS benchmark circuits
is not known in detail, randomly generated input sequences have been applied to their primary
inputs. Although parameters for generating these sequences have been varied over a wide range,
random input may have resulted in un-typical operating conditions for the circuits. Therefore,
checking our results against results obtained from simulations with “real” stimuli is desirable. For
this purpose, a program has been written that makes it possible to convert a number of circuits
designed on a (commercial) CAE system at our laboratory, so that they can be used as work-loads

16

for our parallel simulator.

Given its limited potential for speedup and its sensitivity to communication latency, the func-
tion decomposition approach can be applied successfully only in combination with the model
partitioning approach. In future multiprocessors where each node has several CPU’s sharing a
common memory, a simulator running on one node may be parallelized using function decompo-
sition while simulation is distributed among the nodes using the model partitioning approach.

Different activity rates must be accounted for in the static partitioning procedure. Most
heuristic algorithms can be modified to have individual weight factors for elements and signals.
Since in the design phase of a circuit typically a number of nearly identical simulations is run
in a sequence (e.g. for debugging the design), these weight factors can be easily obtained from
statistics collected in a previous run at no extra cost.

Dynamic re-partitioning has proved to reduce the LVT divergence Time Warp. However,
further measurements will be necessary in order to evaluate its effects comprehensively.

Besides comprehensive analysis of the parallelizations currently implemented, further paral-
lelization strategies are to be implemented and analyzed in the future. To enlarge the set of
hardware platforms where the testbed is available, it will have to be ported to one of the evolving
standards for message passing programming such as PVM, P4 or MPI. Thus it will be possible
to evaluate different types of multiprocessors with respect to their appropriateness for distributed
discrete event simulation.

Considering other application areas of discrete event simulation will show to what extent
results obtained from logic simulation can be generalized to other types of simulation problems.
Parallelization of a commercial simulator designed for modeling production processes in factories
just has begun.

A Appendix

A.1 Summary of DDES studies published in the literature
paralleliz. type of work-
Ref. | method® | simul.®) | hardware(® loads(®) results(®)
[15] | cO-DA-NM | QN BBN up to 64 Ip SU: DA: 2-11.5 (16P.);
CO-DR Butterfly (SM) (synth. wl) DR: 0.3-3(4P.), 1.2-5.8(8P.)
[14] | Tw QN BBN 16-64 Ip SU: Tw: 6-9(16P.);
C0-DA Butterfly C0-DA: 1.5-3(16P.);
CO-DR (SM) CO-DR: < 1(1-16P.);
[16] | TwW QN SIM 1024 processes | Eff.: 0.97(16P.), 0.91(128P.),
0.89(256P.)
[17] | co-DA-NM | SL iPSC (DM) small not asserted
CO-DR-ZM
[29] | TW QN SIM 170 processes | SU: 20-28 (43P.)
[33] | co-DA QN Flex/32 homogeneous | SU: 10-11 (16P.)
appoint- (SM) networks
ment pro-
tocol
[34] | co-DA QN Sequent Balance 2100 | 5-8 log. proc. | SU: DA: ~1(5P.),
(SM) DR: 2-5(20P.)
[6] | GC LG Sequent Balance 8000 | circuits: Eff.: 0.5-0.6
(SM) 2608 u. 3827
elements

17

paralleliz. type of work-

Ref. | method@ | simul.®) | hardware® loads® results(®)

[43] | TW BF BBN 2x18 SU: 28.6 (60P. Marklll),

[44] Butterfly Corps 38.5 (128P. Marklll),

(SM); Caltech Marklll 36.8 (100P. BBN)
Hypercube
[10] | TW LM BBN GP1000 (SM) up to 31680 | SU:
gates, 11820 | 5-10(32P., transistor level),
transistors 5-20(32P., gate level)
[18] | cO-DA LG iPSC/2 (DM) 4-33 Ip not asserted
VHDL
[21] | Tw Pool Caltech Marklll Hy- | 128 balls SU: 10.5(24P.)
percube (DM)
B1] | v BF BBN Butterfly (SM) | 51+46 SU:
divisions 4.5-5(10-20P.) (ZF = EB),
7(10P.), 10(20P.) (ZF = EI)

32] | CO-DA-NM | QN BBN Butterfly (SM) | 3 topologies SU: 32-48 (16P.) (1)

5] | TW LG network of | ISCAS Bench- | SU: 2-5(5P.), 4-8(20P.)

38] workstations mark circuits

19] | Tw LM SIM 4-,8-bit multi- | SU: Tw: 1.97-3.90(4P.),

plier, adder 7.16(16P.), 17.46(32P.);
C0-DA: 1.96-2.83(4P.),
6.22(16P.), 16.16(32P.)

[24] | &C LB ALLIANT 16 x 16 SU: GC: 1, 4 (8P.);
DS-CO-DA x80) Omega-, CO-DA(dp): 2.5-9(8P.);
DS-TW-AC (SM) 4x4 C0-DA(sp): 0.4-3(8P.)
DS-TW-LC torus TW-AC: 3.5-6(8P.)

DS-TW-DC networks TW-LC: 2.3-6(8P.)

[37] | GC LG Transputer (DM) industrial SU: GC: < 1,

DS-CO-DA circuits CO-DA: 2.24(4P.), 3.42(16P.),
W up to 14000 | TW =~ 20% slower than con-
gates servative synchronization

[39] | TW CN Transputer (DM) simple LAN | not asserted

model
[45] | CO-DA-NM LG Transputer (DM) circuits of | SU: 6.0-7.9(4P.)(!), 1.8(4P.),
112-1664 3.0, 3.4(4P.)
gates
26] | C0-? LG Transputer (DM) 72 elements strong impact of partitioning
2] | TW LG network of | 14-38 log. | analysis of different optimiza-
VHDL workstations proc. tion techniques and their
effects
[35] | CO-DA-NM | TK Convex C3400 (SM) 27 switches SU: 1.4-1.8(2P.)

abbreviations:

(@) see fig. 5; for all parallelizations described here: AP = MP (omitted in the table); for all parallelizations
except [6] CN = LC.
sp: static partitioning; dp: dynamic partitioning

®) QN : queueing network simulation; LG : gate level logic simulation; LB : behavioral level logic simulation;
LM : multi-level logic simulation; BF : battlefield simulation; CN : computer network simulation; SL :
simulation library; TK : simulation of telecommunication networks

(©) SM : shared memory multiprocessors; DM : distributed memory multiprocessors
SIM: simulation of a multiprocessor

@) wl: work-load; Ip: logical process(es)

(¢©) SU : speedup; Eff: efficiency
DA 2-11.5 (16P.): deadlock avoidance: speedups between 2 and 11.5 on 16 processors

18

| approach | function
function decomposition into six processes
decompo- element evaluation: one- and two-phase approach
sition
communication mechanism: number of items per message ad-
justable as a parameter
instrumentation for run-time statistics
model interface to circuit partitioning
partitioning static partitioning: natural partitioning and min-cut (general-
ization of Fiduccia/Mattheyses’ algorithm by Vijan [13, 40])
conservative modified control structure for conservative synchronization
approach deadlock avoidance by time requests
deadlock recovery with the vector method: circulating control
vector, parallel vector method
two options for the definition of external events
instrumentation for run-time statistics
Time rollback mechanism
Warp optimized incremental state saving
aggressive and lazy cancellation
optimized re-simulation after rollback
dynamic re-partitioning
instrumentation for run-time statistics
Table 2: library of functions provided by the test environment
References

[1] Markus Abt. Parallelisierung eines ereignisgetriebenen Logiksimulators mittels eines konser-
vativen, verklemmungsbehandelnden Synchronisationsprotokolls. Diplomarbeit, Technische
Universitdt Miinchen, Institut fiir Informatik, Miinchen, August 1993.

[2] Sandeep Aji, Avinash C. Palaniswany, and Philip A. Wilsey. Interactions of Optimizations
to a Time Warp Synchronized Digital System Simulator. In Modelling and Simulation ESM
93, Proceedings of the 1993 European Simulation Multiconference, pages 593-597, Lyon, June
1993. SCS.

[3] W.L. Bain and D.S. Scott. An algorithm for time synchronisation in distributed discrete
event simulation. In Distributed Simulation, 1988.

[4] H. Bauer and C. Sporrer. Distributed Logic Simulation and an Approach to Asynchronous
GVT-Calculation. In Proceedings of the 1992 SCS Western Simulation Multiconference on
Parallel and Distributed Simulation (PADS92), pages 205-209, Newport Beach, California,
January 1992.

[5] Herbert Bauer, Christian Sporrer, and Thomas H. Krodel. On distributed Logic Simulation
Using Time Warp. In IFIP TC 10/WG 10.5 International Conference on Very Large Scale
Integration, VLSI 91, pages 4.1.1.1-4.a.1.10, Edinburgh, Scotland, August 1991.

[6] G. Beihl. A Shared-Memory Multiprocessor Logic Simulator. In Eighth Annual International

Phoeniz Conference on Computers and Communications, pages 26—28, Wyndham Paradise
Valley Resort, Scottsdale, Arizona, March 1989.

19

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

T. Bemmerl, A. Bode, T. Ludwig, and S. Tritscher. MMK - Multiprocessor Multitasking
Kernel (User’s Guide and User’s Reference Manual). SFB-Bericht 342/26/90 A, Technische
Universitdt Miinchen, Institut fiir Informatik, August 1990.

T. Bemmerl, R. Lindhof, and T. Treml. The Distributed Monitor System of TOPSYS. In
H. Burkhart, editor, Proceedings of CONPARY0 VAPP IV, volume 457 of Lecture Notes in
Computer Science, pages 756—765, Ziirich, Schweiz, 1990. Springer-Verlag.

Tom Blank. A Survey of Hardware Accelerators Used in Computer-Aided Design, pages 90—
108. IEEE Computer Society Press/North Holland, 1984.

Jack Vedder Jr. Briner. Parallel Mized-Level Simulation of Digital Circuits Using Virtual
Time. PhD Dissertation, Duke University, Durham, NC 27706, August 1990.

K. Mani Chandy and Leslie Lamport. Distributed Snapshots: Determining Global States of
Distributed Systems. ACM Transactions on Computer Systems, 3(1):63-75, February 1985.

K.M. Chandy and J. Misra. Asynchronous Distributed Simulation via a Sequence of Parallel
Computations. Communications of the ACM, 24(11), April 1981.

C.M. Fiduccia and R.M. Mattheyses. A Linear-Time Heuristic for Improving Network Par-
titions. In 19th Design Automation Conference, pages 175-181, 1982.

Richard M. Fujimoto. Performance Measurements of distributed simulation strategies. In
Distributed Simulation 1988, pages 1420, 1988.

R.M. Fujimoto. Lookahead in Parallel Discrete Event Simulation. In International Conference
on Parallel Processing, 1988.

Jr. Gilmer, John. B. An assessment of ”‘Time warp”’ parallel discrete event simulation
algorithm performance. In Distributed Simulation, pages 45-49, 1988.

T.C. Hartum and B.J. Donlan. HYPERSIM: Distributed Discrete-Event Simulation on an
iPSC. In The Third Conference on Hypercube Concurrent Computers and Applications, vol-
ume I, pages 745-747, 1988.

T.C. Hartum, A. Lee, and J. Sartor. Parallel Simulation Speedup on the iPSC/2. Intel
Supercomputer Users’ Group Proceedings, Aug. 17-29, 1990.

Friedrich Hoppe. FEin Verfahren zur Synchronisation und Lastverteilung f’ur die parallele
Mehrebenenlogiksimulation. Dissertation, Technische Universitit Berlin, February 1991.

D. Jefferson. Virtual Time. ACM Transactions on Programming Languages and Systems,
7(3):404-425, July 1985.

D. Jefferson, B. Beckman, F. Wieland, J. Blume, M. Di Loreto, P. Hontalas, P. Reiher,
K. Sturdevant, J. Tupman, J. Wedel, and H. Younger. The Status of the Time Warp Operating
System. In The Third Conference on Hypercube Concurrent Computers and Applications,

volume I, Architecture, Software, Computer Systems and General Issues, pages 738-744,
1988.

D. Jefferson and H. Sowizral. Fast Concurrent Simulation Using the Time Warp Mechanism,
Part I: Local Control. Rand Note N-1906-AF, Rand Corporation, Santa Monica, CA., 1982.

Marc Koéhler. Verklemmungsfreie Parallelisierung eines ereignisgetriebenen Logiksimulators
mittels eines konservativen Synchronisationsverfahrens. Diplomarbeit, Technische Universitét
Miinchen, Institut fiir Informatik, Miinchen, August 1992.

20

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

Pavlos Konas and Pen-Chung Yew. Parallel Discrete Event Simulation on Shared-Memory
Multiprocessors. In Alan H. Rutan, editor, Annual Simulation Symposium, volume 24 of
Annual Simulation Symposium, pages 134-148, New Orleans, Louisiana, April 1991. ACM,
IEEE Computer Society SCS, IMACS, IEEE Computer Society Press.

T.H. Krodel and K. Antreich. An Accurate Model for Ambiguity Delay Simulation. In 27th
ACM/IEEE Design Automation Conference, pages 122-127, 1990.

Phillip Lanches and Utz G. Baitinger. A Parallel Evaluation Environment for Distributed
Logic Simulation. In Modelling and Simulation ESM 92, Proceedings of the 1992 FEuropean
Simulation Multiconference, pages 465—469, San Diego, CA, June 1992. SCS International.

Y.-B. Lin and E.D. Lazowska. Comparing Synchronization Protocols for Parallel Logic-
Level Simulation. In Proceedings of the 1990 International Conference on Parallel Processing,
volume ITI, pages 223-227, 1990.

Y .-B. Lin and E.D. Lazowska. Determining the Global Virtual Time in a Distributed Sim-
ulation. In Proceedings of the 1990 International Conference on Parallel Processing, volume
ITI, pages 201-209, 1990.

Greg Lomonow, John Cleary, Brian Unger, and Darrin West. A performance study of Time
Warp. In Distributed Simulation, pages 50-55, 1988.

Friedemann Mattern. Verteilte Basisalgorithmen, volume 226 of Informatik-Fachberichte.
Springer-Verlag, Berlin, 1989.

Katherine L. Morse. Parallel Distributed Simulation in ModSim. In International Conference
on Parallel Processing, volume III, pages IT1-210-I11-217, 1990.

J. Nathaniel, D. Mannix, and T. Shaw, W. Hartum. Distributed Discrete-Event Simula-
tion Using Null Message Algorithms on Hypercube Architectures. Journal of Parallel and
Distributed Computing, 8:349-357, 1990.

D.M. Nicol. Parallel Discrete Event Simulation of FCFS Stochastic Queueing Networks.
SIGPLAN Notices, 23(9), September 1988.

Daniel A. Reed and Allen D. Malony. Parallel discrete event simulation: The Chandy-Misra
Approach. In Distributed Simulation 1988, pages 813, 1988.

Matti Salmi, Jarmo Harju, and Jari Porras. A Chandy-Misra Parallel Simulation Environment
for the Simulation of GSM Mobile Communication Network. In Modelling and Simulation
ESM 93, Proceedings of the 1993 European Simulation Multiconference, pages 575-579, Lyon,
June 1993. SCS.

B. Samadi. Distributed Simulation, Algorithms and Performance Analysis. Technical Report,
University of California, Los Angeles, (UCLA), 1985.

Jiirgen Sang and Manuela Sang. Untersuchung von Algorithmen zur verteilten ereignisges-
teuerten Simulation. In Djamshid Tavangarian, editor, Simulationstechnik, 7. Symposium,
volume 4 of Fortschritte in der Simulationstechnik, pages 248-252, Hagen, September 1991.
ASIM, Vieweg.

Christian Sporrer and Herbert Bauer. Corolla Partitioning for Distributed Logic Simulation of
VLSI-Circuits. In 7th Workshop on Parallel and Distributed Simulation (PADS), San Diego,
USA, May 1993.

Fannie Tallieu and Frank Verboven. Using Time Warp for Computer Network Simulations
on Transputers. In Alan H. Rutan, editor, Annual Simulation Symposium, volume 24 of
Annual Simulation Symposium, pages 112-117, New Orleans, Louisiana, April 1991. ACM,
TIEEE Computer Society SCS, IMACS, IEEE Computer Society Press.

21

[40]

[41]

[42]

[43]

[44]

[45]

Gopalakrishnan Vijayan. Min-Cost Partitioning on a Tree Structure and Applications. In
26th ACM/IEEE Design Automation Conference, pages 771-774, 1989.

Ricarda Weber. Parallelisierung eines ereignisgetriebenen Logiksimulators durch Aufteilung
des Algorithmus in parallele Prozesse. Diplomarbeit, Technische Universitdt Miinchen, Insti-
tut fiir Informatik, Miinchen, May 1992.

Holger Weitlich. Parallele Logiksimulation nach der Time-Warp-Methode auf einem Mul-
tiprozessorsystem mit verteiltem Speicher. Diplomarbeit, Technische Universitdt Miinchen,
Institut fiir Informatik, Miinchen, August 1992.

F. Wieland, L. Hawley, A. Feinberg, M. di Loreto, L. Blume, J. Ruffels, P. Reiher, B. Beckman,
P. Hontalas, and S. Bellenot. The Performance of a Distributed Combat Simulation with the
Time Warp Operating System. Concurrency: Practice and Experience, 1(1):35-50, September
1989.

F. Wieland and D. Jefferson. Case Studies in Serial and Parallel Simulation. In International
Conference on Parallel processing, volume II1, pages 255-258, 1989.

Kenneth R. Wood. Distributing gate-level digital simulation over arrays of transputers. Con-
currency: Practice and Ezperience, 3(4):367-379, August 1991.

22

