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Abstract

Algebraic factorization is an extremely important part of
any logic synthesis system but is computational ly expensive.
Henceit isimportant to ook at parallel processing to speed
up the procedure. This paper presents three different par-
allel algorithms for algebraic factorization. The first algo-
rithm uses circuit replication and uses a divide and con-
quer strategy. A second algorithm uses totally independent
factorization on different circuit partitions with no interac-
tions among the partitions. A third algorithm represents a
compromise between the two approaches. It uses a novel
L-shaped partitioning strategy which provides some inter-
action among the rectangles obtained in various partitions.
For alarge circuit like ex1010, the last algorithm runs 11.5
timesfaster over the sequential kernel extraction algorithms
of IS on 6 processors with less than 0.2% degradation in
quality of the resullts.

1 Introduction

Multi-level logic synthesis is a very important phase of
VLS system design. The algorithms for logic transforma-
tions used in the SIS [7] system form the core of numerous
university and industrial logic synthesis systems. The SIS
synthesis tool is based on agebraic factorization and sim-
plification of nodesin a Boolean network [2]; each of these
operations are computationally expensive. Table 1 shows
the number of times the algebraic factorization procedureis
caledinatypical script from the SIS package[7], thetimes
spent in performingthesefactorizationsand thetotal synthe-
sistime. We observethat factorization, on an average, takes
61.45% of thetotal synthesistime. Hence we parallelizethe
algebraic factorization to speed up the synthesis process.
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Tablel: Runtimesof several circuitsand thetimeit takes
in thekernel extraction routine. LC = Literal Count

MCNC Size | Factorization | Total Fac. | Total Syn.
Circuits (LO) Invoked | Time(sec) | Time(sec)
dalu 3588 10 34.2 283.1
seq 17938 16 295.1 900.2
des 7412 10 4257 1800.4
spla 24087 12 17714 2681.6
ex1010 | 14952 9 5841.7 7950.6
total 67997 8368.1 13615.9

The problem of algebraic factorization can be explained
through the following example.

Example1l.1 Let {N = F,G, H } bealogiccircuit.

F = af +bf + ag+ cg + ade + bde + cde,
G = af +bf +ace+bce, H = ade+cde (1)

In the network, A/, a + b is a common factor that
can be factored out from F and G to produce an
sum of products(SOP) expression with 8 less literals.
The new expressions for F' and G are shown below:
F = fX +deX + ag + cg + cde,
G = fX+cX, X =a+b
The literal count(LC), afirst order estimate of circuit area,
has reduced from 33 to 25. By repeatedly performing the
factorization on a large network, it is possible to obtain
great reductions.

Recently, several approaches have been reported on de-
veloping parallel logic synthesis algorithms. Theeuwen de-
veloped aparalel synthesisagorithm [8] for an Alliant FX-
8, ashared memory multiprocessor. Herestructured the pro-
gramflow of the synthesistool reportedin [9] and then par-
allelized each of the synthesis operation individually. Al-
though he reported linear speedup, many of the circuits ran
dower than SIS or produced worse quality than that pro-
duced by SIS.

De and Banerjee [5] reported on a parallel algorithm
for synthesis using the transduction approach called Proper-
SYN. In another study, De and Banerjee reported anovel it-
erativeapproachto parallel synthesiswhereportionsof acir-
cuit are repartitioned and resynthesized along different sets
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of processorsin an implementation called ProperPART [3].
It was shown that the overall synthesis quality is signifi-
cantly improved by this iterative repartitioning and resyn-
thesisapproach over the single partitioned approach without
any interactions. In ProperMIS, De and Banerjee [4] paral-
lelizes MIS by dividing up the search space across different
processorsbut retainsthe global information of thecircuitin
all of them. This requires synchronization and update after
every step of factorization and henceis not scalable.

In this paper, we focus on algebraic factorization using
thekernel extraction proceduresin the SIS system and try to
achieve speedup by parallélizingit by partitioning thecircuit
in anovel way. We introduce interactions between the par-
titioned circuit using a novel L-shaped repartitioning. Per-
forming kernel extraction on a partitioned circuit give us
speedups while the L-shaped partitioning takes care of the
quality. The outline of the paper isasfollows. In Section 2,
we review the sequential algorithm for algebraic factoriza-
tion in SIS. The following three sections describe the three
parallel algorithmsfor kernel extraction. Section 3 describes
an approach using replicated circuit structure but a divide
and conquer search. Section 4 describes a parallel kernel
extraction on partitioned circuits. An unique approach us-
ing L-shaped partitioning of the co-kernel cube matrix isde-
scribed in Section 5. We conclude the paper in Section 6 by
comparing the various parallel approaches.

2 Overview of serial algebraic factorization

In this section, we will review some basic definitions as
givenin[2] to be used later in this paper. A literal isavari-
able or its negation. A cubeisaset C of literals such that
z € C impliesT ¢ C. An expression isa set f of cubes.
An expression f is cube-free if no cube divides f evenly.
The primary divisors of an expression f form a set of ex-
pressions D(f) = {f/C|C isacube}. The kernels of an
expression f are the expressions K(f) = {glg € D(f)
and g iscube-free}. In other words, the kernelsof an expres-
sion f are the cube-free primary divisors of f. The cube C
used to obtain kernel k = f/C is called the co-kernel of k.
The co-kernel cube matrix (K C' matriz) isasparse matrix
with rowsrepresenting co-kernel sand columnsrepresenting
kernel-cubes. A non-zero element B(i,j) of the matrix cor-
responds to a cube of the function formed by the union of
co-kernel ¢ and kernel-cube j. In the network described in
Equation 1, the kernels (and co-kernels) of G are cetf(a, b),
at+b(f,ce).

Algebraicfactoring takesasum of product (SOP) realiza-
tion of acircuit asitsinput, searchesfor common subexpres-
sions and extracts these subexpressions to produces a SOP
expressionwithasmaller literal count. When the subexpres-
sion is a cube (kernel) then the factoring is called cube ex-
traction (kernel extraction). Since the algorithmsfor kernel
extraction and cube extraction are almost similar, we will be
dealing with one of them, namely the kernel extraction algo-

rithm. Henceforth we will be using algebraic factorization
and kernel extraction interchangeably.

In [1] this optimization problem is mapped into a
minimum-weighted rectangle covering problem, whichisto
find aset of rectangleswith minimum total weight such that
all I’sare covered. A rectangle (R,C) of the K'C' matrix B,
where b;; € {0,1,x}, isasubset of rows R and a subset of
columns C such that b;; € {1,*}Vi € R,j € C. Therect-
anglein a K'C' matrix correspondsto a set of cubes which
can bedivided by the kernel formed by the set of cubesof the
column C. Thusthe problem of kernel extraction reducesto
finding a rectangle cover of the K'C matrix with maximum
total gain, where gain indicates the literal savings when a
kernel is extracted.

3 Paralle kernel extraction using replicated
circuit

In thissection, we describe an approach originally presented
in[4], which assumesreplicated circuitinformationinall the
processorsand followsthe same search path asthat in SIS. It
derives concurrency by subdividing the search space of the
optimization problem. The circuit aswell asthe entire K C'
matrix is replicated in all the processors. The nodes of the
circuit are conceptually partitioned among the processorsto
divide the task of generating the K'C' matrix. All proces-
sors generate kernels for their nodes and broadcast them to
therest of the processors. Upon receiving them, a processor
adds these kernels to its copy of the K'C' matrix. With the
help of anovel labeling scheme for the kerndls, all the pro-
cessor succeed in obtaining exactly the same representation
of the KC' matrix.

Original co-kernel cube matrix

Processor 1 Assor 2 Processor 3

P VantamN

Figure 1. Decomposing a search space for finding the
maximum-valued rectangle among processors.

Oncethe K C matrix has been generated, we haveto per-
form arectangle-cover on it, which involvesiteratively gen-
erating all possible rectangles and selecting the maximum-
valued rectangle. The search for the maximum-valued rect-
angle can be performed in parallel by adivide and conquer
approach and is conceptually illustrated in Figure 1. Proces-
sor 1 gets the rectangles whose leftmost columns arein the
left third of the area, processor 2 getsthe second third and so



on. It consists of atop-down traversal of the tree to gener-
ate all the rectangles and their values. The best rectangleis
then identified by each processor and propagated to the par-
ent processor. The above search tree is distributed among
the processors conceptually by restricting each processor to
work with rectangles starting from a certain column depend-
ing on its processor id. The processor which owns the root
of the search treeidentifiesthe best rectangle and broadcasts
ittoal processors. Each processor then goesonto divideits
native copy of the matrix with the node and repeatsthe above
processtill it finds no more profitable rectangle.

3.1 Experimental results

The above parallel algorithm was implemented on a SUN
SPARC server 1000E shared memory multiprocessor and
tested on variousM CNC benchmark circuits. Thekernel ex-
traction operation was executed on 2, 4 and 6 processorsand
the results summarized in Table 2. The S column indicates
how many times faster the parallel executionsare compared
tothesingleprocessor run. For thecircuits, splaand ex1010,
the program did not terminate after 10000 secondsand some
ran out of memory. The results demonstrate that the quality
obtained by the multiprocessor runs are comparable to that
obtained by a single processor run, which is expected since
every processor maintainsglobal information about the K C
matrix. Although the multiprocessor works with global in-
formation, the differencein the quality between the sequen-
tial and distributed runisdueto thedifferent search path they
might have taken. The poor speedup is due to the synchro-
nizations after every extraction step, and the redundant work
required to maintain the consistency among the replicated
circuit information in all the processors. The differencein
the quality and the time for the sequential run of the above
algorithm and SISis due to the different scripts which were
used by them. Also the abovealgorithmisnot scalable since
thecircuit and the K C matrix isreplicated on al processors.
The next section aims at relaxing the tight coupling existing
betweenthedatain all the processors, thereby hopingto save
on the redundant work.

MCNC Initia 2 processors 4 processors 6 processors

Circuits LC LC S LC S LC S
dalu 3588 2139 | 1.46 2139 | 1.83 2139 | 1.97
des 7412 6092 | 1.82 6094 | 2.99 6092 | 3.56
seq 17938 2650 | 1.64 2632 | 2.36 2633 | 2.54
spla 24087 - - - - - -
ex1010 | 13977 - - - - - -
overall 28938 | 10881 | 1.64 | 10885 | 2.39 | 10864 | 2.44

Table2: Resultsof Parallel Kernel Extraction Using Cir-
cuit Replication

4 Parallel kernel extraction using circuit par-
titioning without interaction

In this section, we perform kernel extraction on partitioned
networks independently. Since we optimize the partitioned

circuit only, we give up on search for rectangles encompass-
ing more than one partition; hence we minimize such over-
flowing rectangles. The circuit is mapped to a graph, by
transforming the nodes to vertices and the fanin-fanout re-
lation between node pairs into edges. We apply a min cut
based graph partitioning algorithm [6] to partition thecircuit
into n parts. Partitioning the logic nodes of a circuit cor-
responds to dividing the K'C' matrix horizontally into row
slicesasillustrated in Figure 2. After partitioning the graph,
we distribute the nodes of the circuit based on the partitions.
Then we allow each processor to independently create its
own K C matrix and perform kernel extraction. Conceptu-
ally, each processor confinesits search for the best kernel in
arowwise partition of the actual co-kernel cube matrix asil-
lustrated in Figure 2.

a b c de f g

1 2 3 4 5 6
F a 1 . . 5 1 3 B
F b 2 . . 6 2 . |
F de 3 5 6 7 . . o]
Ff 4 1 2 . . c
F c 5 . . 7 4 k
F g 6 3 4 . 1

a b c f ce

1 2 3 5 7 B
G a 7 . 8 10 |
G b 8 . . 9 11 || o
G ce 9 10 11 . c
G f 10| 8 9 . k
H de 11 | 12 . 13 0

Figure 2: Partitioned co-kernel cube matrix for Eq. 1

Example 4.1 When the min cut partitioner is applied to \/
of Example 1.1, it dividesthecircuitinto {F'} and {G, H}.
The corresponding co-kernel cube matrix is shown in Fig-
ure 2. The second and the third column represents the co-
kernels and the row indices respectively. Similarly, thefirst
and the second row indi cates the kernel-cube and columnin-
dices. If we perform kernel extraction on each of these ma-
tricesindependently, the resultant network is given by Equa-
tion 2. Thetransformed network has 26 literalsinstead of 22
produced by the kernel extraction routinein SIS.
G=ceZ+ fZ, H=deY, Z=a+b, Y =a+c,

F =deX+fX+ag+cg+cde, X =a+b (2

If we perform kernel extraction on each of these matrices
independently, the resultant network is given by Equation 2,
which has 26 literals instead of 22 produced by the sequen-
tial kernel extraction routinein SIS.

This shows that performing kernel extraction on a graph
based partitioned circuit has certain drawbacks. First, a
rectangle encompassing more than one partition cannot be
detected. {(6,11)(1,3)} was not detected since it was not
contained in any single partition. Although such a rectan-
gle may be separately detected as sets of individual rectan-
gles (liketherectangle {(3,4,9,10), (1,2) } being detected as



{(34)(1,2)} and {(9,10)(1,2)}), it isvery rare, since the par-
tial rectangles may not be the best rectanglesin their parti-
tionsindividually. The rectangle {(6,11)(1,3)} was not de-
tected since the partia rectangle {(6)(1,3)} did not have a
positive gain.

Another significant problem is the duplication of ker-
nels in the different partitions. Assume that a rectangle
is split up between different partitions and that each sub-
rectangle turns out to be the best rectangle for that block.
Oncetherectanglesare extracted and the corresponding net-
worksaredivided, thedifferent partitionswill introduce sep-
arate nodes for the same kerndl as that of the big rectan-
gle. The rectangle {(3,4,9,10)(1,2)} was decomposed into
2 smaller rectangles {(3,4)(1,2)} and {(9,10)(1,2)}. Hence
the kernel, a + b, was duplicated in both the partitions in
Equation 2

4.1 Experimental results

The parallel agorithm for kernel extraction on independent
partitionswasimplemented onaSUN SPARC Server 1000E
shared memory multiprocessor. The results of this experi-
ment are tabulated in Table 3. It is clear that the algorithm
losessomequality by not consideringthevertical rectangles.
The main advantage of this algorithmisthat it is extremely
fast and memory scalable. On an average, for 6 processors
we get a speedup of 8.63 but thereis a quality degradation
of 2% from that of SIS. We get super-linear speedups since
we are searching fewer number of rectangles.

For certain circuits, like ex1010, it shows a speedup of
16.30 times over the sequentia algorithm , SIS, with only
1% quality degradation. In the next section we will discuss
an algorithm which tries to take care of the vertical interac-
tions as well and thereby minimize the quality degradation.

MCNC Initial 2 processor 4 processor 6 processor

Circuits LC LC S LC S LC S
dalu 3588 2877 | 2.23 2972 55 3022 8.68
des 7412 6650 | 2.25 6650 | 3.13 6658 3.70
seq 17938 9367 | 1.42 9378 | 4.95 9455 4.79
spla 24087 | 17954 | 2.17 | 18289 | 7.21 | 18484 9.66
ex1010 | 13977 | 11838 | 2.16 | 11897 | 9.65 | 11968 | 16.30
average 100 | 0.726 | 205 | 0.734 | 6.09 | 0.740 8.63

Table3: Resultsof Parallel Kernel Extraction Using Cir-
cuit Partitioning

5 Parallel kernel extraction using partition-
ing with interactions

While the parallel algorithm based on circuit replication
wasted alot of time to maintain the global picturein al the
processors, the complete information helped in producing
good quality. Thesecond parallel algorithm decomposedthe
problem into individual circuit partitions, but in the process
the search for rectangles was restricted to only horizontal
dices of the co-kernel matrix. The motivation of the third
and final algorithmisto try to decompose the problem such

that it does not require any synchronization or updates but
provides enough information on each processor to produce
good quality results. This algorithm is restricted to shared
memory architectures only, unlike the previoustwo.

5.1 L-shaped partitioning of KC matrix

We will now present a new n-way partitioning agorithm
such that it can aso detect the rectangles not confined to a
single partition aswell asavoid the duplication of kernelsin
different processors. Duplicate kernels were generated by
different processors since the kernel-cubes, i.e. the top row
of the co-kernel matrices, has duplicate entries like a, b, ¢
in Figure 2. Hence, we will try to produce a digoint parti-
tion of the kernel cubes such that multiple processorsdo not
search for kernels with the same cubes. Secondly, in order
to capture the overflowing rectangles, a processor needs to
have kernels from other processor which are formed by its
kernel-cubes. Thefollowing agorithm takesthen KC' ma-
trices, B;, astheinput, reorganizesthe entries of the matrix
and finally creates n L-shaped sub-matrices. The algorithm
isgiven in pseudo code below:
L-SHAPED_PARTITION(By, Bs,...,B,)
D> distribute kernel cube ownership
global_cubes <+ NIL;
fori« 1ton
for each kernelcube, c, € B;
if (c ¢ global_cubes)
local _cubes[i] < c;
global_cubes < c;
> add overlapping sub blocks B;;
fori+ 1ton
for j« 1ton
B;;j + {corc e (local_cubes[j] N B;)}
Bj «— B]' U Bij
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Figure3: KC matrix after L shaped partitioning

Thefirst part in the L-shaped partitioning algorithm pro-
duces digjoint partitions of the kernel cubes on a greedy ba-
sis. Thematrix, By ownsall itscubes, B; ownsall its cubes



which are not owned by By. Similarly B; ownsall its cubes
not owned by the previous i-1 matrices, namely By, B,

.., B;—1. This partitioning tries to prevent duplication of
the kernels. Once the cubes have been partitioned, proces-
sor ¢ identifies the submatrix B;; from B; containing cubes
owned by processor j. Processor i sends this submatrix to
processor j to add it toitsown sub-matrix, B;. Thisoverlap-
ping helps to capture the overflowing rectangles. The par-
tition described above gives rise to the matrix in the shape
of L, as shown in Figure 3, hence we call our strategy an L-
shaped partition. Initially, each processor had the horizontal
dlab and the vertical leg is added later to create the L shape.
Oncethe partition is done, the overlapping kernel extraction
procedure is called on each of this L-shaped K C' matrices
sequentially.

The L-shaped partitioned algorithm was executed on sev-
eral MCNC Circuits on a single processor. The results are
tabulated in Table 4 along with that from SIS. The effective-
ness of the L-shaped partitioning was shown by the negligi-
ble degradationin the quality. Thisencouraged usto usethe
L-shaped decomposition for our parallel algorithm for ker-
nel extraction.

MCNC | Initid SIS 2way | 4way | 6way

Circuits LC LC LC LC LC
misex3 1661 1142 1143 1147 1144

dalu 3588 2837 2837 2837 2851
des 7412 6648 6648 6648 6648
seq 17938 9373 9471 9464 9455
spla 24087 | 17716 | 17716 | 17727 | 17702
average | 1.000 | 0.690 | 0.691 | 0.692 | 0.691

Table 4: Results of Kernel Extraction using SISand L-
shaped partitioning on a single processor

5.2 Paralld algorithm for kernel extraction

Inaparallel environment, the creation of the K'C matrix isa
moreinvolved process. We want to createthe L-shaped K C
matrix in al the processors and the overlapping portions,
i.e. the non-diagonal blocks, B;;, have to be samein al of
them. In the sequential algorithm, when a new kernel (co-
kernel) is generated, a new row is assigned for that kernel,
and the row number corresponding to that kernel isnoted in
atable. Similarly, when auniquekernel-cubeisgenerated, a
new columnisassigned for that cubeand the column number
corresponding to that cubeis noted in atable.

Since kernels are generated concurrently, two different
kernelswill get the samerow index if al the processors start
from the sameindex, say 0. To keep the row and column la-
beling consistent across all processors, we start the row and
column index with an offset which is afactor of the proces-
sor id. So theindex of thefirst kernel in processor 2 will be
200001 while that in processor 5 be 500001. Hence, the la-
beling of the rowswill be consistent in all of the processors
irrespective of the order in which the kernels are generated.
A similar labeling strategy wasused in [4].

Once the kernels have been generated, al the proces

sors send the cubes of all its kernels, i.e, the top column of
their co-kernel cube matrix, to the master processor. Dis-
tribute_cube_ownership partitions the cubes of al the pro-
cessors to remove duplicate cubes existing between the dif-
ferent processors. It producesamapping between the global
cubeindex and the local cubeindex, which is sent to thein-
dividual processor for reorganizing the rowsin their subma-
trices, B;. In the process, processor i identifies the portion
of the matrix, B;; which hasto go to processor j. The sub-
matrix B;; is sent to processor j to create the different L-
shaped matrices. Example 5.1 illustrates the above mecha-
nism.

Example5.1 Let {G, H} and {F} be the 2-way partition
for the network, A/, of Example 1.1. Thecorresponding K C
matrix looks similar to that shown in Figure 2, but with the
indices of the kernel cubesand co-kernels of the K'C' matrix
are marked according to the above strategy.

Kernel cubes(index) of By ={a(1),b(2),c(3),ce(4),f(5)}
Kernel cubes (index) of B; = {a (100001), b (100002), ¢
(100003), de (100004), f (100005), g (100006) }

Processor 1 sendsitskernel cubesto processor 0 to produce
the global _cubes

Global _cubes= {a(1), b (2), c (3), ce(4),f (5), de (100005),
g (100006) }

Local cubeq[0] = {a(1), b (2),c (3),ce(4),f (5}

Local _cubed[1] = {de (100004), g (100006) }
Local_cube.index = Global _cube_index = {(100001, 1),
(100002, 2), (100003, 3), (100004, 4), (100005, 5) }

Upon receiving the mapping from its local cube index to
global cube index, processor 1 identifies the submatrix By,
and sends it to processor 0 which attaches it to its existing
matrix to produce By. Figure4 showstheresulting K C ma-
tricesin the 2 processor.

a b c ce f de g
1 2 3 4 5 || 100005 100006
| PROC 0
G a 1 . 10 8 .
G b 2 . 11 9 .
G ce 3 10 11 . . .
G f 4 8 9 . .
H de 5 12 . 13 .
F a 100001 . . . . 1 5 3
F b 100002 . . . . 2 6
F de 100003 5 6 7
Ff 100004 1 2 . . . . .
F c 100005 . . . . . 7 4
F g 100006 3 . 4

Figure4: Co-kernel cubematrix for processor 0 and pro-
cessor 1

5.3 Consistency issues

After solving the data decomposition for parallel process-
ing, we need to study the consistency issues which arise due
to concurrent operation on replicated portions of the data.
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Assume that all the processors start finding the best rect-
anglein their respective L-shaped K C' matrix and extract-
ing it from the network. Whenever arectangle encompasses
nodes owned by more than one processor, we send the par-
tial rectangleto the other processorsto divideitsnodes. The
other processor will extract the kernel onceit has completed
oneiteration of kernel extraction.

An important issue arises from the concurrent evaluation
of the overlapping portions of the K'C' matrix by more than
one processor and is illustrated by Example5.2.

Example 5.2 Suppose processor 0 is evaluating the rect-
angle, {(3,4, 100003, 100004)(1,2)}, and finds the gain to
be 8 whereas processor 1 evaluates the value of the rectan-
gle {(100001, 100002)(5,100005)} to be 3. Since 8 and 3
are the highest gains of kernels of By and B; respectively,
each processor goes on to divide its network with the corre-
sponding kernels. The final representation after extracting
the aboverectanglesfrom the network leads to a saving of 3
instead of the expected 11 asisillustrated below.
G = ceX+fX, H = ade+cde, X = a+b,

F = XY+ag+cg+cde+deX+ fX, YV =de+ f

Example 5.2 shows that if two processors share a cube,
although both processors expect to gain from including the
cube in its best rectangle, only one benefits from it. The
sharing of cubes leads to an even deeper problem. To an-
alyzeit, let us assume that processor 1 extractsits own rect-
angle, {(100001, 100002)(5, 100005)} first and then the
partial- rectangle {(100003, 100004)(1,2)} from processor
0. After extraction with de + f,

F =aY +bY + ag + cg + cde.

Before performing the division in processor 1, the cubes
ade, bde, af bf are added to F' to makeit divisibleby a + b.
As some of these cubes could have been covered in aprevi-
ous extraction by some rectangle overlapping with the cur-
rent one, these cubes are added to the node to ensurethat the
current rectangle can indeed divide the node. After the ad-
dition, the kernel a+ b is extracted from F' to give the form
shown in Example5.2.

To avoid the above problem, we perform an extra check
while performing the division. If at the point of division,
the extraction is profitable assuming the cost of the kernel
iszero, thedivisionis performed after adding the nodes oth-
erwise it is performed on the existing node representation.
Referring to the last example, after extracting the rectangle
{(100001, 100002)(5,100005) } and setting the values of the
cubesin it to zero, wefind the gain from extracting the rect-
angle {(100003,100004)(1,2) } to be negative. Hence, inthis
case, we do not add the cubesto F' but divide the existing F’
with at+b to get F” thereby saving 8 literalsinstead of 3.

F' = XY + ag + cg + cde,

Now we return to the observation in Example 5.2, where
concurrent evaluation of the same set of cubes by two pro-
cessorswere producing fal se hopes of literal savingsin both

Table 5: Various states of a cube during extraction

state V | T | whatastateimplies

FREE X | X | cubenot covered by any best rectangle
COVERED | 0 | X | cube covered but not divided
DIVIDED 0 | O | covered by somerect and divided.

of them. Therefore, we need to devise some mechanism by
which only one processor gets to save the value of the cube
whiletherest saveszero. Onceaprocessor specul atesacube
to be in its best rectangle, it makes its value zero and but
stores the value of the cube in an attribute called trueval.
Any other processor which subsequently triestoincludethat
cubeinto their rectanglewill find its value to be zero sinceiit
is speculatively covered by the best rectangle of some pro-
cessor. Later on, if the owning processor finds a better rect-
angle, it copies back the value of the cube from its trueval,
thereby making the cube available for other processors. But
the search for the best rectangle in a processor gets biased
by the order of the generation of the rectangle. Consider
the kernel extraction of By in processor 0. Let {(1,2)(4,5)}
be the first rectangle, which is made the best rectangle and
the values and trueval of al its cubes modified accordingly.
Then let {(3,4,100003, 100004)(1,2)} be considered next.
Since the values of the cubes 8, 9 10, 11 are zero, the value
of the rectangle turns out to be -2. Thus although the later
rectangleis a much bigger and profitable one, the best rect-
angleindicatesto thefirst one. Before solving the problem,
wetry to look at the various states of the cube based on the
attributesin Table 5 (V isthe current valueand T isthe true
value of the cube).

Let ustry to qualify the state COVERED by adding an-
other attribute representing the processor which is specul at-
ing on coveringit. When the same processor triesto find the
value of the cube, it is returned the true value as the cube
has not yet been divided. But if some other processor asks
for the value, it is returned zero since that cube has already
been covered by the best rectangle of the owning processor
and in the near futureit isgoing to be divided. Therationale
isthat the non-owner cannot changethe best rectangle of the
owning processor and so for all practical purposes, the cube
has been covered. But if the owning processor asks for the
value of the cube, it should get the true value since the cube
has not been divided and the considered rectangle can re-
placeitscurrent best rectangle. Thusincluding theattributes
value, trueval and owner inthe cubessucceedsin making the
search independent of the order of rectangles considered.

5.4 Experimental results

The parallel agorithm for kernel extraction with the L-
shaped partitioning with interactionswas implemented on a
SUN SPARC Server 1000E shared memory multiprocessor.
We use SIS to compare our result by perform kernel extrac-
tion using the option gkx-bol. Table 6 summarizesthe qual-
ity and runtimes of executing this algorithm on 4 and 6 pro-
cessors and compares it with the equivalent kernel extrac-
tion technique of SIS. The results show that the L-shaped



partitioning has been able to provide a good speedup, i.e. a
speedup of 6.47 on an average on 6 processors without los-
ing hardly any quality compared to SIS.

pZ

2.a.p

where p isthe number of partitionsand « and «y are sparsity
factorsfor theinitial KC matrix and L-shaped KC matrix re-
spectively.(Proof omitted) Although, we do lesser work than
the sequential agorithm, we are able to achieve compara
bleresults sincethe L -shaped partitioning focusesthe search
for the best rectangle. The above heuristics of searching on
the L-shape instead of only on the diagonal block improved
quality degradation by 50% than that obtained by the algo-
rithm described in the Section 4. In fact, in certain cases,
like seq on 4 processors, it produces better results than SIS
asit choose a better search path than SIS.

MCNC Initial 2 processors 4 processors 6 processors

Circuits LC LC S LC S LC S
dalu 3588 2874 | 1.99 2935 | 4.23 3025 6.88
des 7412 6658 2.6 6656 | 3.13 6653 9.07
seq 17938 9274 | 113 9038 | 2.34 9255 335
spla 24087 | 17709 | 1.45 | 17712 | 1.54 | 17717 158
ex1010 | 13977 | 11836 | 2.11 | 11842 7.8 | 11865 | 11.48
average | 1.000 | 0721 | 1.86 | 0.719 | 3.81 | 0.724 6.47

Table 6: Results of Parallel Algorithm with L-Shaped
Partitioning on Shared Memory M ultiprocessor

6 Conclusion

Algebraic factorization is an extremely important but com-
putationally intensive part of any logic synthesis system. It
isused repeatedly inlogic synthesis, henceit isimportant to
look at parallel processing to speed up the procedure. This
paper has presented a detailed study of three parallel algo-
rithmsfor kernel extraction.

Thefirst algorithm uses datareplication and usesadivide
and conquer strategy to follow the same search path asin the
sequential algorithm. Although it gets comparable quality
to the serial algorithm, it suffers from poor speedup, since
the parallelism is restricted by the sequential dependencies
and redundant work required in maintaining consistency be-
tween the global picture across all processors. A second al-
gorithm uses totally independent factorization on different
circuit partitions with no interactions among the partitions.
This algorithm provides large speedups, like 16.3, but suf-
fersin quality asthe number of partitionsincreases.

A third algorithm represents a compromise between the
two approaches. It uses anovel L-shaped partitioning strat-
egy which provides some interaction among the rectangles
obtained in variouspartitions. It producesbetter resultsthan
the parallel algorithm using independent partitions, but pro-
ducesless speedups. I1n ex1010, the L-shaped algorithm ex-
ecutes 11.48 times faster than SIS, with quality degradation
of lessthan 0.2 %.

We have therefore discussed several algorithms for par-
allel kernel extraction. If speed is of primary importance,
and the user can tolerate some degradation in quality, then
the independent partitioned approach would be preferable.
Otherwise, if quality is of utmost importance, then the par-
allel algorithm using L-shaped partitioning is the preferred
algorithm. It outperformsthe parallel agorithm with repli-
cated approach in memory scalability (in terms of ability
to synthesize very large circuits), and in runtimes. Thus
we have successfully developed paralel algorithms for the
minimum-weighted rectangle cover problem. Even though
the specific implementation of the above algorithms tar-
get area minimization vialiteral count measures, our meth-
ods can be directly applied to timing driven and low power
driven synthesis provided the algorithms are formulated in
terms of arectangular cover problem.
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