
A Comparison of Parallel Approaches for Algebraic Factorization in Logic
Synthesis

Sumit Roy
Coordinated Science Laboratory

University of Illinois
1308 W. Main St., Urbana, IL 61801, USA

sroy@crhc.uiuc.edu

Prithviraj Banerjee
Center for Parallel & Distributed Computing

Northwestern University
2145 Sheridan Road, Evanston, IL 60208, USA

banerjee@ece.nwu.edu

Abstract

Algebraic factorization is an extremely important part of
any logic synthesis system but is computationally expensive.
Hence it is important to look at parallel processing to speed
up the procedure. This paper presents three different par-
allel algorithms for algebraic factorization. The first algo-
rithm uses circuit replication and uses a divide and con-
quer strategy. A second algorithm uses totally independent
factorization on different circuit partitions with no interac-
tions among the partitions. A third algorithm represents a
compromise between the two approaches. It uses a novel
L-shaped partitioning strategy which provides some inter-
action among the rectangles obtained in various partitions.
For a large circuit like ex1010, the last algorithm runs 11.5
times faster over the sequential kernel extraction algorithms
of SIS on 6 processors with less than 0.2% degradation in
quality of the results.

1 Introduction

Multi-level logic synthesis is a very important phase of
VLSI system design. The algorithms for logic transforma-
tions used in the SIS [7] system form the core of numerous
university and industrial logic synthesis systems. The SIS
synthesis tool is based on algebraic factorization and sim-
plification of nodes in a Boolean network [2]; each of these
operations are computationally expensive. Table 1 shows
the number of times the algebraic factorization procedure is
called in a typical script from the SIS package [7], the times
spent in performing these factorizations and the total synthe-
sis time. We observe that factorization, on an average, takes
61.45% of the total synthesis time. Hence we parallelize the
algebraic factorization to speed up the synthesis process.

This research was supported in part by the Semiconductor Research Corpo-
ration under Contract SRC 95-DP-109 and the Advanced Research Projects
Agency under contract DAA-H04-94-G-0273 administered by the Army
Research Office.

Table 1: Runtimes of several circuits and the time it takes
in the kernel extraction routine. LC = Literal Count

MCNC Size Factorization Total Fac. Total Syn.
Circuits (LC) Invoked Time(sec) Time(sec)
dalu 3588 10 34.2 283.1
seq 17938 16 295.1 900.2
des 7412 10 425.7 1800.4
spla 24087 12 1771.4 2681.6
ex1010 14952 9 5841.7 7950.6
total 67997 8368.1 13615.9

The problem of algebraic factorization can be explained
through the following example.

Example 1.1 Let fN = F;G;H g be a logic circuit.

F = af + bf + ag + cg + ade+ bde+ cde;

G = af + bf + ace+ bce; H = ade+ cde (1)

In the network, N , a + b is a common factor that
can be factored out from F and G to produce an
sum of products(SOP) expression with 8 less literals.
The new expressions for F and G are shown below:

F = fX + deX + ag + cg + cde;

G = fX + ceX; X = a+ b

The literal count(LC), a first order estimate of circuit area,
has reduced from 33 to 25. By repeatedly performing the
factorization on a large network, it is possible to obtain
great reductions.

Recently, several approaches have been reported on de-
veloping parallel logic synthesis algorithms. Theeuwen de-
veloped a parallel synthesis algorithm [8] for an Alliant FX-
8, a shared memory multiprocessor. He restructured the pro-
gram flow of the synthesis tool reported in [9] and then par-
allelized each of the synthesis operation individually. Al-
though he reported linear speedup, many of the circuits ran
slower than SIS or produced worse quality than that pro-
duced by SIS.

De and Banerjee [5] reported on a parallel algorithm
for synthesis using the transduction approach called Proper-
SYN. In another study, De and Banerjee reported a novel it-
erative approach to parallel synthesis where portions of a cir-
cuit are repartitioned and resynthesized along different sets

IPPS 1997
ISSN 1063-7133/97 $10.00 © 1997 IEEE

of processors in an implementation called ProperPART [3].
It was shown that the overall synthesis quality is signifi-
cantly improved by this iterative repartitioning and resyn-
thesis approach over the single partitioned approach without
any interactions. In ProperMIS, De and Banerjee [4] paral-
lelizes MIS by dividing up the search space across different
processors but retains the global information of the circuit in
all of them. This requires synchronization and update after
every step of factorization and hence is not scalable.

In this paper, we focus on algebraic factorization using
the kernel extraction procedures in the SIS system and try to
achieve speedup by parallelizing it by partitioning the circuit
in a novel way. We introduce interactions between the par-
titioned circuit using a novel L-shaped repartitioning. Per-
forming kernel extraction on a partitioned circuit give us
speedups while the L-shaped partitioning takes care of the
quality. The outline of the paper is as follows. In Section 2,
we review the sequential algorithm for algebraic factoriza-
tion in SIS. The following three sections describe the three
parallel algorithms for kernel extraction. Section 3 describes
an approach using replicated circuit structure but a divide
and conquer search. Section 4 describes a parallel kernel
extraction on partitioned circuits. An unique approach us-
ing L-shaped partitioning of the co-kernel cube matrix is de-
scribed in Section 5. We conclude the paper in Section 6 by
comparing the various parallel approaches.

2 Overview of serial algebraic factorization

In this section, we will review some basic definitions as
given in [2] to be used later in this paper. A literal is a vari-
able or its negation. A cube is a set C of literals such that
x 2 C implies x 62 C. An expression is a set f of cubes.
An expression f is cube-free if no cube divides f evenly.
The primary divisors of an expression f form a set of ex-
pressions D(f) = ff=CjC is a cubeg. The kernels of an
expression f are the expressions K(f) = fgjg 2 D(f)

and g is cube-freeg. In other words, the kernels of an expres-
sion f are the cube-free primary divisors of f . The cube C
used to obtain kernel k = f=C is called the co-kernel of k.
The co-kernel cube matrix (KC matrix) is a sparse matrix
with rows representing co-kernels and columns representing
kernel-cubes. A non-zero element B(i,j) of the matrix cor-
responds to a cube of the function formed by the union of
co-kernel i and kernel-cube j: In the network described in
Equation 1, the kernels (and co-kernels) of G are ce+f(a, b),
a+b(f,ce).

Algebraic factoring takes a sum of product (SOP) realiza-
tion of a circuit as its input, searches for common subexpres-
sions and extracts these subexpressions to produces a SOP
expression with a smaller literal count. When the subexpres-
sion is a cube (kernel) then the factoring is called cube ex-
traction (kernel extraction). Since the algorithms for kernel
extraction and cube extraction are almost similar, we will be
dealing with one of them, namely the kernel extraction algo-

rithm. Henceforth we will be using algebraic factorization
and kernel extraction interchangeably.

In [1] this optimization problem is mapped into a
minimum-weighted rectangle covering problem, which is to
find a set of rectangles with minimum total weight such that
all 1’s are covered. A rectangle (R,C) of the KC matrix B,
where bij 2 f0; 1; �g, is a subset of rows R and a subset of
columns C such that bij 2 f1; �g8i 2 R; j 2 C. The rect-
angle in a KC matrix corresponds to a set of cubes which
can be divided by the kernel formed by the set of cubes of the
column C. Thus the problem of kernel extraction reduces to
finding a rectangle cover of the KC matrix with maximum
total gain, where gain indicates the literal savings when a
kernel is extracted.

3 Parallel kernel extraction using replicated
circuit

In this section, we describe an approach originally presented
in [4], which assumes replicated circuit information in all the
processors and follows the same search path as that in SIS. It
derives concurrency by subdividing the search space of the
optimization problem. The circuit as well as the entireKC

matrix is replicated in all the processors. The nodes of the
circuit are conceptually partitioned among the processors to
divide the task of generating the KC matrix. All proces-
sors generate kernels for their nodes and broadcast them to
the rest of the processors. Upon receiving them, a processor
adds these kernels to its copy of the KC matrix. With the
help of a novel labeling scheme for the kernels, all the pro-
cessor succeed in obtaining exactly the same representation
of the KC matrix.

Processor 1 Processor 2 Processor 3

Original co-kernel cube matrix

Figure 1: Decomposing a search space for finding the
maximum-valued rectangle among processors.

Once theKC matrix has been generated, we have to per-
form a rectangle-cover on it, which involves iteratively gen-
erating all possible rectangles and selecting the maximum-
valued rectangle. The search for the maximum-valued rect-
angle can be performed in parallel by a divide and conquer
approach and is conceptually illustrated in Figure 1. Proces-
sor 1 gets the rectangles whose leftmost columns are in the
left third of the area, processor 2 gets the second third and so

2

on. It consists of a top-down traversal of the tree to gener-
ate all the rectangles and their values. The best rectangle is
then identified by each processor and propagated to the par-
ent processor. The above search tree is distributed among
the processors conceptually by restricting each processor to
work with rectangles starting from a certain column depend-
ing on its processor id. The processor which owns the root
of the search tree identifies the best rectangle and broadcasts
it to all processors. Each processor then goes on to divide its
native copy of the matrix with the node and repeats the above
process till it finds no more profitable rectangle.

3.1 Experimental results

The above parallel algorithm was implemented on a SUN
SPARC server 1000E shared memory multiprocessor and
tested on various MCNC benchmark circuits. The kernel ex-
traction operation was executed on 2, 4 and 6 processors and
the results summarized in Table 2. The S column indicates
how many times faster the parallel executions are compared
to the single processor run. For the circuits, spla and ex1010,
the program did not terminate after 10000 seconds and some
ran out of memory. The results demonstrate that the quality
obtained by the multiprocessor runs are comparable to that
obtained by a single processor run, which is expected since
every processor maintains global information about the KC

matrix. Although the multiprocessor works with global in-
formation, the difference in the quality between the sequen-
tial and distributed run is due to the different search path they
might have taken. The poor speedup is due to the synchro-
nizations after every extraction step, and the redundant work
required to maintain the consistency among the replicated
circuit information in all the processors. The difference in
the quality and the time for the sequential run of the above
algorithm and SIS is due to the different scripts which were
used by them. Also the above algorithm is not scalable since
the circuit and theKC matrix is replicated on all processors.
The next section aims at relaxing the tight coupling existing
between the data in all the processors, thereby hoping to save
on the redundant work.

MCNC Initial 2 processors 4 processors 6 processors
Circuits LC LC S LC S LC S
dalu 3588 2139 1.46 2139 1.83 2139 1.97
des 7412 6092 1.82 6094 2.99 6092 3.56
seq 17938 2650 1.64 2632 2.36 2633 2.54
spla 24087 - - - - - -
ex1010 13977 - - - - - -
overall 28938 10881 1.64 10885 2.39 10864 2.44

Table 2: Results of Parallel Kernel Extraction Using Cir-
cuit Replication

4 Parallel kernel extraction using circuit par-
titioning without interaction

In this section, we perform kernel extraction on partitioned
networks independently. Since we optimize the partitioned

circuit only, we give up on search for rectangles encompass-
ing more than one partition; hence we minimize such over-
flowing rectangles. The circuit is mapped to a graph, by
transforming the nodes to vertices and the fanin-fanout re-
lation between node pairs into edges. We apply a min cut
based graph partitioning algorithm [6] to partition the circuit
into n parts. Partitioning the logic nodes of a circuit cor-
responds to dividing the KC matrix horizontally into row
slices as illustrated in Figure 2. After partitioning the graph,
we distribute the nodes of the circuit based on the partitions.
Then we allow each processor to independently create its
own KC matrix and perform kernel extraction. Conceptu-
ally, each processor confines its search for the best kernel in
a rowwise partition of the actual co-kernel cube matrix as il-
lustrated in Figure 2.

a b c de f g
1 2 3 4 5 6

F a 1 . . . 5 1 3 . B
F b 2 . . . 6 2 . . l
F de 3 5 6 7 o
F f 4 1 2 c
F c 5 . . . 7 . 4 . k
F g 6 3 . 4 1

a b c f ce
1 2 3 5 7 B

G a 7 8 . 10 l
G b 8 9 . 11 o
G ce 9 10 11 c
G f 10 8 9 k
H de 11 12 . 13 0

Figure 2: Partitioned co-kernel cube matrix for Eq. 1

Example 4.1 When the min cut partitioner is applied toN
of Example 1.1 , it divides the circuit into fFg and fG, Hg.
The corresponding co-kernel cube matrix is shown in Fig-
ure 2. The second and the third column represents the co-
kernels and the row indices respectively. Similarly, the first
and the second row indicates the kernel-cube and column in-
dices. If we perform kernel extraction on each of these ma-
trices independently, the resultant network is given by Equa-
tion 2. The transformed network has 26 literals instead of 22
produced by the kernel extraction routine in SIS.
G = ceZ + fZ; H = deY; Z = a+ b; Y = a+ c;

F = deX + fX + ag + cg + cde; X = a+ b (2)

If we perform kernel extraction on each of these matrices
independently, the resultant network is given by Equation 2,
which has 26 literals instead of 22 produced by the sequen-
tial kernel extraction routine in SIS.

This shows that performing kernel extraction on a graph
based partitioned circuit has certain drawbacks. First, a
rectangle encompassing more than one partition cannot be
detected. f(6,11)(1,3)g was not detected since it was not
contained in any single partition. Although such a rectan-
gle may be separately detected as sets of individual rectan-
gles (like the rectangle f(3,4,9,10), (1,2)g being detected as

3

f(3,4)(1,2)g and f(9,10)(1,2)g), it is very rare, since the par-
tial rectangles may not be the best rectangles in their parti-
tions individually. The rectangle f(6,11)(1,3)gwas not de-
tected since the partial rectangle f(6)(1,3)g did not have a
positive gain.

Another significant problem is the duplication of ker-
nels in the different partitions. Assume that a rectangle
is split up between different partitions and that each sub-
rectangle turns out to be the best rectangle for that block.
Once the rectangles are extracted and the corresponding net-
works are divided, the different partitions will introduce sep-
arate nodes for the same kernel as that of the big rectan-
gle. The rectangle f(3,4,9,10)(1,2)g was decomposed into
2 smaller rectangles f(3,4)(1,2)g and f(9,10)(1,2)g. Hence
the kernel, a + b, was duplicated in both the partitions in
Equation 2

4.1 Experimental results

The parallel algorithm for kernel extraction on independent
partitions was implemented on a SUN SPARC Server 1000E
shared memory multiprocessor. The results of this experi-
ment are tabulated in Table 3. It is clear that the algorithm
loses some quality by not considering the vertical rectangles.
The main advantage of this algorithm is that it is extremely
fast and memory scalable. On an average, for 6 processors
we get a speedup of 8.63 but there is a quality degradation
of 2% from that of SIS. We get super-linear speedups since
we are searching fewer number of rectangles.

For certain circuits, like ex1010, it shows a speedup of
16.30 times over the sequential algorithm , SIS, with only
1% quality degradation. In the next section we will discuss
an algorithm which tries to take care of the vertical interac-
tions as well and thereby minimize the quality degradation.

MCNC Initial 2 processor 4 processor 6 processor
Circuits LC LC S LC S LC S
dalu 3588 2877 2.23 2972 5.5 3022 8.68
des 7412 6650 2.25 6650 3.13 6658 3.70
seq 17938 9367 1.42 9378 4.95 9455 4.79
spla 24087 17954 2.17 18289 7.21 18484 9.66
ex1010 13977 11838 2.16 11897 9.65 11968 16.30
average 1.00 0.726 2.05 0.734 6.09 0.740 8.63

Table 3: Results of Parallel Kernel Extraction Using Cir-
cuit Partitioning

5 Parallel kernel extraction using partition-
ing with interactions

While the parallel algorithm based on circuit replication
wasted a lot of time to maintain the global picture in all the
processors, the complete information helped in producing
good quality. The second parallel algorithm decomposed the
problem into individual circuit partitions, but in the process
the search for rectangles was restricted to only horizontal
slices of the co-kernel matrix. The motivation of the third
and final algorithm is to try to decompose the problem such

that it does not require any synchronization or updates but
provides enough information on each processor to produce
good quality results. This algorithm is restricted to shared
memory architectures only, unlike the previous two.

5.1 L-shaped partitioning of KC matrix

We will now present a new n-way partitioning algorithm
such that it can also detect the rectangles not confined to a
single partition as well as avoid the duplication of kernels in
different processors. Duplicate kernels were generated by
different processors since the kernel-cubes, i.e. the top row
of the co-kernel matrices, has duplicate entries like a; b; c

in Figure 2. Hence, we will try to produce a disjoint parti-
tion of the kernel cubes such that multiple processors do not
search for kernels with the same cubes. Secondly, in order
to capture the overflowing rectangles, a processor needs to
have kernels from other processor which are formed by its
kernel-cubes. The following algorithm takes the n KC ma-
trices, Bi, as the input, reorganizes the entries of the matrix
and finally creates n L-shaped sub-matrices. The algorithm
is given in pseudo code below:
L-SHAPED PARTITION(B1; B2; : : : ; Bn)

1 . distribute kernel cube ownership
2 global cubes NIL;

3 for i 1 to n
4 for each kernelcube; c;2 Bi

5 if (c =2 global cubes)

6 local cubes[i](c;

7 global cubes(c;

8 . add overlapping sub blocks Bij

9 for i 1 to n
10 for j 1 to n
11 Bij fc or c 2 (local cubes[j] \ Bi)g

12 Bj Bj [Bij

B

B

B

B

11

22

33

44

B

B

B

21

32

42

CUBES owned

C
O

K
E
R
N
E
L
S

w
n
e
d

by Proc. 2 by Proc. 3

Block 1

Block 2

Block 3

Block 4

by Proc. 1by Proc. 0

o

by
 P

ro
c.

 0

by
 P

ro
c.

 1
by

 P
ro

c.
 2

by

 P
ro

c.
 3

KERNEL-

Figure 3: KC matrix after L shaped partitioning

The first part in the L-shaped partitioning algorithm pro-
duces disjoint partitions of the kernel cubes on a greedy ba-
sis. The matrix, B0 owns all its cubes, B1 owns all its cubes

4

which are not owned by B0. Similarly Bi owns all its cubes
not owned by the previous i-1 matrices, namely B0, B1

: : :, Bi�1. This partitioning tries to prevent duplication of
the kernels. Once the cubes have been partitioned, proces-
sor i identifies the submatrix Bij from Bi containing cubes
owned by processor j. Processor i sends this submatrix to
processor j to add it to its own sub-matrix,Bj . This overlap-
ping helps to capture the overflowing rectangles. The par-
tition described above gives rise to the matrix in the shape
of L, as shown in Figure 3, hence we call our strategy an L-
shaped partition. Initially, each processor had the horizontal
slab and the vertical leg is added later to create the L shape.
Once the partition is done, the overlapping kernel extraction
procedure is called on each of this L-shaped KC matrices
sequentially.

The L-shaped partitioned algorithm was executed on sev-
eral MCNC Circuits on a single processor. The results are
tabulated in Table 4 along with that from SIS. The effective-
ness of the L-shaped partitioning was shown by the negligi-
ble degradation in the quality. This encouraged us to use the
L-shaped decomposition for our parallel algorithm for ker-
nel extraction.

MCNC Initial SIS 2 way 4 way 6 way
Circuits LC LC LC LC LC
misex3 1661 1142 1143 1147 1144
dalu 3588 2837 2837 2837 2851
des 7412 6648 6648 6648 6648
seq 17938 9373 9471 9464 9455
spla 24087 17716 17716 17727 17702
average 1.000 0.690 0.691 0.692 0.691

Table 4: Results of Kernel Extraction using SIS and L-
shaped partitioning on a single processor

5.2 Parallel algorithm for kernel extraction

In a parallel environment, the creation of theKC matrix is a
more involved process. We want to create the L-shapedKC

matrix in all the processors and the overlapping portions ,
i.e. the non-diagonal blocks, Bij , have to be same in all of
them. In the sequential algorithm, when a new kernel (co-
kernel) is generated, a new row is assigned for that kernel,
and the row number corresponding to that kernel is noted in
a table. Similarly, when a unique kernel-cube is generated, a
new column is assigned for that cube and the column number
corresponding to that cube is noted in a table.

Since kernels are generated concurrently, two different
kernels will get the same row index if all the processors start
from the same index, say 0. To keep the row and column la-
beling consistent across all processors, we start the row and
column index with an offset which is a factor of the proces-
sor id. So the index of the first kernel in processor 2 will be
200001 while that in processor 5 be 500001. Hence, the la-
beling of the rows will be consistent in all of the processors
irrespective of the order in which the kernels are generated.
A similar labeling strategy was used in [4].

Once the kernels have been generated, all the proces-

sors send the cubes of all its kernels, i.e, the top column of
their co-kernel cube matrix, to the master processor. Dis-
tribute cube ownership partitions the cubes of all the pro-
cessors to remove duplicate cubes existing between the dif-
ferent processors. It produces a mapping between the global
cube index and the local cube index, which is sent to the in-
dividual processor for reorganizing the rows in their subma-
trices, Bi. In the process, processor i identifies the portion
of the matrix, Bij which has to go to processor j. The sub-
matrix Bij is sent to processor j to create the different L-
shaped matrices. Example 5.1 illustrates the above mecha-
nism.

Example 5.1 Let fG, Hg and fFg be the 2-way partition
for the network,N , of Example 1.1. The correspondingKC

matrix looks similar to that shown in Figure 2, but with the
indices of the kernel cubes and co-kernels of the KC matrix
are marked according to the above strategy.
Kernel cubes (index) ofB0 = fa (1), b (2), c (3), ce (4), f (5)g
Kernel cubes (index) of B1 = fa (100001), b (100002), c
(100003), de (100004), f (100005), g (100006) g
Processor 1 sends its kernel cubes to processor 0 to produce
the global cubes
Global cubes = fa (1), b (2), c (3), ce (4), f (5), de (100005),
g (100006)g
Local cubes[0] = fa (1), b (2), c (3), ce (4), f (5)g
Local cubes[1] = fde (100004), g (100006) g
Local cube index) Global cube index = f(100001, 1),
(100002, 2), (100003, 3), (100004, 4), (100005, 5) g

Upon receiving the mapping from its local cube index to
global cube index, processor 1 identifies the submatrix B01

and sends it to processor 0 which attaches it to its existing
matrix to produceB0. Figure 4 shows the resultingKC ma-
trices in the 2 processor.

a b c ce f de g
1 2 3 4 5 100005 100006

PROC 0
G a 1 . . . 10 8 . .
G b 2 . . . 11 9 . .
G ce 3 10 11
G f 4 8 9
H de 5 12 . 13
F a 100001 1 5 3 P
F b 100002 2 6 . R
F de 100003 5 6 7 O
F f 100004 1 2 C
F c 100005 7 4
F g 100006 3 . 4 1

Figure 4: Co-kernel cube matrix for processor 0 and pro-
cessor 1

5.3 Consistency issues

After solving the data decomposition for parallel process-
ing, we need to study the consistency issues which arise due
to concurrent operation on replicated portions of the data.

5

Assume that all the processors start finding the best rect-
angle in their respective L-shaped KC matrix and extract-
ing it from the network. Whenever a rectangle encompasses
nodes owned by more than one processor, we send the par-
tial rectangle to the other processors to divide its nodes. The
other processor will extract the kernel once it has completed
one iteration of kernel extraction.

An important issue arises from the concurrent evaluation
of the overlapping portions of the KC matrix by more than
one processor and is illustrated by Example 5.2.

Example 5.2 Suppose processor 0 is evaluating the rect-
angle, f(3,4, 100003, 100004)(1,2)g, and finds the gain to
be 8 whereas processor 1 evaluates the value of the rectan-
gle f(100001, 100002)(5,100005)g to be 3. Since 8 and 3
are the highest gains of kernels of B0 and B1 respectively,
each processor goes on to divide its network with the corre-
sponding kernels. The final representation after extracting
the above rectangles from the network leads to a saving of 3
instead of the expected 11 as is illustrated below.
G = ceX + fX; H = ade+ cde; X = a+ b;

F = XY + ag + cg + cde+ deX + fX; Y = de+ f

Example 5.2 shows that if two processors share a cube,
although both processors expect to gain from including the
cube in its best rectangle, only one benefits from it. The
sharing of cubes leads to an even deeper problem. To an-
alyze it, let us assume that processor 1 extracts its own rect-
angle, f(100001, 100002)(5, 100005)g first and then the
partial- rectangle f(100003, 100004)(1,2)g from processor
0. After extraction with de + f,

F = aY + bY + ag + cg + cde .
Before performing the division in processor 1, the cubes
ade, bde, af bf are added to F to make it divisible by a+ b.
As some of these cubes could have been covered in a previ-
ous extraction by some rectangle overlapping with the cur-
rent one, these cubes are added to the node to ensure that the
current rectangle can indeed divide the node. After the ad-
dition, the kernel a + b is extracted from F to give the form
shown in Example 5.2.

To avoid the above problem, we perform an extra check
while performing the division. If at the point of division,
the extraction is profitable assuming the cost of the kernel
is zero, the division is performed after adding the nodes oth-
erwise it is performed on the existing node representation.
Referring to the last example, after extracting the rectangle
f(100001, 100002)(5,100005)gand setting the values of the
cubes in it to zero, we find the gain from extracting the rect-
angle f(100003,100004)(1,2)g to be negative. Hence, in this
case, we do not add the cubes to F but divide the existing F
with a+b to get F 0 thereby saving 8 literals instead of 3.

F 0 = XY + ag + cg + cde;

Now we return to the observation in Example 5.2, where
concurrent evaluation of the same set of cubes by two pro-
cessors were producing false hopes of literal savings in both

Table 5: Various states of a cube during extraction
state V T what a state implies
FREE X X cube not covered by any best rectangle
COVERED 0 X cube covered but not divided
DIVIDED 0 0 covered by some rect and divided.

of them. Therefore, we need to devise some mechanism by
which only one processor gets to save the value of the cube
while the rest saves zero. Once a processor speculates a cube
to be in its best rectangle, it makes its value zero and but
stores the value of the cube in an attribute called trueval.
Any other processor which subsequently tries to include that
cube into their rectangle will find its value to be zero since it
is speculatively covered by the best rectangle of some pro-
cessor. Later on, if the owning processor finds a better rect-
angle, it copies back the value of the cube from its trueval,
thereby making the cube available for other processors. But
the search for the best rectangle in a processor gets biased
by the order of the generation of the rectangle. Consider
the kernel extraction of B0 in processor 0. Let f(1,2)(4,5)g
be the first rectangle, which is made the best rectangle and
the values and trueval of all its cubes modified accordingly.
Then let f(3,4,100003, 100004)(1,2)g be considered next.
Since the values of the cubes 8, 9 10, 11 are zero, the value
of the rectangle turns out to be -2. Thus although the later
rectangle is a much bigger and profitable one, the best rect-
angle indicates to the first one. Before solving the problem,
we try to look at the various states of the cube based on the
attributes in Table 5 (V is the current value and T is the true
value of the cube).

Let us try to qualify the state COVERED by adding an-
other attribute representing the processor which is speculat-
ing on covering it. When the same processor tries to find the
value of the cube, it is returned the true value as the cube
has not yet been divided. But if some other processor asks
for the value, it is returned zero since that cube has already
been covered by the best rectangle of the owning processor
and in the near future it is going to be divided. The rationale
is that the non-owner cannot change the best rectangle of the
owning processor and so for all practical purposes, the cube
has been covered. But if the owning processor asks for the
value of the cube, it should get the true value since the cube
has not been divided and the considered rectangle can re-
place its current best rectangle. Thus including the attributes
value, trueval and owner in the cubes succeeds in making the
search independent of the order of rectangles considered.

5.4 Experimental results

The parallel algorithm for kernel extraction with the L-
shaped partitioning with interactions was implemented on a
SUN SPARC Server 1000E shared memory multiprocessor.
We use SIS to compare our result by perform kernel extrac-
tion using the option gkx -bo1. Table 6 summarizes the qual-
ity and runtimes of executing this algorithm on 4 and 6 pro-
cessors and compares it with the equivalent kernel extrac-
tion technique of SIS. The results show that the L-shaped

6

partitioning has been able to provide a good speedup, i.e. a
speedup of 6.47 on an average on 6 processors without los-
ing hardly any quality compared to SIS.

Speedup =
p2

(1 +

:(p�1)

2:�:p
)2

(3)

where p is the number of partitions and � and
 are sparsity
factors for the initial KC matrix and L-shaped KC matrix re-
spectively.(Proof omitted) Although, we do lesser work than
the sequential algorithm, we are able to achieve compara-
ble results since the L-shaped partitioning focuses the search
for the best rectangle. The above heuristics of searching on
the L-shape instead of only on the diagonal block improved
quality degradation by 50% than that obtained by the algo-
rithm described in the Section 4. In fact, in certain cases,
like seq on 4 processors, it produces better results than SIS
as it choose a better search path than SIS.

MCNC Initial 2 processors 4 processors 6 processors
Circuits LC LC S LC S LC S
dalu 3588 2874 1.99 2935 4.23 3025 6.88
des 7412 6658 2.6 6656 3.13 6653 9.07
seq 17938 9274 1.13 9038 2.34 9255 3.35
spla 24087 17709 1.45 17712 1.54 17717 1.58
ex1010 13977 11836 2.11 11842 7.8 11865 11.48
average 1.000 0.721 1.86 0.719 3.81 0.724 6.47

Table 6: Results of Parallel Algorithm with L-Shaped
Partitioning on Shared Memory Multiprocessor

6 Conclusion

Algebraic factorization is an extremely important but com-
putationally intensive part of any logic synthesis system. It
is used repeatedly in logic synthesis, hence it is important to
look at parallel processing to speed up the procedure. This
paper has presented a detailed study of three parallel algo-
rithms for kernel extraction.

The first algorithm uses data replication and uses a divide
and conquer strategy to follow the same search path as in the
sequential algorithm. Although it gets comparable quality
to the serial algorithm, it suffers from poor speedup, since
the parallelism is restricted by the sequential dependencies
and redundant work required in maintaining consistency be-
tween the global picture across all processors. A second al-
gorithm uses totally independent factorization on different
circuit partitions with no interactions among the partitions.
This algorithm provides large speedups, like 16.3, but suf-
fers in quality as the number of partitions increases.

A third algorithm represents a compromise between the
two approaches. It uses a novel L-shaped partitioning strat-
egy which provides some interaction among the rectangles
obtained in various partitions. It produces better results than
the parallel algorithm using independent partitions, but pro-
duces less speedups. In ex1010, the L-shaped algorithm ex-
ecutes 11.48 times faster than SIS, with quality degradation
of less than 0.2 %.

We have therefore discussed several algorithms for par-
allel kernel extraction. If speed is of primary importance,
and the user can tolerate some degradation in quality, then
the independent partitioned approach would be preferable.
Otherwise, if quality is of utmost importance, then the par-
allel algorithm using L-shaped partitioning is the preferred
algorithm. It outperforms the parallel algorithm with repli-
cated approach in memory scalability (in terms of ability
to synthesize very large circuits), and in runtimes. Thus
we have successfully developed parallel algorithms for the
minimum-weighted rectangle cover problem. Even though
the specific implementation of the above algorithms tar-
get area minimization via literal count measures, our meth-
ods can be directly applied to timing driven and low power
driven synthesis provided the algorithms are formulated in
terms of a rectangular cover problem.

References

[1] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. Wang. Multi-level logic optimization and the rectangular
covering problem. In Digest of Papers, International Confer-
ence on Computer-Aided Design, pages 66–69, Santa Clara,
CA, Nov. 1987.

[2] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. R. Wang. MIS: A multiple-level logic optimization sys-
tem. IEEE Trans. Comput.-Aided Design Integrated Circuits,
CAD-6(6):1062–1081, Nov. 1987.

[3] K. De and P. Banerjee. Parallel logic synthesis using partition-
ing. In Proceedings of the International Conference on Paral-
lel Processing, pages III:135–142, St. Charles, IL, Aug. 1994.

[4] K. De, J. A. Chandy, S. Roy, S. Parkes, and P. Banerjee.
Portable parallel algorithms for logic synthesis using the MIS
approach. In Proceedings of the International Parallel Pro-
cessing Symposium, pages 569–578, Santa Barbara, CA, Apr.
1995.

[5] K. De, B. Ramkumar, and P. Banerjee. A portable paral-
lel algorithm for logic synthesis using transduction. IEEE
Trans. Comput.-Aided Design Integrated Circuits, 13(5):566–
580, May 1994.

[6] L. A. Sanchis. Multiple-way network partitioning with dif-
ferent cost functions. IEEE Trans. Comput., 42:1500–1504,
1993.

[7] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A system for sequential cir-
cuit synthesis. Technical Report UCB/ERL M92/41, Depart-
ment of Electrical Engineering and Computer Science, Uni-
versity of California, Berkeley, CA, May 1992.

[8] F. Theeuwen. Logic optimization on a concurrent processing
computer. In Proceedings of the European Design Automation
Conference, pages 429–433, Glasgow, UK, Nov. 1990.

[9] F. Theeuwen, J.F.M., and P. van P.T.H.M. Automatic genera-
tion of boolean expressions in nmos technology. In Digest of
Papers, International Conference on Computer-Aided Design,
pages 332–334, Santa Clara, CA, Nov. 1985.

7

