
DYNAMIC DETECTION OF PARALLELISM IN PASCAL-LIKE PROGRAM

Zheng Yong , Qian Jiahua

Dept. of Computer Science, Fudan University
Shanghai, P.R.China

ABSTRACT
The execution time of Pascal-like
programs can be decreased by putting
solutions to problems in their maximally
parallel forms. In this study Pascal-
like programs are considered, and
analysis of parallelism is performed by
using a dynamic recent data dependency
graph (DDG). The means taken in this
paper is able to derive maximally
parallel versions of the programs and to
minimize the execution time. The
advantage of this means is not only to
save the effort in implementation but
also to possess generality and high-
efficiency resulting from dynamically
locating parallelism in program. The
study shows that the maximally parallel
program can run in considerably less
time than that needed to I-Ull the
original sequential Pascal-like program.

Keywords:
Statement parallelism dynamic detection,
parallel execution, data dependency,
Pascal-like program, multiprocessor

1. Introduction.

With the significant decrease in
hardware cost, it is becoming economically
feasible to design and build large
multiprocessor system, and the interest in
parallel processing is rapidly increasing.
Some new problems arise in programming
this kind of computer system:

l.The onus is on the programmer to
detect and express all possible
parallelism in his program.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is giventhatcopying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

Z.Small changes in the program may mean
that the programmer has to reorganize all
the parallelism he has written in to the
program.

3.Programs already in existence will
have to be rewritten.

It would be beneficial to be able to
examine automatically programs, indicate
the relationship between parts of the
code, and execute the program in parallel.
A lot of efforts have been made in this
aspect(e.g.[Z-101). Most of them handle
with Fortran or Fortran-like programs, and
statically consider the parallelism of
program. In this paper, we shall develop a
means of dynamically locating parallelism
in runtime and executing in parallel in a
multiprocessor system for Pascal-like
language.

2. Machine Considerations.

In this section, A prototype of the
architecture of multiprocessor system will
be simply described. It, shown in Fig.1
consists of three special purpose
dedicated processors for carrying out the
system management task, and N processors
for executing user processes.

All of the processors operate
independently and communicate with each
other via random access memory (RAM). Most
of the data and programs used by the
dedicated system processors at-e stored in
dedicated read-only memories (ROMS) shown
in Fig.1. The system processors access the
RAM only to communicate with other
processors or share some system
information, and for this reason they can
share a single port without unduly high
memory contention problem.

The problem of size of the RAM is
resolved by making use of swapping. Most
of information resides on drums, and the
memory transfer unit is kept continually
busy by the memory manager, carrying out
this swapping operation.

0 1988 ACMO-89791-260-S/88/0002/0567 $1.50 567

UP1 . . . UPn

RAM

I

MTU

I I
drums disks

I 1

UPl,...,UPn : user processors
SCH : scheduler
I/O : I/O processor
MM : memory manager

Fig.1.

3. Data Dependency Graph (DDG).

To discuss data dependency and control
dependency, we define some relations
between statements.

In sequential program, for statements
Si and Sj, if Si is executed before Sj, we
denote by Si < Sj.

Definition 1. For statements Si and Sj, Si
and Sj can be executed in parallel,
denoted by Si::Sj, if

(*) In(Si) fl Out(Sj) = g &
Out(Si) n In(Sj) = U &
Out(Si) n Out(Sj) = 0

where In(Si) is all variables which are
input of Si, and Out(Si) is all variables
are changed by Si.

Definition 2. For statements Si and Sj, we
say Si must be executed before Sj,
denoted by Si <x Sj, if Si and Sj are not
satisfy (*:), and Si < Sj.

To parallelize linear program, we
support a dynamic recent data dependency
graph (DDG) of a program in runtime. DDG
is a graph G = (V,E). (Ni,Nj) f E means
Si <* Sj, where Si and Sj are statements
corresponding to nodes Ni and Nj, respec-
tively. Node set V corresponds to the
statements which are concerned recently.

Here we need to interpret the means of
recently concerned statements. In DDG, we
do not cope with all statements equally.
The complicated structure statement to
which we do not pay many attentions is
mapped to a node, and the structure

c J

MPX : multiplexor
MTU : memory transfer unit
Ts : terminals
PS : peripherals

statement to which we are paying a lot of
attentions is mapped to many nodes, each
of which corresponds to a sub-statements
of this statement. The more complicated
the statement to which a node corresponds
is, the higher the abstract level of this
node is, so the less attention is paid to
this statement.

Node set V consists of several kinds of
nodes. Their origin will be described
below.

1. Assignment statement, or Read/Write
statement is mapped to a assignment &.

2. Procedure call statement is mapped to a
& node --

3. IF statement 'if sb then $1 else $2' is
rewritten to

'SC := sb; if SC then Sl else S2',
where SC is a special auxiliary variable.
Thus 'SC := sb' is mapped to a selection
condition de, and 'if SC then Sl else
S2' is mapped to a selection &.

4. While statement 'while lb do Sl' is
rewritten to '1C := lb; while lc do Sl',
where lc is a special auxiliary variable.
Thus 'lc := lb' is mapped to a loop
condition node, and 'while lc do Sl' is
mapped to a loop node.

5. Compound statement is mapped to a
compound node.

The assignment node, selection
condition node, and loop condition node
are atomic nodes, which can not be
expanded. Other nodes are structure nodes,
which can be expanded. Each node N is

568

P : program SPD : statement parallelism
ASC : assignment detector

statement chains EPD : expression parallelism
T : tasks detector
Pl,...,Pn : processors SCH : scheduler

Fig.2.

associated with two fields In (NJ and
Out(N), where In(N) = In(S), and
Out(N) = Out(S), S is the statement
corresponding to N.

Let the program body is a compound
statement Sl;...;Sk, initially, DDG
contains node Nl,...,Nk, each of which
corresponds to a Si (1 <= i <= k). With
the running of program, the nodes of DDG
are deleted or expanded, and the edges of
DDG are modified correspondingly.

4. Parallel Execution of Program.

4.1. The Overview of System.

In a program there are two sources of
parallelism which can be detected. The
first consists of arithmetic or logic
expressions, and this case has been
studied by many authors (e.g.[4,10]). The
second sources of parallelism consists of
statements, especially loop statement.

BY detecting the two sources of
parallelism in a program, we transform the
program into a set of tasks that can be
executed simultanously. It is shown in
Fig.2.

We give the definition of ASC below.

Definition 3. In recent DDG, G = (V,E), a
sequence of atomic nodes, say Nl,...,Nk
(k > 0) is called chain if -I

1. (Ni,Ni+,) t E (1 <= i < k)

2. indegree(N1) = 0 & outdegree(N1) = 1
& indegree = 1
& indegree = outdegree = 1

(1 < i < k)

Definition 4. Statement sequence Sl,...Sk,
is called assignment statement chain
(ASC), if Nl,..., Nk is a chain in recent
DDG, where Ni (1 <= i <= k) is the node
corresponding to Si in recent DDG.

In the system, ASCs can be transformed
by 'statement substitution' and other
techniques to obtain a set of tasks that
evaluate expressions simultanously. The
transformation is accomplished by EPD.

In this paper we will mainly discuss
the techniques of statement parallelism
detection.

4.2. Statement Parallelism Detection.

IF and WHILE statements are main source
of parallelism, especially WHILE state-
ments. In DDG, IF (WHILE) statement is
mapped to two nodes, one corresponds to
evaluation of selection (loop) condition,
another corresponds to modified IF (WHILE)
statement. This make it possible to
breakdown IF and WHILE statements to their
sub-statements. They are shown in Fig.3
and Fig.4.

selection
condition node

II V transform to

compound node

=> if SC = true

or
compound node

=> if SC = false

Fig.3.

Usually, loop condition depends only a
few variables in loop body S. So, after
these variables are evaluated, the loop
condition can be evaluated again. Thus, we
can constantly breakdown loop, and some

569

loop condition node

[exiection node

II V transform to

compound node

loop condition node

if lc = true

ion node

WHILE lc DO S =>
J c

or

NONE

Fig.4.

parts of former iterations of loop and
some parts of later iterations can be
execution in parallel.

In the system, SPD will constantly find
ASCs according to recent DDG, and output
them to EPD. After a ASC is executed, SCH
will send a message to SPD to acknowledge
it. If the end of ASC is a statement to
evaluate auxiliary condition variable, its
boolean value will also be sent to SPD.
SPD will modify dynamically recent DJJG
according to the messages sent by SCH.

SPD consists of two processes
Find-Chain and DDG-Modify. Except first
times, Find-Chain is wakeuped by the
finish of DDG-Modify. DDG-Modify is
wakeuped by the message sent by SCH.

We obtain ASCs by finding corresponding
node chains in recent DDG. Formal
description is shown. in Fig.5.

In Fig.5, procedure EXPAND(N) replaces
call node or compound node N with a sub-
graph corresponding to the sub-statements
of procedure body or compound statement,
i.e. let procedure body or compound
statement be 'Sl;...;Sk', we replace N
with Nl,...,Nk, where Ni (1 <= i <= k) is
the node corresponding to Si. After
replacement of nodes, the edges of DDG is
modified correspondingly. It is shown in
Fig.6.

if lc = false

Process Find-Chain
VAR ANS, SNS : subset of nodes in

recent DDG.
N : node in recent DDG.
c : chain in recent DDG.

BEGIN
SNS := { N : is-structure-node(N)

& indegree = 0 }
INS := { N : is-atomic-node(N)

& indegree = 0)
FOR each N f-SNS DO

IF is call-node(N) or
is-compound-node(N)

THEN KXPAND(N)
ELSE ERROR
ENDIF

BNDFOR
FOR each N FINS DO

C := NIL I N
/Ir add N to empty chain */

N := Son(N)
WHILE (outdegree = 1) &

(indegree = 1) & (OK(C)) &
(is-atomic-node(N)) DO
C := c : N

/$ add N to the end of chain */
N := Son(N)

ENDWHILE
CONDENSE(C)
OUTPUT(C)

ENDFOR
END.

Fig.5.

570

Proc BXPAND(Var N : node in recent DDG)
VAR NSl,NSZ : nodes subset in recent DDG

Nl,N2 : node in recent DDG
SG : the data dependency sub-graph

of node N /* SG = (SV,SE) %/
BEGIN

IF is-structure-node(N)
THEN

NSl := { Nl : (N,Nl) f E }
NS2 := { NZ I (N2,N) f E I
Delete the edges associated with N
Replace(N,SG)
IF is-call-node(N)
THEN

FOR each Nl + SV DO
In(N1) := In(Nl)(F/A)
Out(N1) := Out(Nl)(F/A)

/* F is formal parameter set
and A is actual argument set.
In(Nl)(F/A) is a variable set
obtained by replacing F with A
in In(N1) */

ENDFOR
ENDIF

FOR each Nl l SV DO
FOR each N2 fiNS1 lJ NS2 DO

IF (In(Nl)f # 0) or
(Out(Nl)nIn(N2) # 0) or
(Out(Nl)nOut(N2) # 8)

TEEN
IF N2 tNS1
THEN E := E U {(Nl,N2)}
ELSE E := E U {(N2,Nl)}
BNDIF

ENDIF
ENDFOR

ENDFOR
BNDIF

END.

Fig-G.

In Fig.5, procedure CONDENSE(C)
condense chain C into the end node of C in
DDG. Thus, the end node will correspond
to a assignment statement chain.

OK(C) is a boolean function. If chain C
can add new element in the end, it is
true, otherwise it is false. It is
affected by many factors, such as the
number of processors, the number of
variables occuring in C, the occurence
times of each variable in C, etc. e.g. in
extreme situation

: true C = NIL
OK(C) = {

: false otherwise

Thus, the chain can only contain one
element.

OK(C) must be selected carefully for
each system. We will not discuss it here.

Processes DDG-Modify receives the
messages from SCH and modifies recent DDG.
Formal description is shown in Fig.7.

Process DDG-Modify
VAR CS : chain set in recent DDG

C : chain in recent DDG
N,Nl,N2 : node in recent DDG

BEGIN
Receive CS from SCH

/t CS is the chain set
which have be executed */

FOR each C f- CS DO
N := end(C)

/S N is the end node of C *:/
Delete C and all edges associated

with N from recent DDG

CASE the type of N DO
Selection condition node :

BEGIN
Nl := the selection node

relating to N
IF Value(N)
THEN N2 := GBTNODB(TB(N1))
ELSE N2 := GBTNODE(FB(N1))
BNDIF

/* TB(Nl), FB(N1) are true-
branch and false-branch of
IF statement corresponding
to Nl, respectively */

Replace(Nl,N2)
EXPAND(N2)

END

loop condition node :
BEGIN

Nl := the loop node relating
to N

IF Value(N)
THEN N2 := GBTNODB(B(N1))

/* B(N1) is the loop
body of loop statement
corresponding to Nl */

INSERT(N,Nl)
INSBRT(N2,N)
BXPAND(N2)

ELSE Delete Nl and all edges
associated with Nl

BNDIF
END

ENDCASE
ENDFOR
Wakeup(Find-chain)

END.

Fig.7.

In Fig.7, function Value(N) is the
result after executing selection or loop
condition node N, which is obtained from
received message.

GETNODE is also a function, it
returns a new node to which statement S is
mapped.

Procedure INSERT(Nl,NB), in DDG,
inserts node Nl to node set and edges
associated with Nl to edge set under the
condition Sl < s2, where Sl and S2 are
statements corresponding to Nl and N2,
respectively.

571

5. Conclusion.

We has presented the techniques to
dynamically detect the parallelism of
Pascal-like program in runtime. Although
the compilation for parallel machine is
still a obstacle, the approach introduced
in this work may put programs in their
maximally parallel forms to minimize the
execution time. Its advantage is not only
to save effort in implementation, but also
to possess generality and high-efficiency
resulting from dynamically locating
parallelism in program.

6. Reference.

[I]. Chattergy,R., & Pooch,U.N.
A distributed function computer with
dedicated processors. Computer J.
Vo1.22, No.1 (1979) pp37-40

[2]. Evans,D.J., & Williams,S.A.
Analysis and detection of parallel
processable code. Computer J.
Vo1.23, No.1 (1980) ~~66-72

[3]. Foulk,P.W.,& Nassar,S.M.
Analysis of parallelism in nested DO
loops.
No.1 (1985)Jpp;%l

& Softw. vo1.5,

[4]. Hellerman,H.
Parallel processing of algebraic
expressions.
IEEE TC. Vol.15 (1966) pp82-91

[5]. Kuck,D.J.
Parallel processing of ordinary
programs. Advances in Computers
Vol.15 (1976) pp119-179

[6]. M.Di Manzo, A.L.Frisiani,& G.Olimpo.
Loop optimization for parallel
processing. Computer J. Vo1.22,
No.3 (1979) pp234-239

[7]. Nagl,M.
Application of graph rewriting to
optimization and parallelization of
programs. Computing Suppl. 3.
(1981) ~~105-124

[8]. Ramamoorthy,C.V.,& Gonzale2,M.J.
A survey of techniques for recogniz-
ing parallel processable streams in
computer programs.
Proc. AFIP. 1969 FJCC.

[9]. Stone,H.S.
One-pass compilation of arithmetic
expressions for a parallel
processor.
CACM Vol.10 (1967) ~~220-223

[lO].Towel,R.A.
Control and data dependence for
program transformations.
Report No. UIUCDCS-R-76-788. (1976).
University of Illinois at Urbana-
Champaign.

572

