ANSI®
X3.241-1994

American National Standard
for Information Systems —

Data Compression Method —
Adaptive Coding with Sliding Window
for Information Interchange

Secretariat

Computer and Business Equipment Manufacturers Association

Approved August 30, 1994
American National Standards Institute, Inc.

Contents

Page
(0] (=310 T € o [P ii
1 Scope and ConfOrMAaNCEocviiiiiiiiie e 1
2 NOrmative refereNCeS. ... 1
3 DEfiNITIONS o 1
4 Algorithm identifier.. ..o 1
5 Dataformat ..o 2
Annexes
N = o Toto o 11 To 0 1VZ=T V2T 5
B Example compression encoding methodccooeeiiiiiiiiiiiii e, 8

Foreword (This foreword is not part of American National Standard X3.241-1994.)

This standard specifies a lossless data compression method that is intended
for general purposes. It contains features that make it particularly applicable
to systems for recording information on interchangeable media.

This standard was developed by Technical Committee X3B5, by X3 project
882. The first draft was produced in November 1991. The second draft was
produced in March 1992.

There are two annexes in this standard. Both are informative and are not
considered part of this standard.

Requests for interpretation, suggestions for improvement or addenda, or
defect reports are welcome. They should be sent to the X3 Secretariat,
Computer and Business Equipment Manufacturers Association, 1250 Eye
Street NW, Suite 200, Washington, DC 20005.

This standard was processed and approved for submittal to ANSI by the
Accredited Standards Committee on Information Processing Systems, X3.
Committee approval of this standard does not necessarily imply that all
committee members voted for its approval. At the time it approved this
standard, the X3 Committee had the following members:

James D. Converse, Chair
Donald C. Loughry, Vice-Chair
Joanne Flanagan, Secretary

Organization Represented Name of Representative
American Nuclear SOCIetYcovvviiiiiiieii e Geraldine C. Main
Sally Hartzell (Alt.)
AMP , INC. i Edward Kelly
Charles Brill (Alt.)
Apple Computer, INC. ..o.uiiiiiiie e Karen Higginbottom
David K. Michael (Alt.)
AT&T Global Information Systems.........ccoooevviiiiiiiiineinnnen, Robert K. Kramer
Thomas F. Frost (Alt.)
Bull HN Information Systems, INC.ccoooviiiiiiiiiiiiiiien, William George, Jr.
Compag COMPULETS ...ceuiiiiiiiiiiieie e Ed Olkkola
Digital Equipment Corporation...........cccoeuvvviieiniiineiineeineennn, Scott K. Jameson
Richard Hovey (Alt.)
Eastman Kodak Companycceuvveiiiieiiineiiiieeeineeeneees James Converse
Michael Nier (Alt.)
Guide International, INC........c.ooviiiiiiiiii e, Frank Kirshenbaum
Tony Gualtieri (Alt.)
Hewlett-Packardociiiiiiinic e Donald C. Loughry
Hitachi America, Ltd........ccooviiiiiii e John Neumann
Kei Yamashita (Alt.)
Hughes Aircraft Companyccevieieiiiiiiiineiieeeeeeeeeees Harold Zebrack
IBM COrporationoo..veieieiiieiiee e e e Joel Urman

Mary Anne Lawler (Alt.)
Institute for Certification of Computer

Professionals (ICCP)ooiiiiiiiiiic e Kenneth Zemrowski

National Communications Systemsccovvvvvveiieiineeennnnnn. Dennis Bodson

Granger Kelley (Alt.)
National Institute of Standards and Technology.................. Michael Hogan

James H. Burrows (Alt.)
Neville & ASSOCIALESociuviiiiiiiieii e Carlton Neville
Northern Telecom, INC. ..o Mel Woinsky

Subhash Patel (Alt.)
Recognition Technology Users Association...............c........ Herbert P. Schantz

Gerald Farmer (Alt.)

Organization Represented
Share, INC. ..o

Sony Corporation
Storage Technology Corporation

SuN MiICroSystemMS, INC...ouviiiiiiiieiiiei e
Sybase, Inc
Texas Instruments, Inc
3M Company
Unisys Corporation
U.S. Department of Defense
U.S. Department of Energy

U.S. General Services Administration

Wintergreen Information Services
Xerox Corporation

Name of Representative

Gary Ainsworth

David Thewlis (Alt.)
Michael Deese

Joseph S. Zajaczkowski
Samuel D. Cheatham (Alt.)
Gary S. Robinson
Donald R. Deutsch
Clyde Camp

Fritz Whittington (Alt.)
Eddie T. Morioka

Paul D. Jahnke (Alt.)
John Hill

Stephen P. Oksala (Alt.)
William Rinehuls

C. J. Pasquariello (Alt.)
Alton Cox

Neil S. Jarrett (Alt.)
Patrick Plunkett
Douglas Arai

Jack L. Wheeler

Roy Pierce

William Ted Smith (Alt.)

At the time is approved this standard, Technical Committee X3B5 on
Digital Magnetic Tape, which developed this standard, had the following
members:

Richard T. Steinbrenner, Chair
Samuel D. Cheatham, Vice-Chair

Bruce H. Anderson
Leonard Badour
Peter Bramhall
James T. Craze
Richard D’Ambrise
Mike Deese

Gary R. Early
Howard Flagg
Arthur Freeman
Michael Galata
Michael L. Helsel
Hakan Hemdal
David M. Hudson
Norris Huse

Don Jeffares
Kyriacos Joannou
Clayton Johnson
W. D. Kessler
Randy Kerns

Bill R. King
Robert Lutz

Jack L. Maynard
David McFarland
William Mealey
Bill Medlinski
Eddie T. Morioka
John Neumann
Gerrit Nijssen

Ed Rhodes

Cam Schweitzer
James V. Tierney, IlI

Charles Wellington
David M. Wilson

Kirk D. Wilson

James W. Wolf

Joseph Zajaczkowski
David Berry (Alt.)
Michael L. Bolt (Alt.)
Anthony B. Bova (Alt.)
Jeff Bratt (Alt.)

James U. Chesnutt (Alt.)
James Chu (Alt.)
Richard F. Davis (Alt.)
Louis C. Domshy (Alt.)
David J. Donald (Alt.)
Larry P. Dunn (Alt.)
James Eggebeen (Alt.)
Darryl Feterl (Alt.)
John Fleming (Alt.)
Lonnie Ford (Alt.)

Ren Franse (Alt.)

Shoji Fujiwara (Alt.)
Jerry Ganske (Alt.)
John Geogehan (Alt.)
Kunio Goto (Alt.)

Dan Hallock (Alt.)

Ed Hauck (Alt.)
Matthew F. Jacobs (Alt.)
Paul D. Jahnke (Alt.)
Tony Jasionowski (Alt.)
Clarence Jones (Alt.)

Ali Khorsandian (Alt.)
George Klechefski (Alt.)
Steve Krupa (Alt.)

Carl Labmeier (Alt.)
Demetrios Lignos (Alt.)
Al Lun (Alt.)

George McBride (Alt.)
T. McCarthy (Alt.)
Charles B. Meyer (Alt.)
David R. Mills (Alt.)
Tom Molstad (Alt.)
Robert Monsour (Alt.)
Donald E. Morgan (Alt.)
Kenneth G. Neimiller (Alt.)
Roy Nelson (Alt.)
Kentaro Odaka (Alt.)
Mark OkaFuji (Alt.)
Terry L. Parsons (Alt.)
Pete Passaretti (Alt.)
Bob Richmond (Alt.)
Michael H. Riddle (Alt.)
John C. Shovic (Alt.)
Richard Silva (Alt.)

Leif Skaar (Alt.)
Mitchell Steinberg (Alt.)
Jun Takayama (Alt.)
Gerald Taylor (Alt.)
Joseph Trost (Alt.)
Richard Woo (Alt.)

Kei Yamashita (Alt.)

AMERICAN NATIONAL STANDARD

ANSI X3.241-1994

American National Standard
for Information Systems —

Data Compression Method —

Adaptive Coding with Sliding Window

for Information Interchange

1 Scope and conformance

1.1 Scope

This standard specifies an encoding method for
the lossless compression of binary data. This
encoding method is known as Stacker LZS™.

1.2 Conformance

A data compression algorithm conforms to
this standard if it satisfies all mandatory
requirements.

2 Normative references

The following standard contains provisions
which, through reference in this text, constitute
a provision of this American National Standard.
At the time of publication, the edition indicated
was valid. All standards are subject to revision,
and parties to agreements based on this
American National Standard are encouraged to
investigate the possibility of applying the most
recent edition of the standard indicated below.

ISO/IEC 11576: 1994, Information technology
— Procedure for the registration of algorithms
for the loss-less compression of data

3 Definitions
The following definitions, listed in alphabetical
order, apply to this standard.

3.1 compression ratio: The ratio of the
number of bytes input into an encoding algo-

rithm to the number of bytes produced by the
encoding algorithm.

3.2 end marker: A unique bit pattern pre-
sent in the output stream that represents the
end of a block of compressed data.

3.3 history buffer: The compression encod-
ing method requires reference to the most
recently processed 2048 bytes of input data.
These 2048 bytes are referred to as a history
buffer or sliding window.

3.4 loss-less compression: A compression
technique that allows for the complete recon-
struction of the original input data stream
without the introduction of any errors.

3.5 matching pattern: A multiple byte pat-
tern residing in the history buffer that is identi-
cal to the source pattern.

3.6 raw byte token: A 9-bit pattern in the
output stream that represents a single byte
from the input stream.

3.7 sliding window: See history buffer.

3.8 source pattern: A multiple byte pattern
entering the encoding algorithm that is identi-
cal to a corresponding matching pattern.

3.9 string token: A variable length bit pat-
tern in the output stream that represents a
source pattern.

4 Algorithm identifier

The numeric identifier of this encoding method
in the International Register is 48.

ANSI X3.241-1994
5 Dataformat

5.1 Overview

The data compression encoding method is
designed to support an adaptive string com-
pression algorithm that can find redundant
multiple byte patterns in the input data stream
and replace them with shorter tokens in the
compressed output data stream. The output
data stream alone may be used to reconstruct
the original input stream completely and
exactly.

5.2 Principle of operation

The input data stream and the output data
stream shall consist of a stream of bytes.
Within a byte, the bits shall be arranged with
bit b8 as the most significant, and bit bl as
the least significant.

The output data bytes are composed of a
stream of fields with a variable number of bits
in each field. The most significant bit of a field
shall be placed into the most significant
unused bit location of an output byte. The
other bits of a field shall be placed in bit loca-
tions in an output byte by proceeding in
sequence towards the least significant end of
the output byte. The end marker (see 5.7)
may be used to force the output data stream
to a byte-boundary.

The output data stream consists of the follow-
ing three field types:

— araw byte token;
— astring token;
— anend marker.

The structure of these fields is described
later. Each field may be present multiple times
and may appear in any order. Each field shall
be completed before a new field may begin.

The encoding algorithm shall maintain a 2048-
byte history buffer. Each byte that enters the
encoding algorithm from the input data stream
shall be placed into the history buffer. When
the history buffer becomes full, the newest
bytes shall replace the oldest bytes. The histo-
ry buffer shall always contain the last 2048
bytes that have entered the encoding algorithm
since the last clearing of the history buffer.

2

The encoding algorithm shall monitor the input
data stream and recognize multiple byte pat-
terns that match identical multiple byte pat-
terns within the history buffer. A multiple byte
pattern entering the encoding algorithm is
referred to as the source pattern. A multiple
byte pattern already present in the history
buffer, which matches the source pattern, is
referred to as the matching pattern. The
source pattern is replaced with a string token
on the output bit stream. The string token rep-
resents the source pattern as described in 5.4.

There is no predefined maximum limit on the
length of a source pattern. If the first byte of
the matching pattern resides within the 2048-
byte history buffer at the same time the first
byte of the source pattern enters the history
buffer, the multiple byte pattern can be repre-
sented correctly by the string token.

The smallest size of a source pattern is 2
bytes.

For each single byte in the input data stream
that cannot be included in a source pattern, a
raw byte token shall be output, (see 5.3.)

The end of a block of compressed data is
uniquely identified by an end marker in the
output stream, (see 5.7.)

5.3 Raw byte token

A raw byte token is a 9-bit pattern output by
the encoding algorithm to represent a byte in
the input stream that cannot be included with-
in a source pattern. Bit b9 shall always be 0.
Bits b1l through b8 shall be set to the same
values as bits b1 through b8 of the input byte.

5.4 String token

A string token is a variable length bit pattern
that represents a source pattern. A string
token is composed of several bit-oriented
fields. These fields are listed in the order that
they are produced in the output stream:

— a single bit with a value of 1;
— an offset field (described in 5.5);
— a length field (described in 5.6).

5.5 Offset field

The offset field of a string token is a variable-
length bit pattern that represents the distance

in bytes within the history buffer from the first
byte of the matching pattern to the first byte of
the source pattern. The number of bytes is
referred to as offset. The minimum value of
offset is 1, which represents the byte that
entered the history buffer just before the
source pattern. The maximum value of offset
is 2047.

If the value of offset is less than or equal to
127, an 8-bit pattern shall be generated. Bit
b8 shall be a 1. Bits bl through b7 shall be
the binary value of offset.

If the value of offset is greater than 127, a 12-
bit pattern shall be generated. Bit b12 shall
always be a 0. Bits b1l through bl shall be
the binary value of offset.

5.6 Length field

The length field is a variable-length bit pattern
that represents the length in bytes of the
source pattern. The number of bytes is
referred to as length. The minimum value of
length is 2. The maximum value of length is
unbounded.

If the value of /ength is less than or equal to
4, a 2-bit pattern shall be generated. These 2
bits shall be the binary value of:

(length - 2).

ANSI X3.241-1994

If the value of length is greater than 4, and
less than or equal to 7, a 4-bit pattern shall be
generated. Bits b3 and b4 shall always be a
value of 1. Bits b1l and b2 shall be the binary
value of:

(length - 5).

If the value of length is greater than 7, a vari-
able-bit pattern shall be used. Multiple 4-bit
patterns shall be generated with all bits set to
1. The number of 4-bit patterns shall be:

(N + 1), where N is the integer result of
((length — 8) + 15).

Then a 4-bit pattern shall be generated with a
binary value of the remainder from the divi-
sion operation.

5.7 End marker

The end marker is a unique 9-bit pattern that
shall be generated at the end of a block of
data. The history buffer may be optionally
cleared at the end of a block of data. The min-
imum number of bytes that may be included in
a block of data is 0. The maximum number of
bytes is unbounded.

Bits b8 and b9 shall be Is. Bits bl through b7
shall be 0s. Additional bits with a value of 0
shall be written to the output bit stream until
an output byte-boundary is reached.

ANSI X3.241-1994

Annex A
(informative)

Example encoding algorithm

A.1 Encoding overview

This annex contains an example algorithm that may be used to encode an input stream of data. This
algorithm consists of several processes. The process Encode is used to encode a complete block of
data. This process will invoke other processes throughout its execution.

This algorithm assumes that two buffers are available that are infinite in size. Every new byte that
enters the algorithm is inserted at the beginning of the history_buffer (while the entire contents of
the history_buffer is moved by 1 byte to make space available). Every new byte is also inserted at
the beginning of the holding_buffer, but the holding_buffer is emptied whenever a token is gener-
ated that represents the data stored in the holding_buffer. The most recent 2048 bytes in the his-
tory_buffer represent the history buffer as defined in 3.3. The holding_buffer represents the
source pattern as defined in 3.7.

Other algorithms may be used to encode an input steam of data. Other algorithms need not
require buffers of infinite size.

A.1.1 Encode

This process is used to compress an entire block of data. When this process is finished, the input
byte stream will have been fully encoded and sent to the output byte stream.

Process = Encode.
While (input data exists).
Read_byte.

If ((there is no matching pattern in the history_buffer that exactly matches the source pat-
tern in the holding_buffer, that also satisfies the condition that offsetis less than 2047)).

Output_token.
Endif.
Endwhile.
Flush.

Endprocess.

Figure A.1 — Encode process

A.1.2 Read_byte

This process is invoked by the Encode process. It accepts a single byte from the input byte
stream and pushes that byte onto both the history_buffer and the holding_buffer.

Process = Read_byte.

Get 8-bit byte from input stream.
Insert byte into history_buffer.
Insert byte into holding_buffer.

Endprocess.

Figure A.2 — Read_byte process

ANSI X3.241-1994

A.1.3 Output_token

This process is invoked by the Encode process. If a single byte is being processed, it will be out-
put as a raw byte token. If multiple bytes are being processed, they will be output as a string
token. A string token consists of an offset and a length.

Process = Output_token.
If (number of bytes in holding_buffer < 2).
Put single 0 bit to output bit stream.
Put oldest byte in holding_buffer to output bit stream.
Clear the oldest byte from the holding_buffer.
Elseif.
Put single 1 bit to output bit stream.
If (Offset<127).
Put single 1 bit to output bit stream.
Put 7-bit binary value of offset to output stream.
Elseif.
Put single 0 bit to output bit stream.
Put 11-bit binary value of offsetto output stream.
Endif.
Output_length.
Clear all bytes from the holding_buffer except the newest byte.
Endif.

Endprocess.

Figure A.3 — Output_token process

ANSI X3.241-1994

A.1.4 Output_length

This process is invoked by the Output_token process. It will output the length portion of the string
token being processed

Process = Output_length.
Set X'to (number of bytes in holding_buffer — 1).
If (X<4).
Put 2-bit binary value of (X — 2) to output stream.
Elseif.
If (X<7).
Put 2-bit pattern with all bits set to a 1 bit to output stream.
Put (2-bit binary value of (X - 5) to output stream.
Elseif.
Put 4-bit pattern with all bits set to a 1 bit to output stream.
Set Xto (X-8).
While (X 2 15).
Put 4-bit pattern with all bits set to a 1 bit to output stream.
Set Xto (X - 15).
Endwhile.
Put 4-bit binary value of X to output stream.
Endif.
Endif.

Endprocess.

Figure A.4 — Output_length process

A.1.5 Offset

This process is invoked by the Output_token process. This process will calculate and return the
offset portion of the string token to the Output_token process.

Process = Offset.

Return the value of (the distance in bytes within the history_buffer from the first
byte of the source pattern to the first byte of the matching pattern).

Endprocess.

Figure A.5 — Offset process

ANSI X3.241-1994

A.1.6 Flush

This process is invoked by the Encode process. This process will force any pending token to be
output, followed by the end marker.

Process = Flush.
While (number of bytes in holding_buffer > 0).
Output_token.
Endwhile.
Put 9-bit pattern with b8 and b9 set to 1s and bits b1 through b7 set to Os to output stream.
If (desired to clear the history).
Clear all bytes from the history_buffer.
Endif.

Endprocess.

Figure A.6 — Flush process

ANSI X3.241-1994

Table B.1 demonstrates an example encoding output based on a given input byte stream. Within table

B.1, time runs down the page.

Annex B
(informative)

Example compression encoding

Table B.1 — Example encoding output

Input Output bit
byte stream stream Comments
A - Source pattern requires at least 2 bytes to match
B 001000001, No matching pattern for AB, output A as raw byte token
A 001000010, No matching pattern for BA, output B as raw byte token
A 001000001, No matching pattern for AA, output A as raw byte token
A - Matching pattern found for AA, wait for possible longer pattern
A - Matching pattern found for AAA, wait for possible longer pattern
A - Matching pattern found for AAAA, wait for possible longer pattern
A - Matching pattern found for AAAAA, wait for possible longer pattern
C 1100000011100,| No matching pattern for AAAAAC, output AAAAA as string token
with an offset of 1 and length of 5
A 001000011, No matching pattern for CA, output C as raw byte token
B - Matching pattern found for AB, wait for possible longer pattern
A - Matching pattern found for ABA, wait for possible longer pattern
B 11000100101, | No matching pattern for ABAB, output ABA as string token
with an offset of 9 and length of 3
A - Matching pattern found for BA, wait for possible longer pattern
- Matching pattern found for BAB, wait for possible longer pattern
A - Matching pattern found for BABA, wait for possible longer pattern
end 11000001010, | End of block, output BABA as string token with an offset of 2 and
110000000, length of 4, then output end marker
Summary for this example:
Input byte stream (16 bytes, specified in base 16): 41424141 414141414341424142414241
Output byte stream (10 bytes, specified in base 16): 20 90 88 38 1C 21 E2 5C 15 80

