
EUROGRAPHICS ’97 / D. Fellner and L. Szirmay-Kalos
(Guest Editors)

Volume 16, (1997), Number 3

Interactive Boundary Computation of Boolean Combinations
of Sculptured Solids †

S. Krishnan M. Gopi D. Manocha M. Mine

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

fkrishnas,gopi,manocha,mineg@cs.unc.edu

Abstract
We present algorithms and systems for interactive boundary computation of Boolean combinations of sculptured
solids. The algorithm is applicable to all spline solids and computes an accurateboundary representation.To speed
up the computation, the algorithm exploits parallelism at all stages. It has been implemented on a multi-processor
SGI and takes one second on average per boolean operation to compute the boundary of high degree primitives.
The system has also been integrated with an immersive design and manipulation environment. The resulting system
is able to interactively evaluate boundaries of the models, display them for model validation and place them at
appropriate position using collision detection algorithms.

1. Introduction
Interactive computer-aided design and modeling systems are
being developed to help designers create parts of a model
as part of the design/engineering process. A major goal of
these systems has been to provide an integrated and interac-
tive three-dimensional environment in which users can ex-
periment with different shapes, interactively display them for
model validation, place them in correct positions and check
for interference with other parts in a large model. In this pa-
per, we restrict ourselves to parts designed using boolean op-
erations on primitive solids. The set of primitives include
polyhedra, quadrics, surface of revolutions and sculptured
solids (whose boundaries can be represented as NURBS sur-
faces). Boolean combinations of such solids are used in most
CAD and modeling systems. For example, the Bradley fight-
ing vehicle (shown in Figure 1), has been modeled using

† Supported in part by an Alfred P. Sloan Foundation Fellowship,
ARO Contract DAAH04-96-1-0257, NSF Grant CCR-9319957,
NSF Grant CCR-9625217 , ONR Young Investigator Award, Intel,
DARPA Contract DABT63-93-C-0048 and NSF/ARPA Center for
Computer Graphics a nd Scientific Visualization

boolean operations. The model consists of more than 5;000
solids, each designed using 5 to 8 boolean operations.

Interactive Boundary Computation : Interactive three-
dimensionaldesign and modeling systems can benefitgreatly
from fast, accurate boundary computation. Typically the de-
sign process goes through a number of iterations before con-
verging on the correct model and placement. In such cases,
the turn-around time per iteration should be minimized. In
addition, the increased emphasis on 3-D interaction tech-
niques and immersive interfaces further increase the need for
interactive boundary computation. Current techniques for di-
rect rendering of constructive solid geometry solids are either
too slow (e.g. ray-tracing) or restrict the number of boolean
operations or the degrees of the primitives. Given the bound-
ary, interactive systems for rendering the surface descrip-
tion are available on current graphics systems 29; 16. Further-
more, algorithms for interactive collision detection and ob-
ject placement need an exact description of the boundary
18. Other applications of boundary representation (B-rep) in-
clude computation of solid’s mass properties.

Main Contribution: We present fast, parallel algorithms
and systems for computing the boundary of boolean combi-
nations of sculptured solids. The resulting boundary is repre-
sented in terms of trimmed Bézier patches. Given two prim-

c The Eurographics Association 1997. Published by Blackwell Publishers, 108 Cowley
Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148, USA.

S. Krishnan, M. Gopi, D. Manocha, M. Mine / Interactive Boundary Computation of Sculptured CSG Solids

Figure 1: Interior of the Bradley fighting vehicle composed of over 5000 solids

itives, our algorithm involves evaluating surface intersec-
tions, curve-merging and component classification. To speed
up these computations, we parallelize and distribute them
among multiple processors. The main contributions in this
paper are:

� Accuracy: Each intermediate primitive and the result-
ing B-rep solid is represented as a collection of trimmed
Bézier patches and an adjacency graph. The trimming
curves are the result of accurate surface intersection com-
putation. These trimming curves are stored, for storage ef-
ficiency, as spline approximations. We take special care in
preventing cracks in the resulting model.

� Parallel Implementation with Load Balancing: Our al-
gorithm exploits parallelism at all stages of boundary com-
putation. Our system can work on any shared memory par-
allel system. We also present algorithms to perform load
balancing with minimum use of locking while paralleliz-
ing the boundary computation algorithm among various
processors.We have applied it to interactively compute the
boundaries of the track (shown in Figure 2) and other parts
of the Bradley fighting vehicle. Each solid is defined using
5�8 boolean operations on high degree primitives.

� Interactivity: Our system uses an efficient and accu-
rate surface-surface intersection algorithm and topologi-
cal information to achieve optimal ray shooting tests dur-
ing component classification. It performs only one ray-
shooting for each boolean operation. In practice, it takes
about one second on average to perform one boolean
operation on high-degree sculptured solids (on a multi-
processor SGI configuration).

� Interface with Immersive Environment: We have in-
tegrated our boundary evaluation system with CHIMP 24,
an immersive design and manipulation environment. In
the resulting environment, an immersed user specifies the

primitives and their location using a 3-D interface. The
system is able to interactively evaluate its boundary, dis-
play it and place it at an appropriate position using col-
lision detection algorithms. Figure 7 shows one such part
designed in this integrated environment.

Organization: The rest of the paper is organized in the
following manner. A brief discussion of previous work in the
area of boundary computation and interactive rendering of
CSG solids is given in Section 2. The representation of each
solid in our system is explained in Section 3. Section 4 de-
scribes our B-rep generation algorithm. Section 5 describes
our load balancing scheme for the parallel implementation.
The interface of our system with an immersive design envi-
ronment is discussed in Section 6. Section 7 shows the per-
formance of our system on some models and the speed-up
due to parallelism.

2. Previous Work

There is a vast amount of literature on integrated three-
dimensional modeling environments, direct rendering of
CSG primitives and boundary computation. The Alpha 1
CAD system developed at the University of Utah has many
such features. An interactive approach for design, analysis
and illustration of assemblies has been presented in 3; 30.

Some graphics systems include capabilities to directly ren-
der CSG models 12; 8. However, they either restrict the num-
ber of CSG operations or the degrees of the primitives (e.g.
only quadrics) or are not able to render complex models. Al-
gorithms based on enhanced Z-buffer often require multi-
ple rendering passes along with fast rasterizing systems for
such primitives 31; 30. Other techniques and systems for di-
rect rendering are based on ray-casting 11; 32. More recently,
researchers at Army Labs have developed real-time ray trac-

c The Eurographics Association 1997

S. Krishnan, M. Gopi, D. Manocha, M. Mine / Interactive Boundary Computation of Sculptured CSG Solids

Figure 2: B-rep of the drivewheel model(left): 44 Boolean operations took 49 secs. to generate on our system. Track
(right) showing the placement of the drivewheel model

ing systems to render complex CSG models on high-end con-
figurations consisting of 50� 100 processors 25. Ray repre-
sentations along with specialized parallel architectures 22; 4; 23

like the RayCasting engine and ‘Solids engine’ were used to
achieve interactive solid modeling on low-degree primitives
like quadrics. Mantyla and Ranta20 describe methods to per-
form interactive solid modeling using HutDesign.

Generating B-reps from CSG representations of solids has
been a classic problem in solid modeling 10; 19; 27; 28; 26. Most
of the earliest work in generating B-reps concentrated on
polyhedral models. Weiler35 proposededge-baseddata struc-
tures for non-manifold modeling in curved surface environ-
ments. Casale2 and Menon23 proposed algorithms for per-
forming analytic solid modeling for quadric and freeform
surfaces. Most of the recent work in the literature on Boolean
combinations of curved models has focussed on computing
the surface intersection between a pair of B-spline or Bézier
surfaces 33; 13; 14. They concentrate on resolving all the com-
ponents of the intersection curve and finding convenient rep-
resentations for it in modeling applications. Even though a
great deal of work has been done in this area, we are not
aware of any parallel system which explicitly computes the
boundary of CSG solids. Rossignac30 presents algorithms for
interactive inspection of cross-sections and interference be-
tween solids of bounded degree and limited height of CSG
trees.

Though rendering of low degree CSG models can be done
at interactive rates, we are not aware of any system which
evaluates B-rep accurately at interactive rates. Further, even
if the model can be visualized at interactive rates without the
boundary evaluation, by using direct rendering methods, it
requires very high end graphics machines or dedicated hard-
ware systems.Due to the lack of boundary representation, the
versatility of such systems is lost. For example, these systems
cannot be used in places like immersive virtual environment
of assembly unit of a tank, where collision detection is immi-
nent. In this paper, we fill this gap by presenting algorithms
and systems to evaluate B-rep at interactive rates and display
them for model verification.

3. Representation of Solids

In this section, we present our representation for a solid. Our
algorithms assume that all B-rep solids are specified in this
format.

Each solid is represented as a set of trimmed paramet-
ric surface (tensor-product Bézier) patches which define the
solid boundary. Each patch F(s;t) is defined over the param-
eters s and t. This can be viewed as a mapping of the unit
square 0� s;t � 1 in the (s;t)-plane (also called the domain
of the Bézier patch) to R 3. We also maintain topological in-
formation in the form of an adjacency graph.

Topological information of the solid is maintained in terms
of an adjacency graph. It is similar to the winged-edge data
structure 10; 21. To start with, we assume that each of the in-
put objects has manifold boundaries, and the Boolean op-
eration is regularized 19. While it is possible to generate
non-manifold objects from regularized Booleans on mani-
fold solids, we assume for the sake of simplicity that such
cases do not occur. It is a well-known fact that, while deal-
ing with topological representation of curved objects, global
resolution of edge ambiguities cannot be guaranteed at times
10. Given these assumptions, it can be shown that an unam-
biguous topological representation is possible for a solid.

A trimmed patch consists of a sequence of curves defined
in the domain of the patch such that they form a closed curve
(ci’s in Figure 3). In the figure, the ci refer to the alge-
braic curve segments forming the trimming boundary. The
portion of the patch that lies in the interior of this closed
curve is retained. Most of these trimming curves correspond
to intersection curves between two surfaces. Therefore, these
curves are typically algebraic curves that do not admit a ra-
tional parametrization (1). We represent these curve segments
(ci) by their algebraic equation (for accuracy), and a spline
approximation (for efficient computation) and the two end-
points (pi and pi+1).

This representation of a solid lends itself to a description
in terms of faces, edges, and vertices analogous to the poly-
hedral case. Each face is a trimmed patch. Each of the trim-
ming curves form an edge, and are formed as an intersection

c The Eurographics Association 1997

S. Krishnan, M. Gopi, D. Manocha, M. Mine / Interactive Boundary Computation of Sculptured CSG Solids

0 1s

t

1

c0

c1

c2 c3

c4

c5

c6

c7

p0

p1

p2
p
3

p
4

p
5

p
6

p7

Algebraic curves as
trimming curves

Vertices formed as intersection
of algebraic curves

c0

c7p
0

Figure 3: Representation of a trimmed patch as algebraic curve segments

f 1 f 2

f 3f 4

f 5

f 6

f 1

f 2

f 3

f 4

f 5

f 6

e1
e
2

e
3

e
4

e
5

e
6

e
7e

8

e
9

e
10

e
11

e
12

Figure 4: A cylinder and its face connectivity structure

of two surfaces (faces). Finally, endpoints of edges form the
vertices. They can be represented as an intersection of three
surfaces. Figure 4 shows an example solid and the face con-
nectivity structure that we maintain. We also maintain the
two faces that are adjacent to each edge, and an anticlock-
wise order of faces around each vertex.

4. Algorithm Overview

In this section, we describe the algorithm to evaluate the
boundary. Let the number of patches in one solid be m and
those in the second solid be n and let the degree of each patch
be ds�dt .

The algorithm to evaluate the Boolean operation between
the two solids runs in seven stages. We now give an overview
of each stage.

Stage 1: (Figure 5) A main part of the algorithm is to com-
pute the intersection curve between the two solids. Hence
each patch of one solid has to be checked for intersection
with each patch of the other solid. However, not all the mn
pairs would intersect typically. We prune out most of the non-
intersecting pairs using a two step process.

Initially, we compute the 3D bounding box for each patch.
This is done in parallel as the construction of bounding boxes
for each of the patches can be done independently. If a pair of
bounding boxes do not intersect, the corresponding patches
are also non-intersecting (convex hull property of Bézier
patches 5). All the redundant pairs are removed using a sim-
ple sort on all the bounding boxes. The next step of pruning
uses linear programming. We formulate the linear program-
ming problem as follows. Two patches do not intersect if
there exists a separating plane between them. Thus we elimi-
nate the patch pairs whose bounding boxes have a separating
plane between them. We use Mike Hohmeyer’s implementa-
tion of the linear programming algorithm by Seidel 34. By ap-
plying these two methods on the two solids, we are left with
few pairs of patches that are most likely to intersect.

Stage 2: (Figure 5) As each patch-pair intersection is in-
dependent of the other, this operation is parallelized over all
patch pairs. Stage 2 of Figure 5 shows the distribution of
patch-pairs to various processors.

Stage 3: (Figure 5) The evaluation of the intersection
curves between the pairs of patches remaining after Stage 1

c The Eurographics Association 1997

S. Krishnan, M. Gopi, D. Manocha, M. Mine / Interactive Boundary Computation of Sculptured CSG Solids

Curve

Cylinder

Cube

(PE 1)

(PE 0)

(PE 2)

(PE 0)

(PE 2)

(PE 1)

Solid 1

Solid 2

Merging

(Cylinder)

(PE 0)

(PE 1)

(PE 2)

Intersection

(PE 0) (PE 1)

Intersection

(Cube)
Merging

Processor 0 (PE 0) Processor 1 (PE 1) Processor 2 (PE 2)

Stage 1: Bounding Box Overlaps and Linear Programming Tests

Merging

Stage 4

Stage 2: Allocation of patch-pairs to different processors

B-rep generation of the difference
between a cube and a cylinder

Stage 3: Intersection Curve Evaluation

Curve

Figure 5: Intersection curve computation and curve merging

c The Eurographics Association 1997

S. Krishnan, M. Gopi, D. Manocha, M. Mine / Interactive Boundary Computation of Sculptured CSG Solids

(Solid 1 - Solid 2)

Stage 5: Component Generation

Stage 6: Component Classification by Rayshooting

Stage 7: B-Rep Computation of the resulting solid

Processor 0 Processor 1 Processor 2

 Patch-Processor assignment for ray-patch intersection computation

Component 2

Component 1

Component 0

Result

Figure 6: Component generation, classification and B-rep computation

c The Eurographics Association 1997

S. Krishnan, M. Gopi, D. Manocha, M. Mine / Interactive Boundary Computation of Sculptured CSG Solids

is shown in Stage 3 (Figure 5). We use a recently developed
algorithm 14 to compute the intersection curve between two
parametric patches. The algorithm is based on a combination
of algebraic and numerical techniques, and new methods of
loop detection, singularity detection, and curve tracing for
accurate and efficient computation of the intersection curve.

Stage 4: (Figure 5) B-rep evaluation involves merging of
the intersection curves computed in the previous stage. It can
be shown that for closed C0 continuous solids, the intersec-
tion curve between them must form a collection of closed
curves in space for regularized Boolean operations. Merging
is the process of collecting different pieces of the intersection
curve and ordering them in sequenceto form closed curves in
space. The first step of merging is to merge the curves within
a patch. The merging of curves between patches in each solid
is performed next.

Stage 5: (Figure 6) The merged intersection curve par-
titions the boundary of the solid into various components.
The generation of these components is done in Stage 5 of
Figure 6. The components are generated by a simple graph
traversal algorithm using the existing topological informa-
tion in each solid.

Stage 6: (Figure 6) Each component has the property that
all the patches corresponding to them are either completely
inside or outside the other solid. Therefore, it suffices to com-
pute the inside-outside information of exactly one point in
each component. If a solid is closed and not self-intersecting,
then this query is answered by computing the number of in-
tersections of a ray, emanating from that point, with the solid.
If the number is odd, then the point is inside, otherwise it is
outside the solid. To find this number, the ray-surface inter-
section algorithm has to be run for all the patches on the other
solid. To avoid ray-surface intersection computation (an ex-
pensive operation) repeatedly over all components of one
solid against all patches of the other solid, we use the connec-
tivity information between components (also computed dur-
ing component generation stage) to perform just one opera-
tion per solid 15. This component classification by rayshoot-
ing is done in parallel over all the patches, and forms Stage 6
(Figure 6) of our algorithm. Just like the pruning step for
patch-pair intersection (Stage 1), we perform bounding box
tests and linear programming to speed up this computation
also.

Stage 7: (Figure 6) The particular set operation performed
on the solids, and the inside/outside classificationof the com-
ponent, determine if a component is part of the new solid.
The algorithm to generate the new solid forms the last stage,
Stage 7, of our algorithm. The connectivity information be-
tween various trimmed patches of the new solid is found us-
ing the topological information of the original solids and the
intersection curves.

Since we are dealing with sculptured solids with trimmed
Bézier patches,as opposed to polyhedral solids, the complex-
ity of the whole system is increased significantly. The time

taken for the surface-surface intersection algorithm can be a
cubic function of the degree of the patch in the worst case.
Further, in Stage 6, the complexity of ray-patch intersection
evaluation is again dependent on the degree of the patch.
These parts are computationally intensive and form the main
bottleneck in terms of system performance. Hence paralleliz-
ing these stages of the system becomes crucial in achieving
interactive rates of B-rep computation. While our system can
also be used with polyhedral primitives, its performance is
more pronounced for sculptured solids. Parallelizing other
stages like Stages 1 and 4 of the algorithm has also made a
significant contribution to the performance improvement.

5. Load Balancing Algorithm

The problem of load balancing arises when an algorithm has
to be parallelized among a number of processors. The run-
ning time of the parallel algorithm is directly related to the
maximum execution time of the task at a single processor. It
is clear that the most effective parallel algorithm is one where
the tasks are equally distributed among all the processors.
The problem of load balancing has received considerable at-
tention for a long time due to the fact that a single scheme is
not applicable for parallelizing all algorithms 17; 7; 9. The ef-
fectiveness of different techniques varies with the nature of
the problem it is used for. Hence there arises a need for newer
problem specific analysis methods which help in choosing
the most effective load balancing technique. We shall now
describe three such techniques that we use to shared memory
multiprocessor architectures for boundary computation.

� Static load balancing: Static load balancing is done by
dividing the given problem consisting of n tasks into p
(number of processors) parts and submitting each part to
a single processor. The size of each problem piece is pre-
computed and is not changed during execution. This tech-
nique works best when the processing time of each of the
tasks is known, and the number of tasks does not change
during execution. Extracting parallelism in our B-rep con-
verter starts from computing the boundingboxes for all the
patches (Stage 1 of our algorithm). As the bounding box
computation for each patch is independent of the other,
this can be easily parallelized. Further as the amount of
work that is to be done for the bounding box computation
for each patch is approximately the same, load balancing
is achieved statically. Once the bounding boxes for all the
patches have been computed, the overlap tests is also per-
formed in parallel.

� Global queue: In many algorithms, it is not possible to es-
timate the execution time of each task. For example, exe-
cution time for computing the intersection curve between
two surfaces can vary depending on the number of curve
components, and length (in terms of number of points
traced) of each component. In this technique, when one
processor is accessing the task queue, the queue should
be locked to ensure exclusive access (mutual exclusion).

c The Eurographics Association 1997

S. Krishnan, M. Gopi, D. Manocha, M. Mine / Interactive Boundary Computation of Sculptured CSG Solids

This technique achieves the best load balancing, though
the extra work done for balancing the load in the form
of locks might offset its advantage. In our system, using
global queues with locks to perform load balancing was
not as efficient as dynamic load balancing (described be-
low). We believe it is because of the reasons cited above.

� Dynamic load balancing: In this technique, a local job
queue is maintained for each processor. Initially, tasks are
assigned to every processor similar to the static load bal-
ancing scheme. However, due to suboptimal task division,
some processors might complete their tasks before others.
In this scenario, the idle processors share the load with
the busy processors, thereby balancing the load dynam-
ically. If we can ensure that each busy processor is ac-
cessed by only one idle processor at any time, then a lock-
free implementation of this scheme is possible. We can
also ensure that each task is processed only once, and no
task is left out. In our application, load balancing is effi-
ciently achieved by minimal use of locks. Therefore, we
use this approach for our most computationally intensive
tasks like surface-surface intersection (Stage 3) and ray-
shooting computation (Stage 6).

If we ensure that only one idle processor will access a
particular busy processor, then a lock free implementation
of dynamic load balancing is possible. We enforce a unique
one to one correspondence between an idle and busy proces-
sor using the following algorithm. A shared global variable
WhichIdleProc stores the id of the idle processor, which now
has the chance to choose its busy processor. This serializes
the operation of finding an idle-busy processor pair. In our
implementation, we choose a single lock to guard this criti-
cal section because the computation time for surface-surface
intersection and ray-shooting dominates one locking opera-
tion. With each busy processor, we associate a shared vari-
able MyIdleProc, which stores the idle processor id that has
been paired up with that particular busy processor. These
variables are initialized to NIL, referring to none of the pro-
cessors. Each processor also maintains its processor number
in a local variable myid. Whenevera processorbecomes idle,
it executes the following code:

f
If (WhichIdleProc == NIL) then f

GetLock(GetMeAccess);
if(GetMeAccess == NIL) f

GetMeAccess = myid;
WhichIdleProc = myid;

g
ReleaseLock(GetMeAccess);

g
/* Waiting for my chance */
while (WhichIdleProc 6= myid);

/* All tasks completed */
If (NoMoreBusyProc()) then exit;

/* All Busy processors are being load
balanced by some idle processor */
while (GetBusyProc() == NIL);

/* Got a Busy Processor to pair up with */
MyBusyProc = GetBusyProc();

/* Make sure no one else captures this busy processor */
MyIdleProc[MyBusyProc] = myid;

/* Give chance to next idle proc to find its partner */
If (NextIdleProc()) then WhichIdleProc = NextIdleProc();

/* No one to grab the chance */
else f
GetLock(GetMeAccess);

WhichIdleProc = NIL;
GetMeAccess = NIL;

ReleaseLock(GetMeAccess);
g

/* Balancing the load with the partner */
LoadBalance(MyBusyProc);

/* Finished load sharing; Freeing my partner */
MyIdleProc[MyBusyProc] = NIL;

/* Register myself as busy */
If (IHaveLoad()) BUSY[myid] = TRUE;

/* Work on new list of tasks */
PerformSurfaceIntersection(); or PerformRayShooting();

/* Register myself as idle */
BUSY[myid] = FALSE;

g

Initially, the variable WhichIdleProc has to be set by the
idle processor to gain access to the list of busy processors.
Race condition occurs only when the variable WhichIdleProc
is NIL and more than one idle processor try to access it.
By making WhichIdleProc a critical resource, we can en-
sure mutual exclusion while setting this variable. This can be
achieved by using locks. The number of locking operations
can be reduced by allowing free access to WhichIdleProc
and introducing a new shared variable GetMeAccess, which
is locked only when a race condition occurs. Locks can be
totally avoided by maintaining a random permutation of the
busy processor list locally in every processor. This does not
guarantee that a single idle processorcaptures a busy proces-
sor, however, the probability of a race condition is very small.

6. Interactive Modeling in Immersive Environments

The ability to perform boundary computations of Boolean
combinations of sculptured solids in real-time has many

c The Eurographics Association 1997

S. Krishnan, M. Gopi, D. Manocha, M. Mine / Interactive Boundary Computation of Sculptured CSG Solids

Figure 7: Design of a pen in an immersive modeling environment. The immersive environment is used for model
validation and placement using accurate collision detection.

potential applications in the field of interactive design. To
demonstrate this, we have combined our system with the
ChapelHill Immersive Modeling Program (CHIMP), a virtual
environment application for the preliminary phases of archi-
tectural design developed at UNC 24.

In the CHIMP system users create and manipulate models
while immersed within a virtual world, as opposed to the cus-
tomary through-the-window computer-aided design (CAD)
environment. CHIMP uses an immersive head-mounted dis-
play, a magnetic tracking system with three 6 degree-of-
freedom (DOF) sensors (one for the head and one for each
hand), two separate input devices (one for each hand) and a
high speed graphics computer (Pixel-Planes 5, see 6). CHIMP
includes both one and two-handed interaction techniques,
minimizes unnecessary user interaction and takes advantage
of the head-tracking and immersion provided by the virtual
environment system.

Using the CHIMP system, designers can create complex
shapes by specifying Boolean operations on a standard set of
simple primitive solids which they interactively manipulate
in the virtual world. Information on the types of solids, their
position, orientation, and extents, and the desired Boolean
operation are sent via standard Unix sockets to the B-rep gen-
erator running independently on an SGI. The B-rep gener-
ator computes the resulting boundary representation which
can then be loaded into the CHIMP environment for further
modification and/or exploration. Figure 7 shows the design

of a pen inside CHIMP. We are working on improving the in-
terface between the two systems so that design can become
much easier.

7. Implementation and Performance

The contribution of this work includes an implementa-
tion of the above parallel algorithm on shared memory mul-
tiprocessor architectures. Our experiments currently run on
an SGI-ONYX with four R10000 processors each with a 194
MHz clock.

In Stage 2 of our algorithm, we allocate patch pairs for
exact surface-surface intersection computation. The surface
intersection computation and the ray shooting operation in
Stage 6 are the two costly operations where the time taken
cannot be predetermined. As described in section 5, an im-
plementation of the dynamic load balancing scheme per-
forms better than the centralized queue model with locks.
Hence for Stages 3 and 6, we use this method for distributing
the patch pairs and ray-patch pairs.

All the processors are given an almost equal number of
patch pairs for intersection computation. Lock free imple-
mentation is achieved by a carefully chosen data structure. A
two dimensional array is used to hold the intersection curves
between pairs of patches. This structure is used for curve
merging in Stage 3. It ensures that only one processor is ac-
cessing any cell of the two dimensional array and thus, the

c The Eurographics Association 1997

S. Krishnan, M. Gopi, D. Manocha, M. Mine / Interactive Boundary Computation of Sculptured CSG Solids

Figure 8: B-reps of some solids from the Bradley fighting vehicle

Intersection Time

Total Time for CSG

Final Solid Computation
 Rayshooting, and

Graph Computation,

Link

1 2 3 4 5

10

20

30

40

50

60

1 2

T
im

e
(i

n
se

cs
.)

3 4 5

10

20

30

40

50

60

70

80

90

100

Drivewheel

1 2 3 4 5

10

20

30

40

50

60

70

80

90

100

Idlerwheel

No. of processors

T
im

e
(i

n
se

cs
.) T

im
e

(i
n

se
cs

.)

No. of processors No. of processors

Figure 9: Performance of our system as a function of processor count

intersection computation followed by curve merging is done
by sharing data without memory contention.

Components classification by rayshooting is performed
in Stage 6. Here, the patches of one solid are equally dis-
tributed to all the processors. Each processor computes the
intersection of the ray with all the patches assigned to it and
also counts the parity (odd/even) of number of intersections.
These results are finally merged to find whether the total
number of intersections is odd or even. This result is used to
classify the component.This information is propagated along
the adjacency graph of the solid to resolve the other compo-
nents. The above operation is done once for each solid.

After all the componentsare classified, the componentsare
chosen to be combined to form the final solid. As the B-rep

of each patch of the component is known, the final solid is
represented in its B-rep form. This stage is executed sequen-
tially.

Robustness and Accuracy: One of the main problems
in B-rep generation is robustness. We perform a number of
checkpointing operations that control the accumulation of
floating point error. We also handle special cases like face-
face and edge-edge overlaps while performing regularized
Boolean operations.These are handled as special cases in our
system. In practice we have observed that our system gen-
erates accurate B-reps on most input cases. Since the imple-
mentation was done using floating point arithmetic, we also
use tolerances to compare such values. Finding a tolerance
that works for all models is very difficult. In some cases, we
had to change tolerances to make our system work. Paral-

c The Eurographics Association 1997

S. Krishnan, M. Gopi, D. Manocha, M. Mine / Interactive Boundary Computation of Sculptured CSG Solids

Total running time (in secs.)
Model 1 proc. 2 proc. 3 proc. 4 proc. 5 proc.

Link 51.95 30.88 26.93 20.55 23.44

Drivewheel 102.32 77.39 53.39 49.02 35.67

Idlerwheel 112.40 74.51 58.96 46.10 44.23

Table 1: Performance of the our system

lelization of the algorithm does not contribute to robustness
problems. Currently, we are incorporating B-rep computa-
tion using exact arithmetic to preventmost robustnessand ac-
curacy problems. The use of exact arithmetic can slow down
the computation time, however exploiting parallelism helps
significantly in the overall speed.

The accuracy of the B-rep generated is determined by the
accuracy of the intersection curves between solids. In our
system, the accuracy of these curves can be controlled by the
user. Depending on the application, our system can generate
very accurate B-reps at the expense of computation time.

7.1. Performance of the algorithm

In this section, we highlight the performance of the algorithm
on some real-world models. The model of the Bradley fight-
ing vehicle was obtained from Army Research Laboratories.
It is composed of more than 5000 solids each consisting of
about 5-8 Boolean operations. We shall describe the perfor-
mance of our algorithm on three of the solids in the Bradley
fighting vehicle whose boundary consists of biquadric para-
metric surfaces.

� Link model: It consists of 16 Boolean operations and the
B-rep contains 76 trimmed Bézier patches. Figure 8(a)
shows the model. Below the figure is the graph that shows
the performance of our system on varying number of
processors. It can be seen that the performance becomes
worse when we go from four to five processors. Since this
is not a very complex model, the setup costs of using five
processors outweigh the benefit of parallelism.

� Drivewheel model: This model is constructed using 44
Boolean operations. The B-rep is shown in Figure 8(b)
and consists of 264 trimmed Bézier patches. The perfor-
mance of our algorithm improves with increasing proces-
sor count.

� Idlerwheel model: The B-rep of the idlerwheel (com-
posed of 235 trimmed Bézier patches) is shown in Fig-
ure 8(c) and took 48 Boolean operations to generate.Again
increasing the processor count reduces the running time
because of complexity of the model.

Table 1 shows the numbers corresponding to the graphs
(see Figure 9) for the various models. It can be observed from

the graphs and table that, in general, parallelism significantly
reduces the execution time of our system, and for most prac-
tical models, B-rep generation can be made interactive. From
the graphs in Figure 9, it is clear that for most models of this
size and complexity we obtain almost linear speed-ups up to
four processors. It does not help to use more processors.

8. Conclusion

We have presented algorithms and a system for interactive
boundary computation of Boolean combinations of sculp-
tured solids. The algorithm is applicable to all spline solids
and computes an accurate boundary representation. The in-
teractivity is achieved by exploiting parallelism at various
stages of the algorithm. It has been implemented on a shared
memory multi-processor SGI and takes one second on aver-
age per boolean operation to compute the boundary of high
degree primitives. The system has also been integrated with
an immersive design and manipulation environment.

Acknowledgements

We would like to thank Army Research Labs for providing us
with the model of the Bradley fighting vehicle, Lars Nyland
for helping us with the parallel implementation, and Sumedh
Barde for helping us with the graphical interface for our sys-
tem.

References

1. S.S. Abhyankar and C. Bajaj. Automatic Parametriza-
tions of Rational Curves and Surfaces III: Algebraic
Plane Curves. Computer Aided Geometric Design,
5:309–321, 1988.

2. M. S. Casale. Free-Form Solid Modeling with Trimmed
Surface Patches. IEEE Computer Graphics and Appli-
cations, pages 33–43, January 1987.

3. E. Driskill and E. Cohen. Interactive Design, Analysis,
and Illustration of Assemblies. In Proc. of 1995 Sympo-
sium on Int. 3D Graphics, pages 27–34, 1995.

4. J. L. Ellis, G. Kedem, T. C. Lyerly, D. G. Thielman, R. J.
Marisa, J. P. Menon, and H. B. Voelcker. The Ray-
casting Engine and Ray Representations. In Proceed-
ings of Symposium on Solid Modeling Foundations and
CAD/CAM Applications, pages 255–267, 1991.

5. G. Farin. Curvesand Surfaces for Computer Aided Geo-
metric Design: A PracticalGuide. Academic Press Inc.,
1990.

6. H. Fuchs and J. Poulton et. Pixel-Planes 5: A
Heterogeneous Multiprocessor Graphics System using
Processor-Enhanced Memories. In Proc. of ACM Sig-
graph, pages 79–88, 1989.

c The Eurographics Association 1997

S. Krishnan, M. Gopi, D. Manocha, M. Mine / Interactive Boundary Computation of Sculptured CSG Solids

7. G. Georgiannakis and C. Houstis et. al. Description
of the Adaptive Resource Management Problem, Cost
Functions and Performance Objectives. Technical Re-
port TR 130, The Institute of Computer Science, Foun-
dation for REsearch and Technology, Hellas, 1995.

8. J. Goldfeather, S. Molnar, G. Turk, and H. Fuchs. Near
Real-Time CSG Rendering using Tree Normalization
and Geometric Pruning. IEEE Computer Graphics and
Applications, 9(3):20–28, 1989.

9. R. Hendrickson and R. Leland. A Multilevel algorithm
of Partitioning Graphs. In Proc. of Supercomputing
’95, 1995.

10. C.M. Hoffmann. Geometric and Solid Modeling. Mor-
gan Kaufmann, San Mateo, California, 1989.

11. G. Kedem and J.L. Ellis. The Ray-Casting Machine. In
Parallel Processing for Computer Vision and Display,
pages 378–401, Springer-Verlag, 1989.

12. M. Kelley and K. Gould et. al. Hardware Accelerated
Rendering of CSG and Transparency. In Proc. of ACM
Siggraph, pages 177–184, 1994.

13. G.A. Kriezis, N.M. Patrikalakis, and F.E. Wolter. Topo-
logical and Differential Equation Methods for Surface
Intersections. Computer-Aided Design, 24(1):41–55,
1990.

14. S. Krishnan and D. Manocha. An Efficient Surface In-
tersection Algorithm based on the Lower Dimensional
Formulation. ACM Trans. on Computer Graphics,
16(1):74–106, 1997.

15. S. Krishnan and D. Manocha. Efficient Representations
and Techniques for Computing B-rep’s of CSG models
with NURBS primitives. In Proceedings of CSG’96,
pages 101–122. Information Geometers Ltd, 1996.

16. S. Kumar, D. Manocha, and A. Lastra. Interactive dis-
play of large scale NURBS models. In Proc. of ACM In-
teractive 3D Graphics Conference, pages 51–58, 1995.

17. L. Lamport A fast mutual exclusion algorithm. In ACM
Transactions on Computer Systems, 5(1):1–11, 1987.

18. M.C. Lin. Efficient Collision Detection for Animation
and Robotics. PhD thesis, Department of Electrical En-
gineering and Computer Science, University of Califor-
nia, Berkeley, December 1993.

19. M. Mantyla. An Introduction to Solid Modeling. Com-
puter Science Press, Rockville, Maryland, 1988.

20. M. Mantyla and M. Ranta. Interactive solid modeling
in HutDesign. In Proceedings of Computer Graphics,
Tokyo, 1986.

21. M. Mantyla and M. Tamminen. Localizedset operations
for Solid Modeling. In Computer Graphics, volume 17,
pages 279–288, 1983.

22. D. J. Meagher. The Solids Engine: A Processor for In-
teractive Solid Modeling. In Proceedingsof Nicograph,
1984.

23. J. Menon. Constructive Shell Representations for Free-
form Surfaces and Solids. PhD thesis, Dept. of Com-
puter Science, Cornell University, 1992.

24. M. Mine. Working in a Virtual World: Interaction Tech-
niques used in the Chapel Hill Immersive Modeling
Program. Technical report, Department of Computer
Science, UNC Chapel Hill, TR96-029, 1996.

25. M.J. Muuss and L. A. Butler. Combinatorial Solid Ge-
ometry, Boundary Representations and Non-manifold
geometry. In D. Rogers and R. Earnshaw, editors,
Advanced Computer Graphics Techniques. Springer-
Verlag, 1991.

26. B. Naylor. Interactive Solid Geometry via Partition-
ing Trees. In Proc. of Graphics Interface, pages 11–18,
1992.

27. A.A.G. Requicha and J.R. Rossignac. Solid Modeling
and Beyond. IEEE Computer Graphics and Applica-
tions, pages 31–44, September 1992.

28. A.A.G. Requicha and H.B. Voelcker. Boolean Op-
erations in Solid Modeling: Boundary Evaluation and
Merging Algorithms. Proceedings of the IEEE, 73(1),
1985.

29. A. Rockwood,K. Heaton, and T. Davis. Real-time Ren-
dering of Trimmed Surfaces. In Proceedings of ACM
Siggraph, pages 107–17, 1989.

30. J. Rossignac, A. Megahed, and B.D. Schneider. Inter-
active Inspection of Solids: Cross-sections and Interfer-
ences. In Proceedingsof ACM Siggraph, pages 353–60,
1992.

31. J. Rossignac and J. Wu. Correct Shading of Regular-
ized CSG Solids using a Depth-Interval Buffer. In Eu-
rographics Workshop on Graphics Hardware, 1990.

32. S. Roth. Ray Casting for Modeling Solids. Computer
Graphics and Image Processing, 18(2):109–44, 1982.

33. T.W. Sederberg and T. Nishita. Geometric Hermite
Approximation of Surface Patch Intersection Curves.
Computer Aided Geometric Design, 8:97–114, 1991.

34. R. Seidel. Linear Programming and Convex Hulls made
easy. In Proc. 6th Ann. ACM Conf. on Computational
Geometry, pages 211–215, Berkeley, California, 1990.

35. Kevin J. Weiler. Edge-based Data Structures for Solid
Modeling in Curved-Surface Environments. IEEE
Computer Graphics and Applications, 5(1):21–40, Jan-
uary 1985.

c The Eurographics Association 1997

