Lecture 2
NURBS Surfaces

Continuity

Segments are constructed so, at the join, they have
some level of continuity. C‘ZZ is the ;" derivative of
C,;. Ifthe curve has the same tangents at the join (i.e.
both slope and magnitude) the curve is said to have
first-degree continuity C! . For camera animations,
it is preferable to enforce C2 continuity.

If, in the previous figure, n = 3 and the knots U =
{up, u1,up,uz} remain fixed and the Pg varied ar-
bitrarily, then there are 12 free parameters. Forcing
the end & start points of each segment to be in the
same position (e.g. P = P3) forces C° continu-
ity, and there are now 10 free parameters. Enforcing
C1 continuity is slightly more complex (points around
each end point lie on a straight line) and leads to only
8 free parameters.

Itis clear that manipulating individual polynomial seg-
ments is not ideal since:

e Redundant data must be stored - 12 coefficients where
only 8 are required for C! cubic curves.

e If we are happy with curve segments C; and C3 and de-
sire C! continuity, then we cannot alter Cs.

Piecewise Curves

Curves consisting of just one polynomial segment
are often insufficient:

e A high degree is required in order to satisfy a large num-
ber of constraints (data points) - inefficient & numerically
unstable.

e Single-segment curves are not well-suited to interactive
shape design.

e The control of Bézier curves is not sufficiently local.

Solution: use a curve that is constructed piecewise:

The curve consists of m(=3) nt"-degree segments.
Each segment is denoted by C;(u), 1 <i < m. The
up = 0 < up < up < uz = 1 are called (breakpoints)
knots. In this case a Bézier curve has been used.

NonRational B-Splines

We require that:

e Continuity is determined by the basis functions, not the
control points.

e ‘Nice’ properties (e.g. convex hull, transformation invari-
ance) are maintained.

e The basis functions should have local support i.e. each is
nonzero only on a limited number of subintervals, not the
entire domain [ug, .. ., Un].

A pth-degree B-spline curve :

C(u) = ZM,p(U)Pi a<u<b
=0
where the {P;} are control points and the {N; ,,} are

the pth-degree B-spline basis functions defined on a
nonuniform knot vector:

U=A{a,...,a,upt1,...,Um—p-1,b,...,b}
Nonuniform means that the knots need not be reg-
ularly spaced. In this course we shall only consider
the case of clamped knot vectors, where the first and
last (p+ 1) components of the knot vector are a and
b. Typically this means U = {0,0,0,0,...,1,1,1,1}.



B-Spline Basis Functions

The basis functions are defined recursively:

: _ 1 ifui§u<ui+1
Nio(u) = { 0 otherwise

U — U u; 1—u
tu_Ni,p—l (w) + —FH =2 N (w)

Nip(u) = ———
Uip — Ui Uigpt1 — Uit

Note that:

e N; o(u) is a step function, equal to zero every-
where except on the interval u; < u < u;41.
This interval is know as the :t" knot span. It can
have zero length, since knots need not be dis-
tinct.

e The equations can yield % - this is defined here
as zero.

Changing Degree
A degree-9 curve on the knot vector:

U ={0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1}
and a degree-2 curve on:

1234567
U=1{0,0,0,-,2>222 - 1,1,1}

An Example B-Spline Basis

For U = {0,0,0,1,1,1}, p = 2 and considering
only « in the range [0, 1):

Noo =0
Nip =0
Napo =1
N3 =0
Noa =0
Noi= #=0Noo+ 3-sN1o =
Nip= %CNio+1=2Noo =1—u
Npp= Y=0Npo+ =%N3po =u
N3i= %N3o+1%Nap =0

No2= §=Noi+i55N1 = (1 —w)?

0-0
— u=0 iz —
Nip= $5gN11+ 77No1 = 2u(l —u)
_ Wt o _
Nop= 4=5No1+ %N31 =u?

These are the Bernstein polynomials, as used in Bézier
curves. B-splines may be thought of as a generalisa-
tion of the Bézier representation if:

U=1{0,...,0,1,...,1}

p+1 p+1

Multiple Control Points

A quadratic curve where:

U = {0,0,0,
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NonRational Bézier Surfaces
A surface is defined as a n x m net of control points, NURBS Surfaces

which has both v and v dimension. : N
A NURBS surface of degree p in the u direction and

degree q in the v direction has the form:

Z?:o Z;'nzo Nip(u) Njg(v)wiPi;
Z?:o Z;'n=o Nip(u)Njg(v)wi,;

S(u,v) =" Bin(u)Bjm(v)Pi; 0<u,v<1
i=0 j=0 S(u,v) =

The Bernstein polynomials make another appearance.

Below is shown a 3x5 net, a quadratic x cubic Bézier The {P; ;} from a bidirectional control net, the {w; ;}

are the weights, and the {N; ,(u)} and {N; ,(u)}

surface:
are the nonrational B-spline basis functions defined
z on the knot vectors:
U= {0,...,0,up+1,...,’U,,-,p,]_,l,...,l}
p+1 p+1
V = {0,...70,’U,q+1,...,us,q,]_,l,...,l}
q+1 q+1

wherer =n+p+1lands=m+q+ 1.

NURBS Example
A biquadratic NURBS surface where wy 1 = w12 = wz 1 = w22 =10,

all other weights are unity. NURBS Exam pIe

12
U=V = {0,0,0,3,5,1,1,1}
Now a bicubic surface, with the weights as before,

but:

i.e. a uniform knot vector.

1
U:VZ{O’anaanalal’l’l}




NURBS

“Nobody understands rational B-splines”

NU Non-Uniform  Knot Vectors with
(possibly) uneven spans.

R Rational Use of weights

BS B-splines Basis functions,
piecewise local curves.

Extremely powerful and complex. The use of multiple knots,
repeated control points and rational weights all add to the com-
plexity.

Properties:
e Corner point interpolation e.g. S(0,0) = Pg_.
o Affine invariance.
e Convex Hull

¢ Local modification; if P;; is moved, or w; ; altered, it af-
fects the surface shape only in the rectangle [u;, wjyp+1)

X [Vj; Vjgg+1)-

For most surfaces in modelling tools Uniform, NonRational B-
splines are sufficient.



