
Lecture 2

NURBS Surfaces

Piecewise Curves
Curves consisting of just one polynomial segment
are often insufficient:

� A high degree is required in order to satisfy a large num-
ber of constraints (data points) - inefficient & numerically
unstable.

� Single-segment curves are not well-suited to interactive
shape design.

� The control of Bézier curves is not sufficiently local.

Solution: use a curve that is constructed piecewise:
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The curve consists of m(=3) nth-degree segments.
Each segment is denoted by Ci(u), 1 � i � m. The
u0 = 0 < u1 < u2 < u3 = 1 are called (breakpoints)
knots. In this case a Bézier curve has been used.

Continuity

Segments are constructed so, at the join, they have
some level of continuity. Cj

i is the jth derivative of
Ci. If the curve has the same tangents at the join (i.e.
both slope and magnitude) the curve is said to have
first-degree continuity C1 . For camera animations,
it is preferable to enforce C2 continuity.

If, in the previous figure, n= 3 and the knots U =

fu0; u1; u2; u3g remain fixed and the Pji varied ar-
bitrarily, then there are 12 free parameters. Forcing
the end & start points of each segment to be in the
same position (e.g. P13 = P20) forces C0 continu-
ity, and there are now 10 free parameters. Enforcing
C1 continuity is slightly more complex (points around
each end point lie on a straight line) and leads to only
8 free parameters.

It is clear that manipulating individual polynomial seg-
ments is not ideal since:

� Redundant data must be stored - 12 coefficients where
only 8 are required for C1 cubic curves.

� If we are happy with curve segments C1 and C3 and de-
sire C1 continuity, then we cannot alter C2.

NonRational B-Splines

We require that:

� Continuity is determined by the basis functions, not the
control points.

� ‘Nice’ properties (e.g. convex hull, transformation invari-
ance) are maintained.

� The basis functions should have local support i.e. each is
nonzero only on a limited number of subintervals, not the
entire domain [u0; : : : ; um].

A pth-degree B-spline curve :

C(u) =

nX
i=0

Ni;p(u)Pi a � u � b

where the fPig are control points and the fNi;pg are
the pth-degree B-spline basis functions defined on a
nonuniform knot vector:

U = fa; : : : ; a; up+1; : : : ; um�p�1; b; : : : ; bg

Nonuniform means that the knots need not be reg-
ularly spaced. In this course we shall only consider
the case of clamped knot vectors, where the first and
last (p+1) components of the knot vector are a and
b. Typically this means U = f0;0;0;0; : : : ;1;1;1;1g.



B-Spline Basis Functions

The basis functions are defined recursively:

Ni;0(u) =

�
1 if ui � u < ui+1
0 otherwise

Ni;p(u) =
u� ui

ui+p � ui
Ni;p�1(u) +

ui+p+1 � u

ui+p+1 � ui+1
Ni+1;p�1(u)

Note that:

� Ni;0(u) is a step function, equal to zero every-
where except on the interval ui � u < ui+1.
This interval is know as the ith knot span. It can
have zero length, since knots need not be dis-
tinct.

� The equations can yield 0
0 - this is defined here

as zero.

An Example B-Spline Basis

For U = f0;0;0;1;1;1g, p = 2 and considering
only u in the range [0;1):

N0;0 = 0
N1;0 = 0
N2;0 = 1
N3;0 = 0
N0;4 = 0
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These are the Bernstein polynomials, as used in Bézier
curves. B-splines may be thought of as a generalisa-
tion of the Bézier representation if:

U = f0; : : : ;0| {z }
p+1

;1; : : : ;1| {z }
p+1

g

Changing Degree
A degree-9 curve on the knot vector:

U = f0;0;0;0;0;0;0;0;0;0;1;1;1;1;1;1;1;1;1;1g

and a degree-2 curve on:
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Multiple Control Points
A quadratic curve where:

U = f0;0;0;
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NonRational Bézier Surfaces

A surface is defined as a n x m net of control points,
which has both u and v dimension.

S(u; v) =

nX
i=0

mX
j=0

Bi;n(u)Bj;m(v)Pi;j 0 � u; v � 1

The Bernstein polynomials make another appearance.
Below is shown a 3x5 net, a quadratic x cubic Bézier
surface:

NURBS Surfaces

A NURBS surface of degree p in the u direction and
degree q in the v direction has the form:

S(u; v) =

Pn

i=0

Pm

j=0
Ni;p(u)Nj;q(v)wi;jPi;jPn

i=0

Pm

j=0
Ni;p(u)Nj;q(v)wi;j

The fPi;jg from a bidirectional control net, the fwi;jg

are the weights, and the fNi;p(u)g and fNj;q(u)g

are the nonrational B-spline basis functions defined
on the knot vectors:

U = f0; : : : ;0| {z }
p+1

; up+1; : : : ; ur�p�1;1; : : : ;1| {z }
p+1

g

V = f0; : : : ;0| {z }
q+1

; uq+1; : : : ; us�q�1;1; : : : ;1| {z }
q+1

g

where r = n+ p+1 and s= m+ q+1.

NURBS Example
A biquadratic NURBS surface wherew1;1 =w1;2 =w2;1 =w2;2 = 10,
all other weights are unity.

U = V = f0;0;0;
1

3
;
2

3
;1;1;1g

i.e. a uniform knot vector.

NURBS Example

Now a bicubic surface, with the weights as before,
but:

U = V = f0;0;0;0;
1

2
;1;1;1;1g



NURBS
“Nobody understands rational B-splines”

NU Non-Uniform Knot Vectors with
(possibly) uneven spans.

R Rational Use of weights
BS B-splines Basis functions,

piecewise local curves.

Extremely powerful and complex. The use of multiple knots,
repeated control points and rational weights all add to the com-
plexity.

Properties:

� Corner point interpolation e.g. S(0;0) = P0;0.

� Affine invariance.

� Convex Hull

� Local modification; if Pi;j is moved, or wi;j altered, it af-
fects the surface shape only in the rectangle [ui; ui+p+1)
� [vj; vj+q+1).

For most surfaces in modelling tools Uniform, NonRational B-

splines are sufficient.


