Методы подготовки и использования растровых картографических материалов

Дзюба Александр Константинович, АО “ЦКМ”


Опубликовано на сайте ГИС-Aссоциации 29.02. 2000 года. Оригинал http://www.gisa.ru/1663.html


В настоящее время современные технологии создания и обработки цифровой картографической продукции в основном базируются на использовании растровых картографических материалов. На начальном этапе при проектировании и создании Геоинформационных Систем геокодированные растры представляют самый дешевый способ получения полной визуальной информации о местности. Сочетание векторных и растровых слоев позволяет полноценно и иногда оптимально сочетать методы пространственного и визуального анализа картографической информации при принятии решений. Поэтому к растровой картографической информации также как и к векторной предъявляются достаточно жесткие требования. В каждом конкретном случае эти требования разные и зависят от задач, которые будут решаться с использованием данной информации.
В настоящий момент единственным оптимальным способом получения высококачественных растров является сканирование исходной картографической информации.
При создании цифровой картографической продукции в основном используются следующие исходные материалы:

Диапозитивы постоянного хранения (ДПХ);
Прозрачные пластики;
Планшеты на жесткой основе;
Цветные тиражные оттиски (ЦТО);
Ксерокопии с исходных оригиналов.
Технологическая схема получения растровых материалов состоит из следующих этапов:
Сканирование;
Коррекция цветов;
Подготовка к трансформированию и трансформирование;
Создание производных растровых материалов;

1.Сканирование
Основными требованиями при подготовке растровых картографических материалов для создания цифровых карт являются:
Объем информации;
Дискретность сканирования;
Достаточная (оптимальная) цветовая передача;
Выбор оптимального дискрета сканирования черно-белых (бинарных) оригиналов в основном зависит от толщины минимальной линии на исходном материале. Обычно наиболее оптимальный дискрет сканирования определяется по формуле (Минимальная_Толщина_линии/2). Таким образом, при сканировании топографических карт, где по нормам минимальная толщина линии составляет 0,1-0,15 миллиметров, оптимальная цена дискрета сканирования составляет 50 мкм или 0.05 мм ~ 600 dpi. Для сканирования оригиналов кадастровых съемок достаточно дискрета 100 мкм = 0,1мм ~ 360 dpi, так как минимальная толщина линии оригинала равна 0,2-0,25 мм.

2. Коррекция цветов
Главной задачей обработки цветных тиражных оттисков является получение бинарных изображений наиболее соответствующих диапозитивам постоянного хранения. Цветная линия состоит из основной скелетной линии и ореолов. При подготовке цветных материалов к цифрованию выбор дискрета сканирования определяется толщиной общего цветового пятна, из которого можно сделать бинарный слой. Требования к толщине скелетной линии должны быть не хуже чем требования к линиям на черно-белых оригиналах. Ореолы это граница перехода от одного цвета к другому. Они используются для смягчения границ при отображении растровых картинок. При получении бинарного изображения ореолы могут, как помогать, так и мешать процессу качественного выделения линии. Главным критерием борьбы с ними является устранение слипаний близко расположенных элементов содержания. Чем выше дискрет сканирования, тем легче происходит обработка границ и борьба с ореолами. В нашей компании за основу принят дискрет сканирования 50 мкм. Выбор такого дискрета позволяет получить изображение с тремя пикселями в скелетной части линий и двумя пикселями в ореолах. Этого вполне достаточно для получения качественной линии при трассировке.
При сканировании черно-белых оригиналов требования к цветовой передаче определяются настройками яркости и контрастности сканера. Более точные настройки позволяют устранить лишний шум и выбрать наиболее качественные параметры для последующей трассировки.
При сканировании цветных оригиналов требования к цветовой передаче определяются глубиной цвета, которая оптимально передает информативность отсканированного изображения. В связи с тем, что карта в основном печатается в 4, 6 или 8 красок, где каждая краска является информационным слоем, в нашей компании выбрана технология сканирования с глубиной цветовой передачи в 256 цветов из оптимизированной палитры. Данный режим позволяет без потери качества сократить объем занимаемого дискового пространства, что существенно при обработке больших объемов информации. Но встречаются достаточно сложные оригиналы, например с высокогорным рельефом, где расстояние между линиями составляет менее 0.1 мм. Для таких сложных оригиналов применяется технология TRUE COLOR, что позволяет более качественно сгустить цвета.
Одной из главных проблем обработки цветной растровой информации является бланкирование пересекающихся слоев. Устранение бланкирования полностью приводит к соответствию растровых слоев цветной карты слоям диапозитивов постоянного хранения.
Если векторизовать отсканированный набор и набор прошедший последующую обработку, то временная разница, при прочих равных условиях составляет до 30%.

3. Подготовка к трансформированию и трансформирование
Трансформирование растрового картографического материала необходимо:
для устранения погрешностей исходного материала;
для устранения погрешностей возникших в результате сканирования;
для преобразования в производные проекции;
для совмещения различных слоев.
При создании цифровых карт существует два способа подготовки материалов к цифрованию:

Если заказчику необходим растр. Деформируется исходный растровый материал. Передается заказчику для контроля. Выполняется оцифровка уже по деформированному материалу. (Самый дорогой способ)
Если заказчику растр не нужен. Выполняется оцифровка на существующем растре. Выполняется деформация векторного материала. Производится контроль деформации. Передается заказчику для работы.
Основной претензией заказчиков бывает недовольство, связанное с непосадкой векторного материала на растровый. Данная проблема возникает в результате применения различных методов деформирования картографической основы Заказчиком и Исполнителем. В первом случае (п.1) исполнитель защищает себя от претензий Заказчика передачей и растра и вектора, которые находятся в единой системе координат. Во втором случае исполнитель не защищен от претензий, так как растр, который заказчик получает сам, может быть деформирован по другой схеме и не соответствовать векторному материалу. Большую часть времени при решении данной проблемы приходится уделять согласованиям и выяснению отношений, кто сделал деформацию корректней. Данная проблема решается только строгим оформлением договоров.

Для трансформирования материалов в нашей компании используются следующие методы:
Линейное трансформирование по четырем точкам с учетом угла поворота;
Нелинейное трансформирование с использованием опорных точек (коэффициентов);
Ручное выравнивание взаимного расположения цветовых слоев;

Первый метод наиболее быстрый и простой. Но в связи с тем, что данный метод применим только к высококачественным исходным оригиналам (ДПХ), он используется очень редко.
Второй метод наиболее универсален и может применяться к различным видам цифровой картографической продукции. Трудоемкость его заключается в наборе и проверке правильности введения набора опорных точек. Для упрощения ввода опорных точек созданы специальные программы, которые предлагают ввод следующей точки на основании экспертного анализа уже введенных. Построение выходных опорных точек (математических) формируется автоматически на основании параметров выходной проекции, в которую будет трансформироваться цифровой материал. Чем больше опорных точек будет построено на карте, тем точнее будет получен результат трансформирования. Как пример - для трансформирования стандартных топографических карт масштаба 1:200 000 используется около 180 опорных точек. Но есть и недостаток в данном методе. Чем больше опорных точек будет использоваться, тем медленнее будет идти процесс обработки, так как на каждую точку будет выполнено N операций. Процесс трансформирования соответственно существенно увеличивается.
Третий метод применяется исключительно к слоям растровых цифровых карт созданных по цветным тиражным оттискам. Так как цифра расхождения слоев при печати (на точных топографических картах) иногда достигает трех и даже пяти миллиметров, приходится слои совмещать вручную.

4. Создание производных растровых материалов
Под построением производных растровых материалов подразумевается:
геокодирование и приведение к единому масштабу растров с различной дискретностью;
построение растровых мозаик;
сшивка растровых материалов;
подготовка единых растровых наборов;
приведение к единой палитре;
Сшитые растровые картографические материалы обладают всей полнотой и наглядностью исходных карт и превосходят векторные карты своей низкой себестоимостью изготовления. Растровые карты - это идеальный материал для нанесения специальной нагрузки. Главным преимуществом есть то что, не дожидаясь получения векторной карты, за сравнительно небольшие деньги Заказчик может получить материал для оценки местности при подготовке договоров. Недостатком таких карт есть большое занимаемое дисковое пространство и отсутствие работы с запросами.
Растровые карты могут быть отсканированы с различной дискретностью и палитрой. Приведение их к единой системе координат без потери изобразительного качества называется геокодированием. Так как в основном растровые наборы состоят из чередований битов или байтов, процесс геокодирования сводится к прописке в паспорте растрового набора координатной системы, в которой он будет отображаться. В связи с тем, что растровые матрицы прямоугольные, многие растровые форматы позволяют хранить рамку или отсекающую область для вывода только той информации, которая находится внутри. Этот одно из важных условий для построения мозаик. Пример, отключение вывода зарамочного оформления.
Важным фактором при построении геокодированных растровых изображений является формат хранения. Компании идут разными путями при выборе форматов. Строят свой либо расширяют существующий. Наиболее удобным для расширения является формат TIFF. Используя теговую структуру хранения информации в нем можно разместить все данные о координатах и рамке набора. На его основе создан формат GEOTIF. Наша компания разработала собственный формат для хранения растровых изображений. Он отличается от существующих форматов способом хранения информации. Мы используем его, уже пять лет для построения геокодированных растровых мозаик. Существует полноценный импорт и экспорт, что позволяет не думать о совместимости с другими системами. По опыту использования наиболее распространенным форматом при обмене данными является формат TIFF.
Из опыта прошлых лет видно, что многие компании хотели использовать единые сшитые растровые материалы. Наборы занимали много места. Были трудно вращаемые и не удобные в использовании.
В данный момент тенденция развития стремится к построению мозаик. Удобство мозаик заключается в распределенном доступе к информации. Растры могут находиться на разных компьютерах и в различных видах, в том числе и в архивных. Многие геоинформационные системы поддерживают обработку мозаик в своих проектах. Одна из главных задач решаемых нашей компании это профессиональная подготовка растровых картографических мозаик для использования в ГИС проектах.