1. Discount Factor

- Suppose that you will get $\$ 100$ in the next period.
- $\$ 100$ in the next period must be less worth than $\$ 100$ today.
- Suppose that $\$ 100$ in the next period is equivalent to today's $\$ 100$ to you (no difference between today and future)
- This means your future is as important as today. In other words, your future is 100% as important as today.
- Suppose that $\$ 100$ in the next period is equivalent to today's $\$ 80$.
- This means your future is 80% as important as today.
- Suppose that $\$ 100$ in the next period is equivalent to today's $\$ 50$
- This means your future is 50% as important as today.
- If $\$ 100$ in the next period is equivalent to today's $\$ 0$.
- This means your future is 50% as important as today.
- This \% above is discount factor.
- Discount factor $=1(100 \%) \rightarrow$ no difference b / w today and future.
- Discount factor $=0(0 \%) \rightarrow$ only loves today. Any value from future is 0 value to you. Only today is important.
- Discount factor=Equivalent Current Value/Given Future Value.

2. Discount Rate

- Suppose that you currently have $\$ 100$. Let's find the amount of money in the next period that is as worth as current $\$ 100$ (It must be greater than $\$ 100$).
- Suppose that $\$ 100$ in the current period is equivalent to $\$ 120$ in the next period.
- $120=1.2 * 100=(1+0.2) * 100$. Here 0.2 is your discount rate.
- Suppose that $\$ 100$ in the current period is equivalent to $\$ 150$ in the next period.
- $150=1.5 * 100=(1+0.5)^{*} 100$. Here 0.5 is your discount rate.
- Suppose that $\$ 100$ in the current period is equivalent to $\$ 100$ in the next period.
- $120=1.0^{*} 100=(1+0.0)^{*} 100$. Here 0 is your discount rate. You don't discount future.
- Suppose that $\$ 100$ in the current period is equivalent to $\$ \infty$ in the next period.
- $\infty=\infty * 100=(1+\infty)^{*} 100$. Here ∞ is your discount rate. The future value is just nothing. Only current period is important.
- Generally
- Equivalent future value $=(1+$ discount rate $) *$ given current value.

3. Discount Factor and Discount Rate

- Suppose that $\$ 100$ in the current period is equally as worth as $\$ 120$ in the next period.
- Then we have

Future $\$ 120=(1+0.2) *$ given current $\$ 100$. Your discount rate is 0.2 .

- Thinking this in the other way around, if \$120 in the next period is equally as worth as $\$ 100$ in the current period, your discount factor is $100 / 120$, which is same as $100 /(1+0.2) * 100=1 /(1+0.2)$.
- Therefore discount factor $=1 /(1+$ discount rate $)$.
- Suppose that $\$ 100$ in the current period is equally as worth as $\$ 150$ in the next period.
- Then we have

Future $\$ 150=(1+0.5) *$ given current $\$ 100$. Your discount rate is 0.5 .

- Thinking this in the other way around, if \$150 in the next period is equally as worth as $\$ 100$ in the current period, your discount factor is $100 / 150$, which is same as $100 /(1+0.5) * 100=1 /(1+0.5)$.
- Therefore discount factor $=1 /(1+$ discount rate $)$.
- Suppose that $\$ 100$ in the current period is equally as worth as $\$ 100$ in the next period.
- Then we have

Future $\$ 100=(1+0) *$ given current $\$ 100$. Your discount rate is 0 .

- Thinking this in the other way around, if $\$ 100$ in the next period is equally as worth as $\$ 100$ in the current period, your discount factor is $100 / 100$, which is same as $100 /(1+0)^{*} 100=1 /(1+0)$.
- Therefore discount factor $=1 /(1+$ discount rate $)$.
- Suppose that $\$ 100$ in the current period is equally as worth as $\$ \infty$ in the next period.
- Then we have

Future $\$ \infty=(1+\infty) *$ given current $\$ 100$. Your discount rate is ∞.

- Thinking this in the other way around, if $\$ \infty$ in the next period is equally as worth as $\$ 100$ in the current period, your discount factor is $100 / \infty$, which is same as $100 /(1+\infty)^{*} 100=1 /(1+\infty)$.
- Therefore discount factor $=1 /(1+$ discount rate $)$.

