Новиков И.И.,академик РАН, Кружилин Г.Н.., чл.-кор. РАН.
Элекртические станции, 1999, №6, с.29-35.

УРОКИ АВАРИИ РЕАКТОРА PWR НА АЭС ТРИ-МАЙЛ-АЙЛЕНД В США В 1979 г.

Авария реактора PWR (типа ВВЭР) мощностью 885 МВт энергоблока № 2 на АЭС TMI (АЭС на трехмильном острове р. Сэсквихана) в Пенсильвании (США) произошла 28 марта 1979г. в среду в 4 ч 36с. В результате была расплавлена верхняя часть активной зоны, вследствие чего восстановление самого реактора стало невозможным.

Этот реактор имел два вертикальных парогенератора и работал при давлении в первом контуре 150 кгс/см2. Причем, поддержание этого давления осуществлялось с помощью парового объема, в верхней части присоединенного к первому контуру 1 компенсатора объема 2 (см. рисунок). Наверху компенсатора объема 2 расположен предохранительный клапан 4 с электрической схемой управления, автоматически открывающийся при повышении давления на 14 кгс/см2. Кроме того, имелся другой, нормально открытый, блокировочный клапан 3, расположенный под предохранительным, который необходимо закрыть в случае неполадок с предохранительным клапаном.

Реактор изготовлен фирмой Бабкок-Виль-кокс. Эксплуатировалась АЭС компанией "Метрополитен Эдисон" - ее совладельцем. При аварии реактором и энергоблоком в целом управляли операторы Е. Фредерик и С. Фост. Кроме того, на пульте управления были начальник смены энергоблоков № 1 и 2

У. Зеве и мастер Ф. Шейман.

Для выяснения причин этой аварии президентом США Д. Картером была создана Президентская Комиссия в составе 12 специалистов под председательством профессора Дж. Кемини, составившая о своей работе довольно обширный доклад. Краткий обзор основных данных этого доклада излагается далее.

Энергоблок № 2 перед аварией работал на мощности 97% номинальной. Авария началась с прекращения подачи питательной воды в парогенераторы из-за самопроизвольной остановки питательных насосов. Вследствие этого через 2 с автоматической защитой были выведены из работы паровая турбина с электрогенератором, а также реактор, причем через 9 с после начала аварии нейтронная мощность реактора упала до нуля. В соответствии с проектом из-за аварийной остановки основных питательных насосов парогенераторов автоматически включились в работу три аварийных питательных насоса, что было зафиксировано оператором через 14 с после начала аварии.

Таким образом, в начальной стадии аварии в течение первых 14 с аварийная защита и автоматика в целом на энергоблоке № 2 сработали должным образом, и остановленный реактор как будто перешел в обычно спокойную стадию расхолаживания с отводом от твэлов остаточного тепловыделения, составляющего вначале 6% мощности реактора перед остановкой.

В действительности события пошли иначе: на пульте управления появились многочисленные аварийные звуковые и разноцветные световые сигналы (более 100 в 1 мин), не дающие конкретной информации и вместе с тем создающие беспокойную и тревожную обстановку для эксплуатационного персонала.

Развитие аварии произошло, прежде всего, потому, что оказались закрытыми задвижки на обеих аварийных питательных линиях, вследствие чего поступления воды из них в парогенераторы на самом деле не было. Световые сигналы о закрытом состоянии этих задвижек были, но одна из сигнальных лампочек была закрыта небрежно брошенным на нее стандартным желтым ярлыком, используемым при ремонтах, а другая дежурными не была замечена. Однако в этом отношении более важным было то, что при работе реактора эти задвижки всегда должны быть полностью открытыми, вследствие чего, естественно, операторы за их положение могли не беспокоиться.

Предполагается, что эти задвижки были закрыты 26 марта, т.е. за двое суток до аварии, при стандартных испытаниях аварийных насосов и по оплошности не были снова открыты. Непоступление воды из аварийных питательных насосов в парогенераторы было обнаружено операторами лишь через 8 мин после начала аварии, и тогда же эти задвижки были открыты.

При работе реактора на упомянутой мощности из парогенераторов испаряется около 2 м3 воды в 1 с. Поэтому при аварийном прекращении подачи воды в парогенераторы имело место резкое понижение уровней воды в них и связанное с этим соответственное уменьшение охлаждения циркулирующей воды первого контура, т.е. увеличение температуры воды в нем и, следовательно, ее расширение и частичное перетекание в компенсатор объема. В свою очередь последнее привело к повышению давления пара в его верхней части и затем к автоматическому открытию установленного на нем предохранительного клапана.

Через 14 с после начала аварии давление в первом контуре понизилось до 2205 psi = 155 кгс/см2 и предохранительный клапан должен был автоматически закрыться. По приборам на щите управления было видно, что электрическая схема управления предохранительным клапаном разомкнута, и это привело операторов к заключению о действительном закрытии этого клапана. Однако на самом деле предохранительный клапан не закрылся — его заклинило в открытом положении, поэтому через него шла непрерывная утечка воды из первого контура, и вместе с тем происходило понижение давления в нем. Но операторы не понимали причин этого. Автоматика же сработала должным образом: через 2 мин после начала аварии включились в работу два аварийных насоса высокого давления с подачей 4 м3 воды в 1 мин в первый контур реактора. По проекту эти насосы включаются автоматически в случае аварийной утечки воды из первого контура. Поэтому сам факт их включения должен был показать операторам на наличие такой утечки. Но этого не произошло — возможность такой утечки они продолжали игнорировать. Но вместе с тем операторы (вовсе необоснованно) боялись "переполнения" первого контура водой, поэтому через 2,5 мин был остановлен один аварийный насос, а производительность другого была уменьшена до 0,4 м3/мин.

Еще через 1 мин, т.е. через 5,5 мин после начала аварии, начался быстрый подъем уровня воды в компенсаторе объема. Это происходило, несомненно, из-за появления пузырей пара в активной зоне, вытесняющих воду в компенсатор объема. Операторы же восприняли это как результат переполнения первого контура водой и поэтому спустили часть ее в дренажную систему. Уменьшение же объема воды в первом контуре, и вместе с тем, парообразование в активной зоне могли привести к появлению парового объема в верхней части корпуса реактора и, следовательно, к оголению активной зоны и ее расплавлению. Именно последнее и произошло на самом деле со всеми другими тяжелыми последствиями.

В течение более 2 ч после начала аварии операторы не считались с рядом моментов, свидетельствующих об утечке воды из первого контура реактора через предохранительный клапан. Одним из них была высокая температура в дренажной трубе за этим клапаном, достигавшая 125°С. Между тем, в инструкции подчеркивается, что допустимой является температура до 55°С, и что температура в 90°С указывает на наличие утечки воды через предохранительный клапан. В оправдание операторы сообщили Комиссии, что обычно эта температура на реакторе была выше 55° из-за того, что предохранительный клапан другие дренажные вентили слегка подтекали.

Вторым таким моментом был сигнал в 4 ч 11 мин о появлении воды в водосборнике и колпаке-контейнменте. Затем в 4 ч 20 мин стали быстро расти температура и давление внутри контейнмента из-за выходящего через предохранительный клапан пара. В связи с эти операторы включили вентиляцию и систем охлаждения контейнмента. Примерно в 5 ч 0 мин все четыре циркуляционных насоса первого контура начали вибрировать (что свидетельствовало о наличии пара в воде). Операторы, боясь повреждения этих насосов, в 5 ч 14 мин остановили их.

Только в 6 ч 22 мин, т.е. через 2 ч 22 мин после начала аварии, блокировочный клапан был закрыт операторами и, таким образом, утечка воды из первого контура через предохранительный клапан была прекращена. В связи с этим оператор Е. Фредерик сообщил Комиссии, что они закрыли блокировочный клапан "потому, что он и его товарищи не могли придумать ничего другого". Как отмечалось ранее (в сообщении У. Зеве), при этом они могли предполагать возможность небольшой протечки воды из первого контура при закрытом предохранительном клапане, не подозревая о наличии большой утечки воды через открытый предохранительный клапан, что происходило в действительности. Об этом свидетельствует и тот факт, что одновременно с закрытием блокировочного клапана операторы не включили аварийные насосы высокого давления для подачи воды в первый контур. Это было сделано почти через 1 ч по решению прибывших на АЭС специалистов более высокого ранга.

После закрытия блокировочного клапана в 6 ч 22 мин давление в первом контуре стало повышаться. Вместе с тем появились доказательства повреждения активной зоны: в 6 ч 30 мин наблюдался быстрый рост радиоактивности в помещениях реактора, достигшей к 6 ч 48 мин довольно высокого уровня. С учетом этого начальник цеха АЭС Д. Кандер и У. Зеве объявили на АЭС чрезвычайное положение, как того требовала имеющаяся инструкция. В 7 ч 0 мин все руководство на АЭС принял на себя прибывший на станцию ее директор Г. Миллер. Он признал, судя по весьма высокому уровню радиоактивности в контейнменте, что произошло весьма сильное повреждение твэлов реактора. И, прежде всего немедленно организовал измерения радиоактивности вокруг АЭС, а также с помощью вертолета над АЭС, которые показали ее нормальный уровень без какого-либо увеличения из-за аварии. Благодаря этому эвакуация проживающего вблизи АЭС населения не требовалась. Однако из-за опасности радиоактивности была дана рекомендация жителям вблизи АЭС оставаться в квартирах и не открывать окон; также были закрыты ближайшие школы.

Однако благополучие в отношении радиоактивной безопасности жителей вблизи АЭС было недолгим. Вскоре обнаружилось, что в верхней части корпуса реактора образовался паровой объем около 10 м3. Это выяснилось в связи с тем, что не удавалось восстановить циркуляцию воды в первом контуре реактора. Включение циркуляционных насосов приводило к опасной сильной вибрации их, что свидетельствовало о наличии в потоке газовой фазы. Естественной циркуляции воды в первом контуре с ее охлаждением в парогенераторе вовсе не было, очевидно, из-за того, что уровень воды в реакторе был ниже входов в отводящие трубопроводы. Повысить же этот уровень с помощью аварийных насосов высокого давления тоже не удавалось, так как из-за роста давления в первом контуре они были отключены через 18 мин после упомянутого включения.

В связи с этими фактами и возникло понимание, что в верхней части корпуса реактора образовался огромный газовый объем. Было несомненно также, что в этом объеме имелись водород, образовавшийся при пережоге твэлов в результате химической реакции их циркониевых оболочек с молекулами воды, а также выделившийся из воды радиолитический кислород, и что поэтому имеется опасность взрыва гремучей смеси.

К обсуждению возможности такого взрыва были привлечены крупнейшие специалисты США, неизменно дававшие заключения, что в тех конкретных условиях взрыва гремучей смеси в корпусе реактора не должно быть. По мнению этих специалистов в дальнейшем не должно быть такого взрыва также в контейнменте. Хотя ранее, в среду, в 13 ч 50 мин взрыв гремучей смеси в контейнменте имел место, причем приборами было зафиксировано повышение давления в нем на 4 кгс/см2. Но этот факт тогда не был признан, а слышимый хлопок объяснялся звуковыми эффектами от работающих вентиляторов. Тем не менее губернатор Пенсильвании 30 марта, в пятницу, из-за осторожности издал распоряжение с рекомендацией вывода из зоны радиусом 5 миль от АЭС беременных женщин и детей дошкольного возраста. К счастью, все обошлось благополучно и 2 апреля, в понедельник, на шестой день после начала аварии газовый объем из корпуса реактора был полностью удален. Каким образом это было достигнуто, в докладе Комиссии, к сожалению, не комментируется. Со своей стороны, отметим, что это могло произойти вследствие постепенного растворения водорода и других газов в воде, подаваемой аварийными насосами высокого давления с одновременным дренажем воды из первого контура. Конечно, образовавшийся газовый объем можно было бы выпустить за несколько минут через вентиль-воздушник на крышке реактора, если бы он имелся.

Последствия аварии на АЭС TMI имели весьма длительную историю. Более 4•103 м3 высокорадиоактивной воды оставалось в контейнменте и баках примыкающего вспомогательного здания. В контейнменте содержался корпус реактора с оплавленной активной зоной, а также радиоактивные газы. Радиоактивными элементами были загрязнены стены и полы рабочих помещений, а также оборудование. По сделанной в то время оценке только дезактивация последних стоила около 200 млн. дол. Общий же ущерб от аварии оценивался в 1,86 млрд. дол.

Вместе с тем представляется достойным особого упоминания тот факт, что эта весьма тяжелая авария прошла без вреда для проживающего вблизи АЭС населения благодаря тому, что в соответствии с проектом выделившаяся при пережоге активной зоны огромная радиоактивность была задержана внутри колпака-контейнмента, установленного над реактором и парогенератором.

Остановимся теперь на основных причинах этой аварии. Как видно из описанного хода аварии, главной причиной была недостаточная компетенция всех четырех специалистов, находящихся в начале аварии в помещении щита управления реактором, которые длительное время не могли понять происходящего, и по существу были растеряны. Причем, в самом начале аварии, когда автоматически включились аварийные насосы высокого давления для подачи воды в первый контур, они их остановили, грубо нарушив инструкцию. Если бы они этой ошибки не сделали, повреждения активной зоны реактора не было бы.

Тем не менее, первопричиной аварии были дефекты оборудования. В докладе Комиссии сообщается, что прекращение подачи питательной воды и самопроизвольная остановка питательных насосов, вызвавшие начало аварии, по всей вероятности, произошли вследствие того, что при ремонтных работах в трубки пневматической (воздушной) системы автоматики, управляющей задвижками на питательных трубопроводах к парогенераторам, попала влага, что в свою очередь привело к самопроизвольному закрытию этих задвижек, и таким образом, к началу аварии. Сообщается также, что случаи попадания влаги в эту систему регулирования ранее были дважды, и что, если бы этот дефект был своевременно устранен, аварии не было бы.

Ненадежным в работе оказался также предохранительный клапан, который в начале аварии заклинило в отрытом положении, вследствие чего возникла непрерывная утечка воды из первого контура. Ситуация здесь аналогична предыдущей, поскольку фирме Баб-кок-Вилькокс, изготовляющей эти клапаны, уже были известны девять случаев заклинивания этих клапанов на других установках. Но фирма не только не приняла мер для устранения этого дефекта, но и не проинформировала использующие их АЭС о его наличии. Кроме того, было известно, что такая же авария с заклиниванием открытого предохранительного клапана произошла в сентябре 1977 г. на реакторе ВВЭР, изготовленном фирмой Бабкок-Вилькокс, на АЭС Дэвис-Бесе. Там все обошлось без серьезных последствий лишь потому, что реактор работал на мощности 9% номинальной, и блокировочный клапан был закрыт через 20 мин, поэтому утечка воды из первого контура была довольно быстро прекращена. Однако и в этом случае оператор ошибочно остановили аварийные насосы высокого давления, автоматически включившихся для подачи воды в первый контур. Эта авария была специально рассмотрена фирмой Бабкок-Вилькокс и NRC - Комиссией ядерного регулирования (аналогичной атомному надзору в России), причем было признано, что при такой аварии и полной мощности реактора перед аварией могут произойти оголение активной зоны и повреждение твэлов. Но ни фирма, ни NRC об этом не информировала соответствующие АЭС.

Вместе с тем Комиссия выяснила, что руководство АЭС TMI относилось к ее эксплуатации без должного учета потенциальной радиоактивной опасности АЭС, т.е. практически так же, как к эксплуатации обычной ТЭС на органическом топливе. В частности, не был никаких требований к уровню образования операторов и начальников смен. Их подготовкой, по договору с АЭС, занимался учебный отдел фирмы Бабкок-Вилькокс, причем не было ни формальной программы, ни учебного руководства. Директор и другие руководители АЭС подготовкой операторов не занимались. В результате сложнейшее техническое оборудование обслуживалось технически слабым персоналом. Вследствие этого на АЭС мирились с низким уровнем ее эксплуатации: протечками воды в вентилях; попаданием влаги в трубки пневматической системы регулирования; со слабым контролем за выполнением ремонтных работ, что привело, в частности к оставлению закрытыми задвижек на аварийных питательных трубопроводах к парогенераторам.

Вместе с тем Комиссия отмечает, что руководство АЭС без должного внимания относилось к рекомендациям NRC, и что сама NRС не настаивала на их выполнении. С учетом этого Комиссия пришла к выводу, что авария, произошедшая на АЭС TMI, была обусловлена, главным образом, явно неудовлетворительной системой организации и эксплуатации АЭС в США и поэтому "... была в конце концов неизбежной".

Естественно, что для выправления положения должны быть коренные изменения в самой системе организации использования АЭС.

Вследствие этого Комиссия рекомендует полную реорганизацию NRC и придание ей широких полномочий по техническому надзору практически по всем разделам эксплуатации АЭС, а также по контролю за качеством поставляемого на АЭС оборудования и по организации новых разработок и научно-технических исследований; конкретизируются также функции энергосистем в отношении входящих в них АЭС.

Вместе с тем в рекомендациях Комиссии подробно определены меры, какие должны быть приняты для подготовки и переподготовки операторов и начальников смен с тем, чтобы в работе на АЭС они действительно обеспечивали безопасную работу реактора и являлись, таким образом, по существу главным барьером по безопасности. При этом подчеркнута необходимость создания в центре, в отдельных штатах и в энергосистемах учебных курсов для подготовки (и переподготовки) операторов и начальников смен с приемом на них лишь тех, кто сдал экзамены по специальной программе. Определяется также, что при учебной подготовке и практической работе операторы должны регулярно практиковаться на тренажерах, которые должны быть легко доступными для работников АЭС.

Существенно отметить, что Комиссия подчеркивает также необходимость привлечения операторов и других оперативных работников АЭС к активному участию в конференциях, семинарах и всякого рода совещаниях по анализу опыта эксплуатации атомных электростанций с тем, несомненно, чтобы непрерывно повышалась их квалификация, и вместе с тем повышался и укреплялся их интерес к собственной профессии при одновременном повышении ее престижа. Тем самым определялись условия создания среды и атмосферы, от которых зависит слаженная работа по обеспечению надежной и безопасной эксплуатации атомного реактора и энергоблока в целом.

Здесь представляется уместным и целесообразным отметить, что авария с пережогом активной зоны на Чернобыльской АЭС в апреле 1986 г. тоже в конечном счете произошла из-за аналогичных организационных недостатков в системе эксплуатации АЭС в б. СССР. Хотя непосредственные первопричины аварии на АЭС TMI и ЧАЭС были разными. Как уже говорилось, на TMI авария началась с самопроизвольного отключения подачи воды в парогенераторы и затем заклинивания предохранительного клапана первого контура, т.е. из-за дефектов оборудования. А на ЧАЭС первопричиной аварии были отключения операторами, вопреки инструкции и здравому смыслу, ряда сигналов аварийной защиты (A3) реактора с целью "обязательного" проведения малозначимых электротехнических испытаний по программе электроцеха ЧАЭС. Вследствие этого при тепловой мощности 200 МВт, при которой проводились испытания, когда начался произвольный быстрый разгон мощности реактора, закончившийся пережогом активной зоны, предусмотренной проектом автоматической остановки реактора не произошло. И не могло произойти, поскольку сигналов A3 реактора по мощности и скорости ее роста на уровне 200 МВт не было — они остались включенными на мощности 1600 МВт, какая была до испытаний.

К организационным недостаткам можно отнести также крайне слабую информацию об аварии на TMI. В противном случае, т.е. при своевременном ознакомлении с весьма содержательным докладом Президентской Комиссии об аварии на АЭС TMI широкого круга наших специалистов-атомщиков и сотрудников соответствующих ведомств, аварии на ЧАЭС, по всей вероятности, не было бы. Тем более, что между этими авариями был интервал времени в 7 лет, вполне доступный для должного усвоения тяжелого урока TMI. Но, к сожалению, этого не произошло. В результате в нашей стране пришлось делать выводы — резко менять отношение к АЭС уже из собственного, еще более сурового урока тяжелой аварии на ЧАЭС, повлекшего за собой огромный материальный и моральный ущерб.

Из доклада Комиссии следует также необходимость дополнительного особого внимания к ряду физико-технических проблем. В качестве первой из них следует подчеркнуть опасность взрыва водорода (точнее, гремучей смеси) в контейнменте, что уже имело место при аварии на TMI, к счастью, с не очень большим ростом давления в контейнменте (на 4 кгс/см2) и без тяжких последствий. В связи с этим, как известно, для предотвращения взрыва водорода в контейнменте новых АЭС предусматривается заполнение его азотом или сжигание водорода в объеме контейнмента с помощью низкотемпературных аппаратов с катализатором. А для предотвращения роста давления в контейнменте сверх допустимого предусматривается отвод газа из него через специальные каналы, заполненные поверхностно-активным материалом, например, активированным древесным углем, с целью поглощения из газа радиоактивных примесей.

Следует отметить далее особую важность обеспечения надежной циркуляции воды в нервом контуре реактора в аварийных условиях. Как уже говорилось, на TMI пришлось отключить основные циркуляционные насосы из-за весьма сильной вибрации их при появлении в потоке циркулирующей воды некоторого количества пара. С учетом этого к настоящему времени во Франции уже используется новый тип насосов для первого контура, которые могут работать при объемном паросодержании в потоке до 75%. Кроме того, по имеющимся нашим проработкам целесообразно и вполне возможно подключение к первому контуру вертикального контура естественной циркуляции воды высотой около 10 м из трубы диаметром 150 - 200 мм, способного отвести остаточное тепловыделение активной зоны реактора при прекращении работы циркуляционных насосов в аварийных условиях.

Среди специалистов крайне важной считается также опасность расплава стенки корпуса реактора из-за прямого контакта с ним раскаленных до высокой температуры сердечников твэлов в аварийных условиях. На TMI эта опасность не проявилась, по-видимому, вследствие того, что там была сожжена лишь верхняя часть активной зоны, причем куски раскаленных твэлов задерживались где-то в нижней части ее и не достигли днища корпуса реактора. Представляется возможным рассчитывать на этот благоприятный эффект также при пережоге нижней части активной зоны. С этой целью, по нашему мнению, целесообразно под активной зоной, т.е. между активной зоной и днищем корпуса, установить решетчатую металлическую конструкцию толщиной около 1,0 м, которая задерживала бы падающие куски раскаленных твэлов. Боковые же стенки корпуса реактора при пережоге активной зоны, судя по последствиям аварии на TMI, повреждению не подвергаются, по-видимому, благодаря тому, что они отстоят от активной зоны не менее чем на 300 мм.

В заключение в связи с еще продолжающейся дискуссией вокруг АЭС в нашем обществе представляется интересным отметить, что в докладе Президентской Комиссии США говорится о жизнеспособности АЭС и вместе с тем об опасности их дискредитации в обществе из-за неудовлетворительной организации их использования. С учетом этого Комиссия считает результаты своих исследований и свои рекомендации жизненно важными для бyдущего атомной энергетики. Причем, нигде в тексте доклада Комиссии нет никаких coмнений в этом отношении, несмотря на то, что в ее составе были специалисты разных областей деятельности и знаний.

Суровые уроки тяжелых аварий на АЭС США и в Чернобыле, конечно, не прошли даром. В результате отношение к АЭС со стороны общественности стало весьма критическим и жестким, а со стороны руководства всех уровней предельно ответственным. Это в свою очередь обеспечило должное внимание к подбору и подготовке операторов и в целом управленцев для АЭС, благодаря чему их квалификация в последние годы оценивается специалистами, в том числе зарубежными, как вполне соответствующая современным высоким требованиям. Поэтому уверенно можно считать, что период "детских болезней" АЭС закончен и что подобных тяжелых aварий в дальнейшем не будет.

Тем не менее безопасность населения от угрозы радиоактивности АЭС обеспечивается не только качеством оборудования и должным высоким уровнем эксплуатации, но и принятой во всем мире установкой над реактором ВВЭР и парогенераторами прочного герметичного железобетонного колпака-контейнмента, гарантирующего удержание радиоактивности в пределах зданий АЭС в случае крайне маловероятной тяжелой аварии на реакторе.

Реальная эффективность этого мероприятия была подтверждена практически на yпомянутой АЭС в США, где благодаря наличию контейнмента при тяжелой аварии с расплавлением активной зоны ВВЭР выброса радиоактивности за пределы АЭС не было. С учетом этого можно с уверенностью считать, что, если бы на Чернобыльской АЭС над реактором РБМК-1000 был контейнмент, там при аварии с пережогом активной зоны выброса радиоактивности тоже не было бы.

Таким образом, на современной АЭС ВВЭР радиоактивная безопасность за пределами АЭС гарантируется дважды: во-первых тем, что предотвращается сама возможность пережога активной зоны реактора благодаря квалифицированному и ответственному выполнению эксплуатационной инструкции, и во-вторых, тем, что полностью предотвращается возможность выброса радиоактивности за пределы АЭС благодаря установке над реактором герметичного железобетонного колпака-контейнмента.

Вместе с тем, для выживания и развития АЭС крайне важными являются их высокие технико-экономические показатели по сравнению с таковыми на ТЭС. Об этом можно судить прежде всего по опыту Франции, где около 80% электроэнергии производится на АЭС с реакторами типа ВВЭР единичной электрической мощностью до 1400 МВт. По данным английского профессора Джониса [1], при коэффициенте использования мощности (КИМ) 0,75 и учетной ставке на капитал 5% полная стоимость производства электроэнергии на АЭС Франции составляет 3,69 цента на 1 кВтч. На ТЭС с современными парогазовыми установками (ПГУ), работающими с КПД = 50%, по данным Джониса эта стоимость в 1,7 раза выше; на ТЭС, использующих в качестве котельного топлива газ, она выше, чем на АЭС, в 2,2 раза.

Для полноты картины надо отметить, что в упомянутую стоимость 3,69 цента на 1 кВтч входят затраты на эксплуатацию и ремонт АЭС во Франции (1,0 цент на 1 кВтч); затраты на весь топливный цикл от добычи урана до химической переработки отработавшего топлива и захоронения радиоактивных отходов (0,83 цента на 1 кВтч); начисления на суммарные капитальные затраты (1,86 цента на 1 кВтч). Причем, в последние входят прямые удельные капиталовложения в размере 1231 дол. на 1 кВт, а также процентные начисления на удельные капиталовложения в течение 5 лет строительства АЭС и на последующие расходы для демонтажа АЭС в размере 10 - 15% затрат на строительство.

Об экономической эффективности АЭС можно судить также по имеющимся отечественным данным о себестоимости производства электроэнергии на АЭС и ТЭС, представленным Федеральной энергетической комиссией в виде тарифов на прием электроэнергии от отдельных электростанций (протокол № 88 от 17/VI 1997 г.). Из этого документа следует, что от Конаковской ГРЭС, работающей на газе, с паровыми котлами закритического давления электроэнергия принимается по цене 3,58 цента за 1 кВтч, а от Ново-Воронежской АЭС с реакторами ВВЭР по цене 1,30 цента за 1 кВтч. При этом эффективность АЭС в 3,58/1,30 = 2,76 раза выше эффективности ТЭС.

Важно также отметить, что уже имеющегося в России запаса ядерного топлива для АЭС в виде обогащенного урана, а также выделенного из отработанного топлива "энергетического" плутония и избыточного оружейного плутония хватит, по крайней мере, на несколько десятилетий. Наконец, пользуясь случаем, хотелось бы отметить, что, по нашему мнению, пришло время для строительства в России новых АЭС взамен устаревших ТЭС в центре страны (как это сделано во Франции), а также на ее окраинах, снабжение которых органическим топливом затруднено. Причем, финансирование может быть осуществлено за счет той сверхприбыли, какую дают работающие АЭС [2].

Список литературы

1. Jones P. U. S. Trend in economics of electricity generation. — Nuclear Europe, Worldscan, 1992, N° 7/8.
2. Новиков И. И., Кружилин Г. Н., Ананьев Е. И. Превосходство технико-экономических показателей АЭС над ТЭС. - Известия РАН. Энергетика, 1997, № 4.