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Chapter III: Finite State Machines

The most difficult part in designing hardware is to correctly implement thecontrol lo-
gic of a model. Several data-transforming or data-storing units (adder, multiplier, shif-
ter, register file, ...) have to be supplied with control signals at the right time, so the
whole implementation behaves as expected:

Finite State Machines (FSM) provide an easy-to-use model for defining, testing and
implementing complex control circuits. They have been derived from the theory of fi-
nite automata. An FSM consists of a sequential part storing the current state of the ma-
chine in registers, and a combinational part for evaluation of the output signals and the
next state from the input signals and the current state. The machine can change its state
on every active clock edge.
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Machine Models

Let X(t) be the vector of input signals at step t, Y(t) the output signals and Z(t) the state.
Three slightly different models are known:

Mealy-FSM:

The next state and the outputs are both a function of the current state and the inputs:

Z(t+1) = f( Z(t), X(t) )

Y(t) = g( Z(t), X(t) )

Though this model offers the greatest flexibility, theasynchronous behaviourof the
output signals is a great disadvantage. A transition of an input signal might cause a
delayed transition of some output signals resulting in a highly unpredictable behaviour.

There are a few special cases where the Mealy-FSM must be used in order to react very
quick (without one clock delay) on changed input signals, e.g. gating of clock signals
for synchronous modules.
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Machine Models

Moore-FSM:

Now the output is only a function of the current state:

Y(t) = g( Z(t) )

Output signals are no longer affected by transitions of inputs. Only a small delay rela-
tive to the active clock edge is added from the combinational logic for generating the
output signals from the current state vector.

Simple Moore-FSM:

When choosing the output signals as state vector, afull synchronousdesign can be im-
plemented. This model offers thefastestimplementation, but the designer has to do the
state encoding explicitely by himself. In some cases it is necessary to add dummy bits
to the state vector to ensure a unique coding for states with equal outputs.
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Graphical Representation

State Encoding:
Different states are represented by aunique bit vector. Assigning these bit vectors to
states is known as state encoding. Two different approaches are possible:

• One-Hot: every bit of the state vector identifies a unique state. So there
are as many bits as states have to be coded. This method enables aquick
decoding of the current state in the combinational logic evaluating the next
state and the outputs, but is only suitable for machines with few states.
One-Hot coding is mostly incompatible with the Simple Moore-FSM mo-
del.

• Multi-Bit : a bit vector can be assigned to every state by simple binary enu-
meration of all states. Sometimes it can be useful to choose an arbitrary co-
ding with a simple decoding scheme in mind (or gray code, etc.). For a
Simple Moore-FSM the state bits correspond directly to the outputs. If dif-
ferent states have the same output values, dummy bits have to be added to
the state vector to ensure a unique coding.

Analogous to the specification of finite automata, FSMs can be described graphically.
States are represented by named circles, and transitions between them by directed arcs
with conditional expressions enabling the transition on the active edge of the clock si-
gnal.

Some conditions have to be observed:

- the expressions of different arcs have to be disjoint

- all possible combinations of inputs have to be covered by the arc expressions of a
given state. If this is not the case, a special default arc has to be added to ensure a
complete specification of the function evaluating the next state
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Textual Representation

A Finite State Machine can also be described textually by defining the state names and
their corresponding bit vectors in a so calledstate table. The transitions are listed in a
separateflow table (- meansdon’t care).

The combinational function for every state bit can be simply derived from these tables
by collecting all rows with the bit set in the ‘next state’ column. All bits from the ‘cur-
rent state’ and ‘inputs’ columns combined by a logical AND form one term of the
function. A logical OR of all terms results in the complete function for a given state bit.

Example: A 2bit-counter with enable (active-high) and reset_ (active-low) signals
could be implemented in the following way:
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Verilog Coding of FSMs

The Verilog code for Finite State Machines complies with the block diagram of the ma-
chine model:

- one always-block is responsible for thecombinational logic evaluating the next
state. The trigger is formed from the input and state signals. Acase-statement lists
all possible states and the corresponding transitions. Two nestedcase-statements can
also be used, if the number of transitions is too large:

always @(enable or state)
case (state)

S0: if (enable)
next_state = S1;

else
next_state = S0;

S1: ...
endcase

- onealways-block latches the new state into the registers. The active edge of the clock
signal triggers the block. Also the reset is considered here:

always @(posedge clk or negedge reset_)
if (reset_ == 1’b0)

state <= S0;
else

state <= next_state;

- an additional block implements the output function for Mealy or Moore machines

Someguidelines must be observed for generating efficient, synthesizable code:

• don’t use inout signals in FSMs

• try to partition complex FSMs into smaller independent machines

• use a reset signal to initialize the machine correctly

• fully specify acase-statement; if not all cases are covered, make use of the
default-case



Hardware Design and Simulation Page 37

Chapter III: Finite State Machines

Verilog FSM Example

The following code is an implementation of the 2bit counter:

module count2bit(cnt, clk, res_, en);
output [1:0] cnt;  // the counter value
reg [1:0] cnt;
input clk, res_, en;
reg [1:0] next_cnt;  // the next state

parameter S0=2’b00,  // the states
S1=2’b01,
S2=2’b10,
S3=2’b11;

always @(posedge clk or negedge res_)
if (res_ == 1’b0)

cnt <= 2’b00;
else

cnt <= next_cnt;

always @(en or cnt)
case (cnt)
S0: if (en == 1’b1)  // full if-then-else implem.

next_cnt = S1;
else

next_cnt = S0;
S1: if (en == 1’b1)  // the else path is not needed

next_cnt = S2;
S2: next_cnt = (en == 1’b1) ? S3 : S2;  // shorter
S3: next_cnt = (en) ? S0 : S3;  // even shorter
endcase

endmodule


