
L8 6.111 Spring 2003
1

Introductory Digital Systems Laboratory

L8: L8: FSMsFSMs and Synchronizationand Synchronization

L8 6.111 Spring 2003
2

Introductory Digital Systems Laboratory

Finite State MachinesFinite State Machines

! Finite State Machines (FSMs) are clocked sequential systems.

" We have already seen simple FSMs in flip-flops and counters.

" But you can do much more complex things with them.

" After a clock edge, the FSM assumes a state that depends on

the state that the FSM WAS in and
the inputs just before (and a little after) the clock edge.

clock edge.

Combinational
Logic

Inputs

Old
State

Next
Statenn

Outputs

CLK

System assumes the
new state after the

>

DQ
State Memory

L8 6.111 Spring 2003
3

Introductory Digital Systems Laboratory

Timing of an FSMTiming of an FSM

" Clock speed is limited by the sum of the flip-flop delay, combinational
delay, setup time, and skew.

" Contamination delay of a flip-flop minus skew must be greater than the
hold time of the (succeeding) flip-flop.

" The next state is determined by the inputs and the old state and this
combinational function must settle to provide setup time for the next clock
edge.

Combinational delay

Outputs Stable OutputsMay have glitches!!

Inputs

D

Q Stable State

stable

Setup Ts
hHold T

Clock−to−Q delay

L8 6.111 Spring 2003
4

Introductory Digital Systems Laboratory

Mealy ModelMealy Model

! With this type of FSM, the outputs can change asynchronously in
response to changes in the inputs.

Z

CLK

X

S1 S2S0

Y

D Q

>

Y
Z

S2S1S0

"Mealy Model": Output = F(State, Input) Arcs between states also
note output.

X|Y

X|Z

X

L8 6.111 Spring 2003
5

Introductory Digital Systems Laboratory

Moore ModelMoore Model

! With this type of FSM, the outputs are fixed for each clock cycle.

! The outputs change only after the clock edges.
" The inputs do not directly affect the outputs.
" They determine, with the present state, the next state.

State names describe output.

CLK

X

S1 S2S0

Y

D Q

> S0 S2S1|Y

"Moore Model": Output = F(State)

X

Y
X

X

Arcs note transitions only.

L8 6.111 Spring 2003
6

Introductory Digital Systems Laboratory

Simple FSMSimple FSM

! One way of describing an FSM is in terms of transitions to
be made on each clock edge. This is a Mealy machine.

! Here, the state names are numbers in the form Q1 Q0.
! Four states require a minimum of two bits to encode them.

" Four is the maximum number of bits required.

comb.00 10

01

x=0 x=0

x=1|1

x=1 x=0

x=1

x=0

x=1

11|1

D
D

>

Q
Q

0
1

0
1

x y

clk

logic

L8 6.111 Spring 2003
7

Introductory Digital Systems Laboratory

FSM LogicFSM Logic

! It is straightforward to build a truth table for the next state
and the output based on the present state and the input.

The equations can be easily derived directly from the truth table
or from Karnaugh maps.

D0 = x*/Q1+/x*Q0*Q1

Q Q x D D y1 0 1 0

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 1 0 0
1 0 1 0 0 1
1 1 0 0 1 1
1 1 1 1 0 1

00 10

01

x=0 x=0

x=1|1

x=1 x=0

x=1

x=0

x=1

11|1

D1 = x*Q0+/Q1*Q0+/x*Q1*/Q0
y = x*Q1+Q1*Q0

L8 6.111 Spring 2003
8

Introductory Digital Systems Laboratory

FSM FSM CombinatonalCombinatonal LogicLogic

! This is the logic to implement the FSM if it were described by a
schematic of discrete gates.

y

Q

x

Q

1

0

D 0

Q

Q

X

0

1
D 1

x

Q

Q

1

0

L8 6.111 Spring 2003
9

Introductory Digital Systems Laboratory

Another FSM Another FSM -- Divide by FiveDivide by Five

! There is a single input which represents a number.
" The LSB comes first, another with each clock pulse.

! The output is also serial, with the LSB first.

! The state of the FSM is the remainder of the division of the input
number (so far) by five.

0

1

2

3

4

0|0

1|0

1|0

0|1

0|1
1|1

0|0
1|1

0/0 1/1

NS = (2 * PS + input) mod 5
Output = 1 if (2 * PS + input) >= 5

190010011
101 1011111 5 95

L8 6.111 Spring 2003
10

Introductory Digital Systems Laboratory

Divide by Five ImplementationDivide by Five Implementation

1|1

1

2

3

4

0|0

1|0

1|0

0|1

0|1

0|0
1|10

0/0 1/1

One can (if you wish) derive these
equations from the truth table
assuming the extra states result
in "don’ t cares".

0 0 1 1 0 1 1 0

0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 1
0 1 1 1 0 1 0 1
1 0 0 0 0 1 1 1
1 0 0 1 1 0 0 1

2 1 0 2 1 0

+ /Q2 * /Q1 * x

Q Q Q x D D D y

D0 = Q2 * /x + Q1 * Q0 * /x

y = Q2 + Q1 * Q0 + Q1 * xD1 = Q0 * x + /Q1 * Q0 + Q2 * /x

/D2 = /Q2 * x + /Q2 * Q0 + /Q1 */ x

0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 0

L8 6.111 Spring 2003
11

Introductory Digital Systems Laboratory

Implementing Implementing FSMsFSMs in VHDLin VHDL

! The hard part is to figure out what you want to do.
" Implementation in VHDL is straightforward provided you copy from

something that works, i.e., get the syntax right!

! The entity is straightforward and easy.
" Don’t forget that the semicolon goes AFTER the last parenthesis.

! The architecture has three goals.
1. Implement the state register.
2. Implement the combinational logic for the next state.
3. Implement the combinational logic for the outputs.

! You must use a process for goal 1.
" You may use concurrent statements for goals 2 and 3.
" Use a process for 1, 2, and 3 (no other concurrent statements).
" Use a process for 1 and 2 and concurrent statements for 3.
" Use a process for 1 and 3 and concurrent statements for 2.

Remember that a process is a wrapper for sequential statements and is
concurrent with other processes and/or concurrent statements.

L8 6.111 Spring 2003
12

Introductory Digital Systems Laboratory

State AssignmentsState Assignments

! A key decision is how to encode the outputs.
Function of state only
Function of input and state
Registered – glitch free
State flip-flop – glitch free

$ Usually, it is more efficient to have an output flip-flop also be a state flip-flop.

! Let the VHDL compiler make the assignments.
" This is the easiest thing to do.

Most of the time you don’t care what the state assignments are –
Just that your state machine “works”.
Almost always, states are assigned in counting order starting with 0.
Some compilers will do one-hot, zero-hot, gray code, etc.

! Make the state assignments manually.
Do this if you are looking for glitch-free outputs that are a function of state alone.
Assign the names of the state vectors as constants.
Use enumerated types to make state assignments.

$ This is often vendor specific.

attribute enum_encoding : string;
attribute enum_encoding of StateType : type is “111 010 110 011 100"

L8 6.111 Spring 2003
13

Introductory Digital Systems Laboratory

I1by5one.vhdI1by5one.vhd

library ieee;
use ieee.std_logic_1164.all;
entity i1by5one is port (
x, clk : in std_logic;
y : out std_logic);

end i1by5one;
architecture state_machine of i1by5one is
type StateType is (state0, state1,

state2, state3, state4);
signal p_s : StateType;

begin

fsm:process(clk, p_s, x)
begin
if rising_edge(clk) then
case p_s is
when state0 => if x = '1'

then p_s <= state1;
else p_s <= state0;
end if;

when state1 => if x = '1'
then p_s <= state3;
else p_s <= state2;
end if;

when state2 => if x = '1'
then p_s <= state0;
else p_s <= state4;
end if;

when state3 => if x = '1'
then p_s <= state2;
else p_s <= state1;
end if;

when state4 => if x = '1'
then p_s <= state4;
else p_s <= state3;
end if;

when others => p_s <= state0;
end case;

end if;
if (p_s = state4) then y <= '1';
elsif (p_s = state3) then y <= '1';
elsif (p_s = state2 and x = '1') then

y <= '1';
else y <= '0';
end if;

end process fsm;
end architecture state_machine;

L8 6.111 Spring 2003
14

Introductory Digital Systems Laboratory

I1by5.vhd SimulationI1by5.vhd Simulation

0

1

2

3

4

0|0

1|0

1|0

0|1

0|1
1|1

0|0
1|1

0/0 1/1

NS = (2 * PS + input) mod 5
Output = 1 if (2 * PS + input) >= 5

190010011
101 1011111 5 95

L8 6.111 Spring 2003
15

Introductory Digital Systems Laboratory

I1by5sv.vhdI1by5sv.vhd

entity i1by5sv is port (
x, clk : in std_logic;
y : out std_logic);

end i1by5sv;
architecture state_machine of i1by5sv is
signal p_s, n_s : std_logic_vector(2 downto 0);
signal p_sx : std_logic_vector(3 downto 0);
constant state0 : std_logic_vector(2 downto 0)

:= "000";
constant state1 : std_logic_vector(2 downto 0)

:= "001";
constant state2 : std_logic_vector(2 downto 0)

:= "010";
constant state3 : std_logic_vector(2 downto 0)

:= "011";
constant state4 : std_logic_vector(2 downto 0)

:= "100";
begin
state_clocked:process(clk) -- register
begin

if rising_edge(clk) then p_s <= n_s;
end if;

end process state_clocked;

-- combinational output specification
y <= '1' when ((p_s = state4) or

(p_s = state3) or
((p_s = state2) and (x = '1')))

else '0';
-- combinational next state specification
p_sx <= p_s & x;
with p_sx select
n_s <= state0 when "0000",

state1 when "0001",
state2 when "0010",
state3 when "0011",
state4 when "0100",
state0 when "0101",
state1 when "0110",
state2 when "0111",
state3 when "1000",
state4 when "1001",
state0 when others;

end architecture state_machine;

L8 6.111 Spring 2003
16

Introductory Digital Systems Laboratory

I1by5sv.vhd SimulationI1by5sv.vhd Simulation

state_clocked:process(clk) -- register
begin
if rising_edge(clk) then p_s <= n_s;
end if;

end process state_clocked;
-- combinational output specification

y <= '1' when ((p_s = state4) or
(p_s = state3) or
((p_s = state2) and (x = '1')))

else '0';

-- combinational next state specification
p_sx <= p_s & x;
with p_sx select
n_s <= state0 when "0000",

state1 when "0001",
state2 when "0010",
state3 when "0011",
state4 when "0100",
state0 when "0101",
state1 when "0110",
state2 when "0111",
state3 when "1000",
state4 when "1001",
state0 when others;

L8 6.111 Spring 2003
17

Introductory Digital Systems Laboratory

I1by5enum.vhdI1by5enum.vhd

library ieee;
use ieee.std_logic_1164.all;
entity i1by5enum is port (
x, clk : in std_logic;
y : out std_logic);

end i1by5enum;
architecture state_machine of i1by5enum is
type StateType is (state0, state1,

state2, state3, state4);

attribute enum_encoding : string;
attribute enum_encoding of StateType :

type is "000 001 010 011 100";
signal p_s, n_s : StateType;

begin
fsm:process(p_s, x) -- combinational
begin -- case
case p_s is

when state0 => if x = '1' then
n_s <= state1;
y <= '0';

else
n_s <= state0;
y <= '0';

end if;
when state1 => if (x = '1') then

n_s <= state3;
y <= '0';

else
n_s <= state2;
y <= '0';

end if;

when state2 => if (x = '1') then

n_s <= state0;
y <= '1';

else n_s <= state4;
y <= '0';
end if;

when state3 => if (x = '1') then
n_s <= state2;
y <= '1';

else n_s <= state1;
y <= '1';
end if;

when state4 => if (x = '1') then
n_s <= state4;
y <= '1';

else
n_s <= state3;
y <= '1';

end if;
when others => n_s <= state0;

end case;
end process fsm;
state_clocked:process(clk)
begin
if rising_edge(clk) then p_s <= n_s;
end if;

end process state_clocked;
end architecture state_machine;

L8 6.111 Spring 2003
18

Introductory Digital Systems Laboratory

Simulation of i1by5enum.vhdSimulation of i1by5enum.vhd

attribute enum_encoding : string;

attribute enum_encoding of StateType : type is “000 001 010 011 100";

L8 6.111 Spring 2003
19

Introductory Digital Systems Laboratory

Simulation of i1by5enum2.vhdSimulation of i1by5enum2.vhd

attribute enum_encoding : string;

attribute enum_encoding of StateType : type is “111 001 010 011 100";

L8 6.111 Spring 2003
20

Introductory Digital Systems Laboratory

A Simple FSMA Simple FSM

1

u

u u

u u

u100100

D Q

Q
>

1 1

1

D Q

Q
>

0 0

0
u

Q0

Q1

CLK

D1 = u*Q0 + u*Q1

1

X

0

0 0

1X

0

Q1 Q0

u
00 01 11 10

0

1

D0 = u*/Q0*/Q1 + /u*Q1

0 0

0 0X

X 1

1

Q1 Q0

u
00 01 11 10

0

L8 6.111 Spring 2003
21

Introductory Digital Systems Laboratory

Problem TransitionProblem Transition

2 gate delays

3 gate delays

u

u u

u u

u100100 D1 = u*Q0 + u*Q1

1

X

0

0 0

1X

0

Q1 Q0

u
00 01 11 10

0

1

D0 = u*/Q0*/Q1 + /u*Q1

0 0

0 0X

X 1

1

Q1 Q0

u
00 01 11 10

0

1

11

0110

u=0
u=1

u=0 to u=1
(Illegal State)

CLK

u

D0

D1

Q0

Q1

Most of the time, this circuit will work just fine. It makes a mistake and enters an

if u changes from 0 to 1 close to the clock edge:

illegal state ONLY when the input transition is close to a clock edge.

Consider the transition from state 10 (2) to state 01 (1),

L8 6.111 Spring 2003
22

Introductory Digital Systems Laboratory

Important Design RuleImportant Design Rule

 2. Any asynchronous input must affect
 1. Synchronize ALL external signals.
DESIGN RULE:

 ONLY ONE flip−flop.

In particular, do NOT use "Sync" as a CLK input.

Any combinational logic with "Sync" as an input will be
"glitchy" until after the metastable state has expired.

CLK

Async

Sync

"Metastable"

0 1

d
d

t su t h

CLK

Async SyncD Q

>

L8 6.111 Spring 2003
23

Introductory Digital Systems Laboratory

VHDL for a Short Pulse CatcherVHDL for a Short Pulse Catcher

library ieee;
use ieee.std_logic_1164.all;
entity spc is

port(n_go, clk, n_reset : in std_logic;
p : out std_logic);

end spc;
-- purpose: catch a short pulse
architecture behavioral of spc is

signal a, n_a, q, n_q, n_clk: std_logic;
begin -- behavioral
a <= (not n_go) or (not n_a);
n_a <= (not a) or (not n_q) or (not n_reset);
n_q <= (not q);
p <= q and (not clk);

ff: process(clk)
begin

if rising_edge(clk) then
q <= a;

end if;
end process ff;

end behavioral;

D

>

Q

Q

GO

CLK

P
A

/RESET

L8 6.111 Spring 2003
24

Introductory Digital Systems Laboratory

Simulation of a Short Pulse CatcherSimulation of a Short Pulse Catcher

architecture behavioral of spc is
signal a, n_a, q, n_q, n_clk: std_logic;
begin -- behavioral
a <= (not n_go) or (not n_a);
n_a <= (not a) or (not n_q) or (not n_reset);
n_q <= (not q);
p <= q and (not clk);

ff: process(clk)
begin

if rising_edge(clk) then
q <= a;

end if;
end process ff;

end behavioral;

L8 6.111 Spring 2003
25

Introductory Digital Systems Laboratory

Level to PulseLevel to Pulse

library ieee;
use ieee.std_logic_1164.all;
entity pform is
port(A, CLK: in std_logic;

X, Y, Z: buffer std_logic;
P: out std_logic);

end pform;
-- purpose: turn a level into a
-- finite width pulse

architecture behavioral of pform is
begin -- behavioral
ff: process(CLK)
begin
if rising_edge(CLK) then
X <= A;
Y <= X;
Z <= Y;

end if;
end process ff;
P <= (Y AND (not Z));
end behavioral;

D

>

Q

Q

D

>

Q

Q

D

>

Q

Q

P

CLK

A X ZY

L8 6.111 Spring 2003
26

Introductory Digital Systems Laboratory

Simulation of Level to PulseSimulation of Level to Pulse

architecture behavioral of pform is
begin -- behavioral
ff: process(CLK)
begin

if rising_edge(CLK) then
X <= A;
Y <= X;
Z <= Y;

end if;
end process ff;
P <= (Y AND (not Z));
end behavioral;

