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1 Introduction

Recently, considerable attention has been paid to development of efficient par-
allel algorithms for the numerical solution of ordinary differential equations
(ODEs) of initial value type of the form;

¥ =f(t,y), ylto)=% f:RxR™=R" (1)

To give an idea of the magnitude of some of the problems that have to be
dealt with we mention the modeling of long-range transport of air pollutants in
the atmosphere [14]. A relatively simple model generates a system of 267,264
ODEs which has to be solved over a long time scale in order to study sea-
sonal variations in the pollutants. Clearly such problems cannot be solved in
reasonable time without exploiting some concurrency.

In attempting to solve (1) three different types of parallelism can be identi-
fied:

(i) parallelism across the method,
(ii) parallelism across the system (space),
(iii) parallelism across time.
It is highly likely that efficient parallel algorithms may well take elements

from all three of these categories, so that such algorithms will lie in a three
dimensional space as indicated in Figure 1.
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Figure 1: The parallelism space

In this article, two different algorithms, will be introduced and numerical re-
sults given to indicate the efficiency of these approaches. One algorithm is based
on parallelism across the method and is suitable for implementation on a SIMD
architecture (i.e., the MasPar). The other algorithm is based on parallelism
across the system and is suitable for implementation on a MIMD architecture
(i.e., the iPSC860).

2 Parallelism across the method

One way of exploiting parallelism across the method is to perform several func-
tion evaluations concurrently on different processors. This is possible with multi-
stage methods such as Runge-Kutta. In general, there is little advantage in the
direct approach although extrapolation techniques, with the work evenly bal-
anced across the processors, are well-suited for parallel implementation when
the problem size is large or function evaluations are costly [5]. However, indi-
rect methods such as prediction-correction techniques can prove efficient in a
parallel setting.

2.1 Prediction-correction

A popular technique for exploiting parallelism across the method [11] is based
on the concept of a block method in which a block of values is predicted concur-
rently by some explicit method from a previous set of computed values, which



are then corrected a number of times by an implicit method using a fixed-point
approach.

To illustrate this approach consider the block method in which a set of &
values are updated concurrently at equidistant points ¢,41,...,tntr by using
an explicit Euler predictor and then corrected twice by a trapezoidal corrector.
This method can be computed in three steps

yq(-gq)-j =Y+ Jhfltn ¥n), T=1,...,k
yf('bl‘gj = Yn + %f(tna Yn) + %f(tﬂﬂ" ya('LO)j)’ J=1L..k (2)
ya(-i-j =Yn + %f(tn,yn) + %f(tnﬂ" y’l(ﬂ,l-l-j)’ i=1,...,k
Although this method is a very simple one it is illustrative of a much more
general technique in which a block of k& values, with components ygn), ceny y,(cn),
are computed concurrently from step to step based on a Hermite predictor

Y = 4, 9Y, + hLy ® F(Yy,) (3)
and an implicit corrector (with Z, = 4; ® Y, + hL; Q F(Y,))

Y(]):Zn—i—hLz@F(Y(J_l)); J=1,..mn (4)

where F(Y,,) denotes the vector with components f(ygn)), .. .,f(ygcn)).

However, in general, such methods can suffer from poor stability and/or
large error coefficients unless a large number of corrections are performed [3].
As a simple rule, each time a correction of the form (4) is performed, the order
of the method increases by one until the order of the corrector is reached [2].
Further corrections do not increase the order of the method but do smooth out
successively higher and higher truncation coefficients in the local error expan-
sion. However, for large block sizes the extrapolatory error in the predictor
can be very large and it can take many corrections before acceptable accuracy
is guaranteed. Nevertheless, the efficiency of this approach can be dramati-
cally improved by the use of splitting techniques (which can be interpreted as
a preconditioning) applied directly to the underlying corrector in (4).

This approach gives rise to a general iteration scheme of the form

My YT = (My o — DY) 4+ Z, + L, @ F(YK)), k=0,1,...  (5)

In the case that

Mk,n :I, Vk,n (6)

(5) gives the standard prediction-correction approach which is just fixed-point
iteration; while if

Myn=I—-hLy®J,, Vk, (7)



where J,, is the Jacobian of the problem evaluated at some point y,, say, then
(5) represents a modified Newton approach.

The My, can be chosen intermediate to the choices in (6) and (7) in an
attempt to obtain both good convergence properties and cheap implementation
in a parallel environment.

Defining

E+1 E+1
e’EL-l-l = er+1 Y- Yos1 (8)

then a linearization of the problem gives

e = Rewell)), Rim=1-M;L(I-hLI,®1T,). (9)

Another way of viewing this is to apply the underlying corrector in (4) to
the linear problem

Y (t) =J(t)y (10)

which gives

PY® =z . k=1,....,r, P=I-—hL,QJ,. (11)

Thus the choice of My, in (6) and (7) represents a preconditioning of the
matrix P which will enable an acceleration of (5). If the eigenvalue structure
of the underlying problem (1) is known (and this is often the case, for exam-
ple, for problems arising from parabolic partial differential equations by the
method of lines) then polynomial preconditioning is a well-known procedure for
accelerating the convergence. For example,

TYPEI: M;'=oapl = Rgn=1I—apP (12)
TYPEIl: M;'=ayl —BP = Rin=1I—arP + G P2
Suppose now that the eigenvalues of J, are real and lie in the interval
[—g,0], ¢ > 0, the rate of convergence over p iterations can be maximized by
1
minimizing p ((szl Rp_k,n)g) where p(H) denotes the spectral radius of H.

Some analysis using Chebyshev polynomials [4] gives that the spectral radii
of the amplification matrices, as functions of z = hq, are minimized with

a= 2 p(R)=1—-«
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8(1+
a:ﬁ: ,6:1-?-1” p(R):l—a+,32k . (13)
ak:m, ,31@:10_‘}_'““, S%ZSinz((T_p)l), k=1,...,p.

Here v = det(I + zLj), which in the case of the trapezoidal rule is 1 4 z/2.
The advantage of this approach is that the implementation properties are
similar to explicit methods but the stability properties are similar to A-stable
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Figure 2: The computational space and network topology

implicit methods. The computational savings arise from the fact that the cor-
rections can be calculated from simple matrix-vector operations. No solutions
of linear systems are required which can be difficult to program efficiently in
a parallel environment. This approach is particularly appropriate for so called
Single Instruction Multiple Data (SIMD) computers such as the MasPar and
has been programmed on a 4K processor MasPar MP1 at the University of
Queensland.

2.2 The MasPar

An array computer is a large collection of processing elements (PEs) arranged
in a mesh topology or some close derivative Typically the PEs operate in a
synchronized fashion with all the PEs performing the same instruction in lock-
step but on different data.

Since many problems in modeling arising in fluid mechanics, stress analy-
sis and spatial modeling can easily be approximated by a spatial discretization
mesh, there is a natural processor topology which allows automatic parallelza-
tion by the use of Fortran 90 constructs, in particular BLAS routines (see below).

This MP1 consists of a front-end Unix workstation which performs the serial
part of the computation and a back-end Data Parallel Unit (DPU). The DPU



consists of an Array Control Unit (ACU) and an array of processing elements
(PEs). The ACU handles all the scalar variables program code. The processing
element consists of a 4-bit processor, 64 Kbytes of memory, and generates a
sustainable performance around 50 Kflops per PE.

Communication is through the XNET, which is a lock-step inter-processor
communication protocol through the eight nearest neighbors. Alternatively,
there is a global router which allows for arbitrary processor to processor com-
munication via a three stage switch router.

The preconditioning approach described in section 2.1 has been coded in
MPFortran, which is based on the new Fortran 90 standard. Since the only
operations that are required here are BLAS-type operations, full advantage is
taken of the parallelization by the Fortran compiler which automatically par-
titions arrays and vectors on the DPU. Comments and numerical results are
given in section 4.

3 Parallelism across the system

Perhaps the simplest way to exploit parallelism across the system is through the
concept of Picard iteration and, more generally, iteration in the function space.
Picard’s method for obtaining global approximations to the solution of (1) is
based on solving a sequence of functional iterations of the form

YEHD (1) = £, 9 (8), v (L) = ¥ (o). (14)

In this case at each iteration level the problem can be split into m indepen-
dent quadrature problems and this approach appears to be an appropriate one
for obtaining massive parallelism. Unfortunately, the convergence of the iterates
{y(®)(t)} to y(t) is very slow. For example, for the standard linear test problem

y =Xy, t€[0,T], A<0 (15)
it can be shown that the iterates y(*)(t) satisfy the following global error bound

(RIDaS
(k+1)!

so that there is no convergence until £ >| A | T. Thus one way to improve the
convergence is by the technique of windowing in which the region of integration
is split up into a series of windows and the iterative process then takes place on
each window.

The first extensive study of more general functional iteration schemes oc-
curred in the Electrical Engineering group at Berkeley University in the early
1980’s [9] [13] and was given the name waveform relaxation. This technique
allows standard iteration schemes for solving linear systems to be applied di-
rectly to the differential system to create a sequence of differential systems which

y(t) -y ()| < teo,T] (16)



converge to the solution of (1), each of which can be solved by some discrete
method. Thus Jacobi and Gauss-Seidel waveforms are described, respectively,
as

) = £, WY ), =1, m (1))
and
y§k+1) (t) = fi(yg_k-l-l)’ . ',y£k+1)’ ngzlc-)l, .. "y’)(:))’ 7;: ]" .. "m (18)

It is easy to prove analogous results to (16) in the nonlinear case but again
this implies that convergence can be very slow. Nevertheless, for certain classes
of problems, such as those studied by the Berkeley group based on integrated
circuit design, waveform relaxation techniques can work very well indeed. This
is because the physicality of the model suggests how the components can be
grouped together in tightly coupled subsystems, whose coupling occurs only
over very short time intervals.

But in general, there are difficulties in knowing how both to group the com-
ponents together and reorder the equations which are crucial to the efficiency
of waveform relaxation [7]. It was noted that there can be a slow convergence
of the iterations in the case of strong coupling between subsystems.

Recently, multigrid acceleration techniques have been applied directly to
linear problems arising from the solution of linear parabolic differential equations
by the method of lines. It has been shown [10] that these multigrid techniques
can dramatically accelerate the convergence behavior of such iteration schemes.
This work has been extended in [12] to nonlinear problems.

3.1 Distributed computing

The waveform approach is a suitable one for implementation in a distributed
environment since it allows a decoupling of the original problem into subprob-
lems which can then be solved more or less independently of one another on
different processors (this of course depends on the nature of the coupling of the
components in the original problem). This approach allows the programmer to
take existing sequential codes which are known to be efficient and robust in a
sequential environment and to apply them to the set of subproblems. One such
code is VODE [1], which is based on Adams and BDF methods and is suitable
for both stiff and nonstiff problems.

As a consequence of this, the programmer now only has to focus on the com-
munication protocols and these can be programmed in some generic message-
passing environment such as PVM (Parallel Virtual Machine) [8] or P4 (portable
programs for parallel processors) [6]. These software environments are suited



for Fortran77 or C programs that consist of subtasks that offer a large granular-
ity of parallelism and are based on the message passing model, allowing message
transmission, barrier synchronization and broadcast.

An essential difference between PVM and P4 is that PVM uses a pvmd
daemon to control the status of the processes, whereas P4 does not, so that p4
communication on distributed memory machines is done by message passing.

A code has been implemented which uses VODE as the basic integrator
and P4 as the message-passing “glue.” Numerical results are presented in the
next section. The advantage of P4 is the code can be debugged and tested on
a network of workstations and then ported to an iPSC860 with no additional
changes.

4 Numerical results

In order to demonstrate some of the previous material two test problems are
chosen which come from two-dimensional partial differential equations. The
first problem is the linear diffusion equation defined on the unit square

a_u’ — 82_“’ + 32_11, (19)
ot~ 0z Oy?
with Dirichlet boundary conditions given by

u(t, z,0) = u(t,z,1) = u(t,0,y) = u(t, 1,y) = 1,

which can be converted into a system of ordinary differential equations by the
method of lines. If the second order spatial derivatives are replaced by central
finite differences on a uniform grid with the grid discretization parameter given
by h = ﬁ then this leads to a linear system of differential equations of size
N? of the form

v = (N +1)?Qu, wu(0)=1. (20)

Here @ is a block tridiagonal matrix of the form (Iny,T,In) where Iy is the
identity matrix of order N and T is the tridiagonal matrix (1, —4, 1) with —4
on the diagonal entries and 1 on the upper and lower subdiagonal entries. Here
q for this problem can be 8(N + 1)2.

The second problem is a reaction—diffusion equation known as the diffusion
Brusselator equation [12] and takes the form

U 2‘U4 2‘U4
2 = Biutv—(A+luta LY+ o
% = Au—uzv-l-a(%-l-%)

with initial conditions



u(0,z,y) =2+ 0.25y, v(0,z,y)=1+4+08z A=34, B=1, o =0.002
and Neumann boundary conditions

ou ov

an = on

Here u and v denote chemical concentrations of reaction products, A and B are
constant concentrations of input reagents and « a constant based on a diffusion
coefficient and a reactor length.

Again central differencing leads to a system of coupled nonlinear equation
of order 2(N + 2)? (with & = a(N + 1)?) of the form

uij = Bufuy — (A+ Duij + G(uigry +uim,g +Uigr + Uio1 — dug)
!
i

.. 2 ... Al . . . . L _ ..
v Auij — U Vij + G(Vig1,5 + Vim1,5 + Vi1 + Vi1 — 40s5).

4.1 SIMD implementation

The linear problem and the one-dimensional form of the Brusselator have been
solved on the 4K MasPar sited at the University of Queensland using a fixed
step-size scheme based on the trapezoidal corrector. Rather than present a
number of tables recording the computational results, these will be summarized
in the following remarks:

1. In the case of the linear problem of dimension N2 some care must be taken
in choosing N. For example, if N = 65 and the number of available proces-
sors is 64 x 64 = 4096 then the compuational time will be approximately
twice as long as in the case N = 64. This is because the MasPar auto-
matically layers the computational grid into memory so that the N = 65
case requires two layers. This is done automatically and does not require
programmer intervention. On the other hand the time for solving an N2
dimensional problem (where N < 64) should be approximately the same,
but can depend on the machine load.

2. Although the implementation described in section 2 requires only BLAS
operations of the form Qu, where @ is as in (20) and v is a vector defined
on all the elements of the computational grid, it is important to structure
the problem so this is done efficiently. This is achieved by representing v
as an N x N matrix and forming Qv as a sequence of EOSHIFTs:

EOSHIFT(v,SHIFT=-1,BOUNDARY=f1,DIM=1) +
EOSHIFT(v,SHIFT=-1,BOUNDARY=f2,DINM=2) - 4.0%v +



EOSHIFT(v,SHIFT=+1,BOUNDARY=£3,DIM=2) +
EOSHIFT(v,SHIFT=+1,BOUNDARY=f4,DIM=1)

Here SHIFT represents a shift up or down the computational grid, DIM
represents column or row shifts and f1, 2, 3, f4 the boundary conditions.

3. For the one-dimensional Brusselator, there are two coupled vectors each of
dimension N and these are automatically layered as two row vectors onto
the MasPar topology. For a Type II implementation, a Jacobian matrix
has to be evaluated at each time step. Since the Jacobian matrix has
a simple block tridiagonal structure with the Identity matrix as the off-
diagonal blocks, the forming of the vector product of the Jacobian times
each of the two vectors representing the components of the problem is
easily done as a sequence of two EOSHIFTs columnwise for each vector.

4. (20) has also been solved by a block method of size 2 based on two-stage
Radau corrector of order 3. In this case two approximations (one a third
of the way along the integration step and one at the end of the integration
step) are computed per processor. The computational time is, as expected,
approximately twice that for the trapezoidal corrector.

4.2 MIMD implementation

The two-dimensional from of the Brusselator has been solved on a distributed
cluster of Sparc 2 workstations and on a 32 processor iPSC860 at Jilich in Ger-
many using Jacobi waveform in conjunction with the ODE package VODE. An
automatic time-windowing is used based on adaptive monitoring of the conver-
gence of the iterations. The message-passing has been programmed in P4 since
this has meant that the program could be debugged and tested on a workstation
cluster and then migrated to the iPSC860 without any change. Comparisons
are made between VODE running sequentially on one processor and waveform
running on all 32 processors. Two plots are given based on the measurement
of the speed-up versus the dimension size 2N2 when there is no overlapping of
the components and when the optimal overlap is chosen (in terms of the best
speed-up for a particular dimension size). A speed-up of nearly 7 on a 32 node
machine for problem of size 800 is certainly satisfactory.

5 Conclusions

The results obtained for the MasPar suggest that large moderately-sized stiff
problems can be solved without recourse to the solution of large systems of linear
equations (possibly at each time step) and that these techniques are ideally
suited to massively parallel machines.
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In a MIMD environment the approach emphasized here suggests that, where
possible, parallel algorithmic development should make use of existing sequential
packages which have been fine-tuned over a number of years and which have
proven to be robust and efficient. Not only does this provide some robustness
to the parallel algorithms but means that the programmer only has to focus
on the inter-processor communications. If this is done using packages such as
PVM or P4 then this provides significant portability. It should be note that the
implementation described here can be improved if a multigrid waveform is used.

Lack of space has prevented a more detailed discussion of the wide variety
of parallel algorithms for solving ordinary differential equations. However, it is
clearly true that not all these algorithms will fare equally well on a wide range
of architectures. It seems likely that in the immediate future there will have
to be a greater variety, than in the sequential case, of codes which are both
problem-dependent and architecture-dependent. However, with an apparent
vendor trend towards massively parallel MIMD machines it may well be that
this situation is temporary and that there will be a uniformity and portability
of codes across a large set of parallel machines not just in the area of differential
equations but in all areas of scientific computation.
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