The Potential for Parallelism in
Runge-Kutta Methods.
Part 1: RK Formulas in Standard Form.

K. R. Jackson and S. P. Ngrsett
Technical Report No. 239/90

November 1990.

Computer Science Department
University of Toronto

Toronto, Ontario, Canada M5S 1A4

(© Copyright K. R. Jackson and S. P. Ngrsett
November 1990.

Prof. K. R. Jackson, Computer Science Dept., University of Toronto, Toronto, Ontario,

Canada M5S 1A4. E-mail: krj@na.toronto.edu

Prof. S. P. Ngrsett, Division of Mathematical Sciences, Norwegian Institute of Technology,
N-7034 Trondheim—-NTH, Norway. E-mail: norsett@imf.unit.no

This work was supported in part by the Natural Sciences and Engineering Research Council
of Canada, the Information Technology Research Centre of Ontario, and the Norwegian
Research Council for Science and Humanities, D.02.08.001.

The Potential for Parallelism in Runge-Kutta Methods.
Part 1: RK Formulas in Standard Form.

K. R. JACKSON AND S. P. N@RSETT

Abstract. We examine the potential for parallelism in Runge-Kutta (RK) methods based on
formulas in standard one-step form. Both negative and positive results are presented. Many of
the negative results are based on a theorem that bounds the order of a RK formula in terms of
the minimum polynomial for its coefficient matrix. The positive results are largely examples
of prototypical formulas which offer a potential for effective “coarse-grain” parallelism on
machines with a few processors.

1. Introduction. It is widely believed that the only feasible means of solving many im-
portant computationally intensive problems in science and engineering is to use parallel
computers effectively. As a result, increasing numbers of researchers have begun investi-
gating numerical methods for a wide variety of advanced machine architectures. In many
application areas, though, this research is still in its infancy, as is the case, in particu-
lar, for the numerical solution of Initial Value Problems (IVPs) for Ordinary Differential
Equations (ODEs).

Gear [18] [19] surveys the preliminary research in this area and discusses the need for
parallel computation. He also outlines several open problems in this new field. In a more
recent report, Burrage [5] provides a useful survey of parallel methods for nonstiff IVPs.

Gear [18] [19] classifies the means of achieving parallelism in IVP solvers into two main
categories:

(1) parallelism across the method or equivalently parallelism across time and

(2) parallelism across the system or equivalently parallelism across space.

Included in class (1) are algorithms that exploit several concurrent function evaluations
within a step, as well as techniques that solve for many steps simultaneously, as does the
fast parallel linear recurrence solution algorithm described in [20, §3]. Class (2) includes
waveform relazation and modular integration, two currently active areas of investigation,
as well as more obvious techniques such as exploiting parallelism in the evaluation of the
function f associated with the IVP.

Most of the work to date on the parallel solution of IVPs can be considered prelimi-
nary research, in that it concentrates on developing potentially useful numerical schemes,
rather than their effective implementation, comparisons of methods, or the develop of reli-
able, robust and (hopefully) portable mathematical software. This can be justified on the
grounds that a wide variety of potentially useful approaches should be explored and a large
collection of methods developed before tackling the problem of selecting the most promis-
ing schemes and working on their effective implementation on a broad class of parallel
machines.

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada,
the Information Technology Research Centre of Ontario, and the Norwegian Research Council for Science
and Humanities, D.02.08.001.

This paper too can be classified as preliminary research on the parallel solution of IVPs,
in the sense described above. We explore the potential for parallelism across Runge-
Kutta (RK) methods, limiting our consideration to the exploitation of concurrent function
evaluations within each step of a method based on a standard one-step RK formula and the
associated parallel linear algebra in the case of fully-implicit RK methods. In a forthcoming
paper [31], we explore the potential for parallelism in methods based on RK predictor-
corrector formulas. We refer to both groups of parallel RK schemes as PaRK methods.

In this paper and its companion [31], we lay the ground-work for further study of PaRK
methods. We do not address in any depth many important questions such as the efficient
implementation of particular PaRK schemes on specific parallel computers. Rather, we
explore general techniques applicable to a broad spectrum of parallel machines. Also, we
concentrate on the well-studied class of RK formulas rather than the wider class of General
Linear Methods, although much of our discussion can be extended to this wider class as
well.

Although several of our results are negative, being of the form that a RK formula having
certain desirable characteristics for parallel computation cannot exist, we do exhibit some
examples of prototypical formulas having considerable promise for effective implementation
on parallel machines. From theoretical considerations and some preliminary numerical
results, it appears that for either stiff or nonstiff IVPs there exist s-stage PaRK formulas
that may yield a speedup of almost s on a wide range of parallel computers. Since s is
typically in the range 4 to 8 for nonstiff IVPs, and in the range 2 to 6 for stiff IVPs,
such a speedup, although not overly dramatic, is significant and well-worth pursuing.
Furthermore, several sources of parallelism can be exploited simultaneously in one IVP
code. Therefore, instead of using s processors only for concurrent function evaluations,
these techniques can be extended in the obvious way to make use of s groups of processors,
with the processors within each group exploiting alternate sources of parallelism — for
example, within the function evaluations themselves.

An outline of this paper follows. We introduce in §2 the notation and definitions used
throughout the paper. Also, we prove a theorem that bounds the order of a RK formula
in terms of the minimum polynomial of its coefficient matrix. This result is used in later
sections to bound the order of various PaRK schemes.

In the remaining sections, we consider the exploitation of concurrent function evaluations
in codes based on standard one-step RK formulas. In particular, we show in §3 that there
is limited potential for parallelism in codes based on standard explicit RK formulas, a
result noted by several other authors. Examples of some minor improvements that can be
achieved through the exploitation of parallelism are discussed.

For strictly-diagonal implicit RK formulas — that is, RK formulas having nonzeros on
the diagonal only of the coefficient matrix — the results presented in §4 are mixed. If
the function f(x,y) associated with the IVP is linear in both z and y, then a s-stage
method of order s + 1 with real coefficients, or order 2s with complex coefficients, can be
obtained for which all function evaluations can be performed simultaneously. In contrast,
we prove the negative result that, if f is nonlinear, then the maximum order of a s-stage
strictly-diagonal RK formula is 2, independent of s. We end §4 with a brief discussion of
an extension of these results to strictly-block-diagonal RK formulas — that is, RK formulas
having nonzeros in diagonal blocks only of the coefficient matrix. In particular, if 2 x 2

2

diagonal blocks are permitted, then our result for linear problems can be extended to show
the existence of s-stage formulas having real coefficients only that attain order 2s for the
restricted class of linear problems. We conclude with a brief summary of additional results
of Lie [38] and Iserles and Ngrsett [29] for strictly-block-diagonal RK formulas.

We begin §5 with a discussion of the structure of diagonally-implicit RK formulas that
permits the exploitation of parallel function evaluations. The central result of this section
is a bound on the order of these formulas in terms of the potential for parallelism inherent
in the structure of the associated coeflicient matrix and the multiplicity of the distinct
diagonal coeficients of the formula. As examples, we present an Ag-stable 4-stage 4*"-order
formula that requires two pairs of simultaneous function evaluations as well as a similar
A-stable formula of Iserles and Ngrsett [29]. We summarize some promising numerical
results of Lie [38] for a fixed-stepsize implementation of formulas of this type obtained on
a Cray XMP/2 using “macrotasking”. The formulas of van der Houwen, Sommeijer and
Couzy [26] also fall into this class. Finally, we briefly consider the extension of the results
in this section to formulas having block-lower-triangular coefficient matrices.

We consider in §6 fully-implicit RK methods. The iterative methods used to solve the
associated nonlinear equations for the internal stages allow for completely parallel function
evaluations. For stiff equations, a Newton-like iteration is typically used to solve for the
internal stages. The challenge in this case is to exploit parallelism in the solution of the
associated linear systems. To this end, we review Butcher’s strategy [8] of using similarity
transformations to implement fully-implicit RK methods. A desirable characteristic for a
formula implemented in this fashion is that its coefficient matrix has a few distinct eigen-
values only — preferably one. In addition, for parallel computation, it is advantageous
that the associated Jordan blocks be small. We show that satisfying these two require-
ments places a severe restriction on the order of the formula. This leads us to consider
s-stage formulas having coefficient matrices with s distinct real eigenvalues. Consequently,
these matrices can be diagonalized. As others have observed, [1], [33], [34], [36], the latter
property can be used to great advantage for parallel computation, since, not only can all s
function evaluations required to evaluate the formula be computed concurrently, but also
the system of linear equations associated with the Newton iteration for the solution of
the internal stage values can be transformed into s decoupled equally-sized subsystems,
all of which can be solved in parallel. We review results of Ngrsett and Wanner [43],
Bales, Karakashian and Serbin [1] and Keeling [36] that allow one to develop Ag-stable
implicit RK collocation formulas with diagonalizable coefficient matrices that can be imple-
mented effectively as outlined above on a wide range of parallel computers. We also review
some exciting new results of Orel [45] on high-order L-stable methods with distinct real
eigenvalues. Finally, we summarize some promising numerical results of Karakashian and
Rust [34] for a fixed-stepsize implementation of a 2-stage 3™-order Ag-stable fully-implicit
diagonalizable PaRK formula.

In a forthcoming paper [31], we use the well-established principle of converting a direct
method to an iterative one to exploit the greater potential for parallelism in the latter
formulation. This leads to the class of predictor-corrector (PC) PaRK methods, also
studied by van der Houwen, Sommeijer and Couzy [23] [25] [26]. We prove that, after the
8 correction, the order of the approximation is min(vg + i + 8,71), where g is the order
of the predictor, v; is the order of the underlying RK corrector formula, and ¢ is either

3

0 or 1 depending on the PC formulation. This result is somewhat surprising in the sense
that it permits the predicted internal stage values to approximate the actual values to a
much lower order than vy, as is often the case. If Newton’s method is used in place of the
simple PC iteration, then it appears that the order of the approximation is doubled on
each iteration in most cases. We also discuss a pipelined variant of the PC PaRK methods
that increases the potential for parallelism attainable in this approach. We again prove a
result about the order of these methods and discuss the associated Newton variant. We
give some preliminary numerical results for the four classes of methods discussed above.

Our preliminary results have been extended by Enenkel [14], Lie [38], Iserles and Ngrsett
[29], and Kalvenes [32]. As noted above, their results are summarized in the appropriate
sections of this paper and [31]. Also, some of the results of these papers are summarized
in [42].

Several other researchers have investigated the potential for concurrent function eval-
uations within each step of an otherwise standard forward-step method. In addition to
the papers already cited, see [2], [6], [12], [17], [24], [35], [39], [40], [49] [50], [53], most
of which consider predictor-corrector implementations of block methods similar to those
discussed in [31] for RK methods. Finally, Karakashian [33], Karakashian and Rust [34]
and Keeling [36] discuss implicit RK collocation formulas of the type presented in §6.

2. Notation and an Order Bound. In this section, we establish the definitions and
notation used throughout this paper. Also, we prove a theorem that is used in several
subsequent sections to bound the order of a PaRK formula in terms of the minimum
polynomial of its coefficient matrix.

Consider the IVP

(2.1) y'(z) = f(z,y(x)) for =z € [zs, 2],
y(ws) = Ys,

where y : R — R™ and f : R x R™ — R™. A RK formula for the numerical solution of
(2.1) is given by

Yn,izyn-l-hnZaian,j, fore=1,...,s,
(2.2) =
Yn+1 = Yn + hn Z bjFn,j
=1

which may be written more compactly using tensor product notation as

2.3
() Yn+1 :yn‘l’han®Fn7

where x, = 19 < 17 < -+ < *N = . are the gridpoints of the discretization; h, =
Tpt1—Ip s the stepsize at step n; s is the number of stages of the formula; A = [a;;] € R®**
is the coefficient matrix of the formula, while b = (b;) € R® is its vector of weights and
c = (¢;) € R?® isits vector of nodes; for any vector v and matrix X, vT and X7T, respectively,

4

are their transposes; Yy, ; ~ y(zn + ¢;ihn) € R™ for ¢ = 1,...,s are the s internal stage
values of the formula at step n and Fy; = f(2n + ¢ihn,Yn:) € R™ for ¢ = 1,...,s are
the associated function values for the step; yn, ~ y(z,) are the numerical-solution-values;
e=(1,....)T eR; Y, = (Yni)ioqg € R°*™; and F,, = F(ap,Yn; hn) = (Fn,i)ie, € R*™.
The tensor-product of any two matrices X = [z;;] € RM1*MN and Z € RM2xNz ig

.1711Z e $1N1Z
X ® Z — c HMle XN]_Nz‘

*M1Z4 ... TMN,Z

Also, we employ the frequently used “abuse of notation” A ® F,, and bT ® F,, to stand for
(A® Ip)F, and (T @ I,,)F,,, respectively, where I, is the identity matrix in R™*™. The
coefficients of a RK formula are often exhibited in tableau form as shown in Figure 2.1.

C1 all dlg
Cg Qg1 Qgg
b1 oo by

Figure 2.1. A RK Coefficient Tableau.

Formula (2.2) is an Ezplicit RK (ERK) formula iff a;; = 0 for ¢+ < j (assuming that
the {Y},;} are suitably ordered). Consequently, the {Y,, ;} can be computed recursively
without need to solve any implicit equations. A RK formula which is not explicit is an
Implicit RK (IRK) formula. The Diagonally-Implicit RK (DIRK) formulas for which
a;; = 0 for ¢ < j (assuming again that the {Y,, ;} are suitably ordered) are an important
subclass of IRK formulas which, as is explained more fully in §5, enjoy the advantage that
the implicit equations for the {Y,;} of a DIRK formula can be solved one at a time: that
is, they can be decoupled. We refer to those IRK formulas that are not DIRK schemes
as Fully-Implicit RK (FIRK) formulas. Finally, if the coefficient matrix A of an IRK or
DIRK formula has one distinct eigenvalue only, then it is a Singly-Implicit RK (SIRK)
formula or a Singly-Diagonally-Implicit RK (SDIRK) formula, respectively.

The RK formula (2.2) is of order v iff v is the largest integer such that, for all sufficiently
smooth functions f, the local error satisfies ypni1 — Yn(Tnt1) = O(R%TY) as h,, — 0, where
yn(2) is the solution to the local IVP

(2.4) Un(2) = f(2,yn(2)), Yn(2n) = Yn,

which satisfies the same differential equation as the original problem (2.1) but passes
through the numerical solution y,, at z,,.

The stability function R(z) of a RK formula is the rational function that satisfies yp41 =
R(hA\)yn, where yn41 is the approximation generated when the RK formula is applied to

5

the simple test problem y' = Ay, A € C, starting from y,, with stepsize h. As is well-known
13, §3.4],

_ det(I —zA + ZebT)
2. =14 2bT(1 —24)7 e =
23) RE) =1+ eI adytes S AT

z = hA\.

Thus, for a s-stage RK formula, R(z) = P(z)/Q(z) for polynomials P and @ satisfying
deg(P) < s and Q(z) = [[;_;(1 — 7iz) where {7;} are the eigenvalues of A, since det(I —
zA) = det(I — 2T~ AT) = det(I — zB) for the Jordan Normal Form B of A. Moreover, if
the coefficients b and A of the RK formula are real, as we assume throughout most of this
paper, then P and @ are both real polynomials. Furthermore, if all the eigenvalues {v;}
of A are zero, the Q(z) = 1 for all z and R(z) reduces to the polynomial P(z), which we
refer to as the stability polynomial of the formula in this case.

A rational approximation R(z) to e* is said to be of order 7 iff ¥ is the largest integer
for which R(z) = €* + O(2"T1) as z — 0. Since the simple test equation y' = Ay is a
special case of the ODE in the general problem (2.1), the order 7 of the stability function
of a RK formula always satisfies 7 > v, where v is the order of the RK formula.

As defined in [16], z,(z) is an interpolant of the numerical solution having local error
of order v on the interval [2n, Tnt1] iff 2n(Tn) = Un, 2n(Tnt1) = Ynt1, and v is the largest
integer for which

max _||yn(x) — zn(2)|| = O(h}) as hy, — 0,

xe[znamn+1]

where y,(z) is the solution of the local problem (2.4).

Formula (2.2) is a s-stage p-parallel g-processor RK formula iff p is the smallest integer
for which the s internal stage values {Y;, ;} can be evaluated in p time units and ¢ is the
smallest number of processors for which this value of p can be attained. For an ERK
formula, each time unit is equal to the time required for a function evaluation of the form
f(z + ¢cihn,Y) plus “a little” overhead, while, for an IRK formula, each time unit is equal
to the time required to solve an equation of the form Y = Cp + hpvf(z + ¢ihyn,Y) plus
“a little” overhead, where C,, and ~ are constants that depend on previously computed
values and the RK formula, respectively.

Some of our colleagues have found the terminology “p-parallel q-processor RK formula”
misleading or confusing. We originally adopted this phrase as being short for “the RK
formula can be evaluated in p time units on a parallel computer provided ¢ processors
are available”. Another equivalent way of thinking of this is that the RK formula has
p blocks of stages — or super-stages — with each super-stage consisting of at most ¢
stages, and all the stages within each super-stage can be evaluated in parallel. Thus, on
a parallel machine with at least ¢ processors, the RK formula can be evaluated in p time
units, although the number of stages, s, may be larger than p. Since we require p to be
as small as possible, all stages within two blocks cannot be evaluated simultaneously —
otherwise the two blocks could be merged into one and p would be reduced. The stages
within each block are typically evaluated in parallel, but the blocks themselves are normally
computed sequentially, although the definition does not exclude the possibility that some
stages within one block can be evaluated simultaneously with some stages in another. The

6

discussion of parallel ERK formulas at the beginning of §3 should help to clarify these
concepts.

To complete the preliminaries, we remind the reader that the minimum polynomial of a
square matrix X is the polynomial m(x) of least degree for which m(X) = 0.

Using these definitions and notation, we now state and prove the main result of this
section.

THEOREM 2.1. If m(z) = Hle(x — i)™ is the minimum polynomial for the coefficient
matrix A of a RK formula, then the order of the formula is at most r + d + 6 where

ro= Ele r;, d is the number of distinct complex eigenvalues of A, and 6 =1 if A has at
least one nonzero real eigenvalue, otherwise 6 = 0.

PROOF: Since m(z) = Hle(:c — ;)7 is the minimum polynomial for A, there exists a
nonsingular matrix S such that S™'AS = diag(v;I + E;), where EI* = 0fori=1,...,k.
Let 0T = bTS, é = S~'e and partition both b = (Zl)le and ¢ = (&;)*_; to conform with
the blocks of S™1AS. Then the stability function R(z) of the formula satisfies

R(z)=1+ ZbT(I — ZA)_le
=1+207S (SN —24)S)"

1

S 1e

k
=1+ Zzle((l —viz)I — ZE,;)_I €;

1=1
k 5 5 —1
‘|‘;1_%21< 1— iz) ‘
k z z z ri—l
=1 oI (1 Ei+-- E;
‘|‘;1_%21(‘|‘1_%Z * +<1—’in))6
k
Pi(z)
=1 __ iR
+;(1—%Z)”

where, for ¢ = 1,...,k, Pi(z) is a polynomial of degree at most r;. Hence, R(z) =
P(z)/Q(z) for P(z) a polynomial of degree at most r = Zle ri and Q(z) = Hle(l —
viz)" . It follows immediately from [52, Theorem 8| that R(z) is a rational approximation
to €* of order v < r + d + 6, whence the order of the RK formulais v < v <r+d+ 6. I

3. Parallelism in “Classical” Explicit Runge-Kutta Methods. One of the first
questions one is likely to ask when investigating the potential for parallelism in ERK
formulas 1s: Can we retain the explicit nature of an ERK formula while computing blocks
of internal stage values in parallel? Clearly, this requires that each Y3, ; in the first block of
internal stage values cannot depend on any {Y}, ;}. Thus, each must be of the form Y,, ; =
Yn. (As these are all identical, there is no advantage from a mathematical point-of-view to
computing more than one; consequently, we could identify them all as Y, ;. However, in
practice, there might be some benefit to duplicating the computation of £}, 1 = f(2y, yn) on
different processors — for example, to avoid the need to “broadcast” this value.) Similarly,

7

the second block of internal stage values to be computed in parallel can depend on the
{Y,,:} in the first block only. Continuing this argument, it follows that the &*® block
of internal stage values to be computed in parallel can depend on the {Y, ;} in blocks
1,...,k —1 only. If p is the number of blocks and ¢ is the number of internal stage values
in the largest block, then the formula with internal stage values grouped as described above
is a s-stage p-parallel g-processor ERK formula. After a possible renumbering of stages,
the RK tableau for such a formula can be written in block lower-triangular form as shown
in Figure 3.1, where Ag; = [aij] is a possibly full but not necessarily square submatrix of
RK coefficients, while Cy = (¢;) and By = (bj) are subvectors of RK nodes and weights,
respectively. The number of rows in Ag; equals the number of elements in Cj which in
turn equals the number of Y7, ;’s in the E*® block of internal stage values to be computed in
parallel (which is at most ¢). Similarly, the number of columns in Ag; equals the number
of elements in By which in turn equals the number of Y}, ;’s in the I*® block of internal stage
values (which again is at most ¢). Using elementary graph theory, Iserles and Ngrsett [29]
give a more rigorous formulation of parallel ERK schemes.

Cz Az] 0

Co | Api ... Appy O

Figure 3.1. A p-Parallel ERK Formula.

As a rule-of-thumb for good “load-balancing”, the number of internal stage values in
each block should be about ¢ (except, as explained above, the first block typically consists
of Yy, 1 only), whence the dimension of the blocks Ag; should be “close” to being ¢ X ¢
(except for the blocks Agy which typically have just one column). Consequently, for good
load-balancing, formulas with s & pg are preferred.

Since the traditional “Butcher barriers” for the order of classical ERK formulas depend
upon s while the time to evaluate a s-stage p-parallel g-processor ERK formula is propor-
tional to p on many ¢-processor parallel computers, one might hope to attain a high-order
explicit PaRK formula of the form described above having a significant speedup over tra-
ditional sequential ERK methods. However, as most authors who have considered parallel
ERK formulas have observed, there is much less potential for parallelism in this class of
schemes than first appears. As the next theorem shows, both the order and the stability
are severely constrained.

THEOREM 3.1. The stability polynomial P(z) for a s-stage p-parallel q-processor ERK
formula is of degree at most p, independent of s and q. Therefore, the order of such a
scheme is at most p, and, if the order is v < p, then P(z) = Y,_,z%/i! + Zf:u—i—l pizt
where p; = bTA"le e R fori=v+1,...,p.

PrOOF: The order bound follows from Theorem 2.1 after observing that the minimum
polynomial for the coefficient matrix A of the formula is m(x) = 27 for some r < p, since
AP = 0, independent of s and ¢. However, it is both simple and instructive to prove the
order bound together with the stability result directly in this simple case.

As noted above, AP = 0. Therefore, the stability polynomial of the ERK formula is

p
P(z) =1+ ZbT(I — ZA)_le =1+ Z(bTAi_le) Zi,

=1

where 8T A*~1e € R, whence P(z) is a real polynomial of degree at most p, independent
of s and ¢. Consequently, P(z) is an approximation to e* of order at most p, from which
it follows that the order of the RK formula is at most p. Moreover, if the order of the
RK formula is v < p, then P(z) is an approximation to e* of order at least v, whence
P(z) =37,z /il + Zf:w—l pizt for p; =bTA* leecRfori=v+1,...,p. I

We proved several years ago that this order bound is attainable. A different proof of
this simple result was found independently by van der Houwen and Sommeijer [23] [25],
although they do not explicitly state the extension to interpolants nor stability polynomials.

THEOREM 3.2. For any positive integer p, there exists a p-parallel family of embedded
ERK formulas of orders 1 through p, with each formula of order v, 1 < v < p, being
associated with a family of interpolants having local errors of orders v+ 1 forv =1,...,v.

(CORNE

Moreover, for any given set of real constants {p; ' :i1=v+1,...,p, v=1,...,p— 1} for

2
which pffﬁl # 1/(v+1)!, we can construct each formula of order v < p so that its stability

polynomial is P(z) = Y7 o 2* /il + Y0, pgy)zi for the specified constants {pgy)}.

REMARK. By a p-parallel family of embedded ERK formulas with interpolants we mean
that all formulas and interpolants in the family can be calculated in p time units, where, as
noted in §2, a time unit for an ERK formula is the time required for a function evaluation
of the form f(z 4 ¢;hpn,Y) plus “a little” overhead.

PROOF: Assume p processors are available and, for k = 1,...,p, let the k*® processor use
the forward Euler formula with k equally spaced internal steps to compute the approxi-
mation yfﬁzl. A porder approximation yny1 can be computed from the {yg:}l P _1 by
polynomial extrapolation without any additional function evaluations. As is well-known
[21, §I1.9], this extrapolation process can be rewritten as an ERK formula, and, for our
particular purposes, as a p-parallel p**-order ERK formula.

Lower order approximations are given as a by-product of the extrapolation process with-
out any additional function evaluations. For v = 1,...,p, the natural way of computing
them, though, uses v of the {yi’?l} to compute an approximation of order v by v - 1
extrapolation stages. The stability function for this approximation is P(z) = Y.._, z*/.
However, extrapolation can be viewed as a process of solving for the error coefficients in
the error expansions of {yfﬁl} and of eliminating the associated error terms. Since the
associated linear system is nonsingular [21, p. 220], we can add to the naturally arising
approximation of order v any linear combination of error coefficients of orders v +1,...,p.
In particular, we can choose the linear combination of error terms in such a way that

9

the stability polynomial becomes P(z) = Y,_,2*/i! + Zf:V_H pgy)zi for the specified real

constants {pgy)} and the order of the formula remains v since pfffgl # 1/(v + 1)!. Note,
this modification does not require any additional function evaluations. Furthermore, the
required coeflicients can all be precomputed and the formulas of orders 1,...,p with the
required stability polynomials can be represented as a p-parallel family of embedded ERK
schemes.

To construct an interpolant for the formula of order p, use the same extrapolation process
to compute p — 1 auxiliary approximations each of order p at p — 1 distinct points within
(T, Znt1). Then interpolate yp, ynt1 and the p—1 auxiliary y-values with a polynomial of
degree p, giving rise to an interpolant having local error p+ 1. For anyor all v =1,...,p,
an interpolant having local order v+ 1 can be constructed in a similar way by interpolating
Un, Ynt1 and v — 1 of the auxiliary y-values with a polynomial of degree v. Since y,+; and
the p — 1 auxiliary y-values can all be computed simultaneously, this remains a p-parallel
ERK process.

Forv=1,...,pand v = 1,...,v, an interpolant having local error of order 7 + 1 can
be constructed for the embedded formula of order v in a similar manner, preserving the
p-parallel ERK process. 1

As noted by van der Houwen and Sommeijer [23] [25], an interesting question is: How
many processors are required to compute a p-parallel p**-order ERK formula? A similar
question arises for a p-parallel p*"-order ERK formula with an interpolant of local order p
or p+ 1 in particular or a family of interpolants having local errors 1 through p + 1. In
the proof of our result, we have not attempted to keep the number of stages or processors
used small. We could easily halve the number employed by using the same processor to
compute both ygﬂl and yff:lk) in p time units, and halve this number again by using the
explicit midpoint rule rather than the forward Euler formula as the base method, but in
this case it may not be possible to choose the stability polynomials at will. Even with this
saving, we believe that our simple construction here leads to a gross over-estimate of both
the stages and processors required for a p-parallel pt*-order ERK formula with or without
interpolants.

As noted above, the potential for parallelism in explicit PaRK methods is limited. Our
enthusiasm for them is decreased further by the seemingly greater potential for parallelism
in nonstandard predictor-corrector implementations of high-order RK formulas with in-
terpolants [31] and other explicit block or general linear methods. Nevertheless, there
are some limited advantages that can be attained by exploiting parallelism within ERK
formulas and, because of our greater familiarity with them, parallel methods based on this
class of formulas may be worth pursuing — in the short term at least.

As a specific example of a minor advantage, recall that 6 stages are required to obtain
a 5*-order ERK formula [10, §322]. However, each member of Kutta’s [37] 3-parameter
family of 5*f-order 6-stage ERK formulas has ags = 0, whence the last two stages can
be computed simultaneously. Therefore, each formula in Kutta’s family is a 5-parallel
2-processor ERK scheme. Similarly, by taking v = 0 in Butcher’s 2-parameter family of
6-stage 5*"-order ERK formulas [10, p. 199], we obtain a 1-parameter family each of which
has a43 = 0 allowing the simultaneous evaluation of F, 3 and Fy 4. This gives rise to
another 5-parallel 2-processor family of ERK formulas. Theorem 3.2 ensures that a similar

10

saving can be obtained for all higher order ERK formulas, although it does not guarantee
that the number of processors (and the resulting inter-processor communication) required
can be kept small, as is the case in these examples.

As a second example, it is tedious but straightforward to show that 5 stages are required
for an ERK formula-pair of orders 3 and 4. However, it is easy to derive a 5-stage 4-parallel
2-processor formula-pair of orders 3 and 4. In fact, RKN(3,4) exhibited in [16, p. 205] is
one such formula-pair, since a43 being 0 permits Fy, 3 and Fj, 4 to be computed in parallel.

Also note that all function evaluations required in each iteration of step (2) or (3) of the
“boot-strapping” algorithm described in [16, p. 197] for the construction of interpolants for
RK formulas can be evaluated in parallel. This could substantially reduce the time required
on parallel machines for the evaluation of high-order ERK formulas with interpolants,
sometimes referred to as continuous ERK formulas. In fact, there may be more than a
minor advantage to be gained for high-order ERK formulas with interpolants, since the
number of function evaluations required for continuous ERK schemes seems to grow even
more rapidly with the order than it does for discrete ERK formulas. Owren and Zennaro
[46] [47] [48] showed that 4, 6 and 8 stages are required for continuous ERK formulas of
orders 3, 4, and 5, respectively. The least number of stages for continuous ERK formulas
of orders 6, 7 and 8 that we know of are 11, 16 and 22, respectively. Hence, there is a
potential for considerable savings in run time by exploiting parallelism in the computation
of continuous ERK methods.

As a final example, Enright and Higham [15] have investigating the use of parallelism
in defect evaluation and control to improve the reliability of ERK methods.

The preliminary numerical experiments of van der Houwen and Sommeijer [23] [25]
demonstrate the potential of parallel ERK schemes. Their results show that a simple
variable-stepsize implementation of their parallel ERK schemes, a subclass of their explicit
PIRK methods, can yield a speedup of more than two at stringent tolerances compared

to the efficient sequential ERK code DOPRIS [21].

4. Parallelism in “Strictly-Diagonal” Implicit Runge-Kutta Methods. As we
have seen, classical ERK formulas have limited potential for parallelism. So it is natural to
consider next if IRK formulas may have more. In this section, we investigate the simplest
class of implicit formulas — the Strictly-Diagonal IRK formulas for which a;; = 0 for ¢z # j.
These formulas have the attractive property that all Y, ;’s can be computed simultaneously,
since each Y, ; depends on itself only. Thus, they are s-stage 1-parallel s-processor PaRK
formulas.

A proof similar to the one in the previous section that limits the order of a s-stage
p-parallel ERK formula to p fails in this case. In fact, we establish instead that, for any
positive integer s, a s-stage 1-parallel s-processor Strictly-Diagonal IRK formula exists that
is of order 2s for a restricted class of linear problems with constant coefficients. However,
the formulas of order 2s have complex coefficients. If the coefficients are constrained to be
real, then the maximal obtainable order of a s-stage 1-parallel s-processor Strictly-Diagonal
IRK formula applied to this class of equations is s + 1.

The order results for the restricted class of linear problems, though, do not extend to
nonlinear problems or even linear problems with variable coefficients. For these more
general IVPs, we show that the maximal order of a Strictly-Diagonal IRK formula is two.

11

Finally, at the end of this section, we briefly consider a generalization of Strictly-Diagonal
IRK formulas to Strictly- Block-Diagonal IRK formulas that allow blocks rather than single
elements on the diagonal of the coefficient tableau. We generalize our result for the re-
stricted class of linear problems by showing that, if 2 x 2 blocks are allowed, then formulas
of order 2s with real coefficients only can be derived. We also quote some results of other
authors about Strictly-Block-Diagonal IRK formulas for general smooth IVPs.

To prove the order result quoted above for Strictly-Diagonal IRK formulas applied to
linear differential equations, we first establish the following.

LEMMA 4.1. Let R(z) = P(z)/Q(z), where P is a polynomial of degree at most s, Q(z) =
I1;—;(1 — 7i2) for y,...,7s € C distinct and nonzero, and P(0) = Q(0) = 1. Define an

associated s-stage Strictly-Diagonal IRK formula by ¢; = a;; = ~; and

8

; = -7]3(1/%) where i(z) = — iz
b= gy There Qi) ,-:Hl(l 7%%)
J#i

Then this formula applied to the simple test equation y' = Ay for A € C yields ynp+1 =
R(hn X)yn.

PROOF: Letting z = hpA and applying the s-stage Strictly-Diagonal IRK formula defined
above to the simple test equation y' = \y, we get

= (135 - @I 000

Q=) o

Hence, all that remains is to show that
(4.1) P(z) = Q(z) + 2 Y _ b:Qi(=).

By the choice of b;, the left and right sides of (4.1) are equal at z = 1/~; fori =1,...,s,
and, by the hypothesis, P(0) = Q(0) = 1. Therefore, since the left and right sides of (4.1)
are polynomials of degree at most s that are equal at s + 1 distinct points, they are equal

for all z. |

THEOREM 4.2. Consider the restricted class of IVPs associated with linear differential
equations of the form y' = My + ux + v where the matrix M and the vectors u and v are
constants. There exist s-stage 1-parallel s-processor Strictly-Diagonal IRK formulas that
are of maximal obtainable order 2s when applied to any IVP from this restricted class of
problems. If the coefficients of the formula are constrained to be real, then the maximal
obtainable order is reduced to s + 1.

PROOF: First note that, if a formula satisfies the simplifying assumption ¢; = 25:1 aij
for: =1,...,s, then the order conditions for this restricted class of IVPs are the same as
those that arise from the simple test equation y' = Ay for A\ € C a constant. Therefore,
to show that a RK formula which satisfies this simplifying assumption is of order v for

12

this restricted class of IVPs, it is sufficient to show that it is of order v for the simple test
equation y' = Ay.

Let R(z) = P(2)/Q(2) be the s*® diagonal Padé approximation to e*. It is well-known
that the order of this approximation is 2s and that the polynomials P and @), each of degree
s, have no common factors, from which it follows that P(0) = Q(0) # 0, whence P and @
can be normalized so that P(0) = Q(0) = 1. In addition, Theorem 8 of [52] ensures that the
roots of) are distinct and nonzero. Hence, Q(z) can be written as Q(z) = [[;_;(1 — viz)
for v1,...,7, distinct and nonzero. Therefore, R(z) satisfies the assumptions of Lemma 4.1
and the associated s-stage Strictly-Diagonal IRK formula defined in Lemma 4.1 is of order
2s for the simple test equation y' = Ay. Consequently, the formula is of order 2s for all
problems in the restricted class of IVPs as well. Moreover, 2s is the maximal obtainable
order for a s-stage Strictly-Diagonal IRK formula since this is the maximal obtainable
order for any rational approximation R(z) = P(z)/Q(z) to e* with P and @ of degree at
most s.

Since the denominator Q(z) of the s*® diagonal Padé approximation to e¢* has complex
roots for s > 1 [52, Theorem 8|, the associated Strictly-Diagonal IRK formula has complex
coefficients. To ensure real coefficients only, we require that Q(z) has real roots only, and it
is well-known [44, Theorem 2.1] that R(z) can be an approximation to e* of order at most
s+ 1 in this case. Moreover, Proposition 6 of [43] and the discussion following it indicate
how to construct rational approximations R(z) = P(z)/Q(z) to €* of order s + 1 for which
P and () satisfy the assumptions of Lemma 4.1 and) has real roots only. Consequently,
the associated Strictly-Diagonal IRK formulas are of maximal obtainable order s+ 1 when
applied to any problem in the restricted class of IVPs. i

We turn now to the case of more general IVPs and establish the following negative result.

THEOREM 4.3. The order of a Strictly-Diagonal IRK formula is min(2,), where v is the
order of the formula’s stability function.

ProoF: A RK formula must satisfy

(1) 3Y>b; =1 to be 1%-order,

(2) > bia;; =1/2 to be 2nd_order,

(3) and both) b;a;ja;, = 1/3 and Y bja;jaj, = 1/6 to be 34 order.
For a Strictly-Diagonal IRK formula, a;; = 0 for 7 # j, whence the two 3™-order conditions
reduce to Y. b;a%, = 1/3 and Y. b;a?, = 1/6 which are clearly incompatible. Therefore, a
Strictly-Diagonal IRK formula cannot be 3*4-order in general. Conditions (1) and (2) are
also the conditions that the formula’s stability function is of order one or two, respectively.

Thus, the order of the RK formula is min(2,7). 1

A natural extension of the formulas considered above are Strictly-Block-Diagonal IRK
formulas having coefficient tableaus of the form shown in Figure 4.1, where Agp € R®* >k
By, Cy € R** and Eli:l sy = s. Each block of internal stage values can be computed in
parallel. Moreover, the techniques for IRK formulas discussed in §6 can be applied within
each diagonal block to further increase the potential for parallelism within these formulas.
Many can be implemented as s-stage 1-parallel s-processor PaRK methods.

One advantage of this extension is that it permits one to derive s-stage Strictly-Block-
Diagonal IRK formulas of order 2s with 1x 1 or 2x 2 diagonal blocks having real coefficients

13

of Ay 0 ... 0

Cz 0 Azz e 0

Cs 0 0 Ass
BT BT ... BT

Figure 4.1. A Strictly-Block-Diagonal IRK Formula.

only. We state below without proof the lemma and theorem upon which this result is
based. Their verification requires a modest extension only of the techniques used to prove
Lemma 4.1 and Theorem 4.2, respectively.

LEMMA 4.4. Let R(z) = P(z)/Q(z), where P is a polynomial of degree at most s,
Q(z) = [1;—;(1 — 7i2) for 71,...,7s € C distinct and nonzero, and P(0) = Q(0) = 1.
For definiteness, assume that the {v;} are ordered such that the first 2s are complex con-
jugate pairs (i.e., y2i—1 = 72; fort = 1,...,5) and the remaining s — 25 are real. Define an
associated s-stage Strictly-Block-Diagonal IRK formula having 1 x 1 and 2 x 2 diagonal
blocks and real coefficients only as follows.

(1) Fori=1,...,s, let a; = R(y2i-1), Bi = S(72i_1),
= (15 0,

. 2 1 .
bty = V=1 ('7;%:1') ((1 /s = i) 2 TR

(1 — i fvmi o — B e Y2i-1P(1/72i-1)
(1 1,/721,—1 /31/721—1) Ql(l/’iyzl_l)) 5

. 2 V2i V2
" (Wigin) ((1 — i/ it +ﬂi/m_lﬂ“‘gj(]i%fif)

_ N o ’YZi—IP(l/’YZi—l))
—(1 = ai/Y2i—1 + Bi/72i- :
(/72 1 ﬂ /72 1) Qz(1/721—1)
(2) Fori=2s5+41,...,s, let Aj; =~; and b; = viP(1/7:)/Qi(1/7i).
(3) Fori=1,...,s, let ¢; = ijl aij.
(4) Fori=1,...,sandt =25+ 1,...,s, let

8

Qi(z) = [[det(z = Az52) [[(1 =)
j=1 j=25+1
i i

14

Then this formula applied to the simple test equation y' = \y for A € C yields ynp+1 =
R(hn X)yn.

REMARK. The bg;_; defined in part (1) of the lemma above is real since

Y2i-1 P(l/’Yzi—l)
Qi(1/72i-1)

(1 — &i/Y2i—1 — Bi/72i-1)
is the complex conjugate of

Y2i—1P(1/72i-1)
Qi(1/72i-1)

(1 - Oéi/’Yzi—l - ,Bi/’Yzi—l)

Similarly, it is easy to see by; is real.

THEOREM 4.5. Consider the class of IVPs associated with linear differential equations of
the form y' = My + ux + v where the matrix M and the vectors u and v are constants.
There exist s-stage Strictly-Block-Diagonal IRK formulas having 1 x 1 and 2 x 2 diagonal
blocks and real coefficients only that are of maximal obtainable order 2s when applied to
any IVP in this restricted class of problems.

Others have begun to investigate Strictly-Block-Diagonal IRK formulas as well. Lie [38]
discusses some preliminary results on the maximal obtainable order of such formulas while
Iserles and Ngrsett [29] provide some more concrete results. In particular, they derive a
family of 4-stage 4t®-order L-stable (but not algebraically stable) Strictly-Block-Diagonal
IRK formulas each having two 2 x 2 blocks. An example of one such formula is given in
Figure 4.2. Thus, parallelism yields some advantage over classical sequential methods in
this case since 4**-order L-stable 2-stage IRK formulas do not exist.

13 500 1. 8
2 6 12 12 6
1 3 3 5
1 V3 | 1. v3 5 0 0
2 6 12 6 12
1 V3 0 0 1 V3
2 6 2 6
1 3 3 1
1. V3 0 0 Vi1
2 6 6 2
3 3
= = —1 —1
2 2

Figure 4.2. A 4-Stage 4**-Order L-Stable
Strictly-Block-Diagonal IRK Formula.

Iserles and Ngrsett [29] also obtain a bound on the maximal order of a family of Strictly-
Block-Diagonal IRK formulas. This family consists of those formulas from this class having
2 x 2 blocks Agg only for which each block Ay together with the corresponding By normal-
ized to sum to one is at least 3*d-order when considered as a RK formula on its own. (The

15

formula above is in this family.) They show that, independent of the number of blocks,
the maximal obtainable order for a formula in this family is four. Thus, the advantage one
can gain from exploiting parallelism is limited in this family of formulas as well.

Both Lie [38] and Iserles and Ngrsett [29] also consider Strictly-Block-Diagonal IRK
formulas for which each block Agg is lower triangular. We summarize briefly some of their
results for these formulas in the next section.

5. Parallelism in Diagonally-Implicit Runge-Kutta Methods. As noted in §2, the
coefficients of a Diagonally-Implicit RK (DIRK) formula satisfy a;; = 0 for j > i. Thus,
Y1 = Yn + hnar1f(xn + c1hn, Yyn,1) is implicit in Y, ; only, and, consequently, can be
solved for Y, ;1 without knowledge of any other Y, ; for y > 1. Similarly, given Y, ; for
J=1...1—=1Y,; = yn+ Iy 2321 aijf(n + ¢jhn, Yy ;) is implicit in Y, ; only, and,
consequently, can be solved for Y, ; without knowledge of any other Y, ; for j > 7. This
property constitutes the main advantage of DIRK formulas over Fully-Implicit RK (FIRK)
formulas for which all the Y, ;’s (may) depend on all the others and cannot (in general) be
computed independently of one another. (However, some techniques that ameliorate this
disadvantage for FIRK formulas have been developed and are discussed in §6.)

DIRK formulas are used primarily to solve stiff IVPs and consequently a Newton-like
iteration is typically employed to solve Yy, ; = yn + hy 2321 aijf(zrn + ¢jhn,Yn ;). This
requires solutions of linear systems with a coefficient matrix I — hna;;J, where J is an
approximation to the Jacobian fy(zn+cihn, Yn,). Singly-Diagonally-Implicit RK (SDIRK)
formulas, for which all diagonal coefficients {a;;} are equal, enjoy the advantage that only
one matrix factorization is needed for I — hpa;;J to solve for all internal stage values {Y5, ;}
(assuming the same J is used throughout).

Although advantageous for sequential machines, the serial nature of the solution pro-
cess for the internal stage values {Y,;} of DIRK formulas is not favourable for parallel
computers. The objective of this section is to extend the favorable characteristic of DIRK
formulas for sequential machines to parallel ones. More specifically, our aim is to derive a
class of formulas for which blocks of Y;, ;’s can be computed simultaneously while retain-
ing the property that each Y, ; in the block depends upon itself and previously computed
Y, ;'s only. We give the general structure of such formulas, examples of a few, and some
preliminary results on order bounds and stability characteristics of these formulas.

Clearly, if all Y5, ;’s in the first block are to be computed simultaneously while retaining
the simple form of the implicit equations described above, then the equation for each must
be of the form Y, ; = yp + hntii f(2rn + €ihn, Yy,i). Similarly, if all Y;, ;’s in the kth block
are to be computed simultaneously while again retaining the simple form of the implicit
equations described above, then the equation for each must be of the form

Yn,i = Yn + hn Z hnaz]f(ajn + thn7 Yn,]) + hnauf(rn + Cihn7 Yn,i);

J

where). is taken over previously computed Y, ;’s in blocks 1,...,k — 1 only. Hence,
after possibly re-ordering the internal stage values of the formula, its coefficient tableau
must be of the block lower-triangular form shown in Figure 5.1, where Dy is a square
diagonal matrix while, as in §3, Ag; = [a;;] is a potentially full but not necessarily square
matrix and both Cp = (¢;) and By = (b;) are vectors. The number of rows in both Ay

16

and Dy equals the number of elements in C% which in turn equals the number of Yy, ;’s
in the kt® block of internal stage values. Similarly, the number of columns in both Ag;
and D equals the number of elements in B; which in turn equals the number of Yy, ;’s
in the I*® block of internal stage values. If we assume that the largest diagonal block is
of dimension ¢ X ¢, then we call such a formula a s-stage p-parallel ¢g-processor DIRK or
SDIRK formula depending upon whether or not all the diagonal coefficients {a;; } are equal.
Using elementary graph theory, Iserles and Ngrsett [29] give a more rigorous formulation

of parallel DIRK schemes.

C1 D,

CZ AZ] D2

C, | A1 Ap ... D,

Bf Bf ... B}
Figure 5.1. A p-Parallel DIRK Formula.
We begin with a bound on the order of a p-parallel DIRK formula in terms of the number

of distinct diagonal elements.

THEOREM 5.1. Let ~v1,...,7& be the distinct diagonal coefficients of a s-stage p-parallel
g-processor DIRK formula and assume that 7; occurs with multiplicity m;. Then the
maximal order of the formula is 1 4+ Zle min(m;, p), independent of s and q.

PROOF: Let A be the coefficient matrix of the s-stage p-parallel g-processor DIRK formula:

D, 0 ... 0
Az] D2 e 0
A= : S :
Apr Ape ... Dy
where the D; are diagonal matrices with diagonal elements in {v1,...,7%}. Set X =

(A—1I) - (A —~I) and note that

Dy 0 ... 0

Az] Dz 0
X=1 . .

Ap Ap ... Dy

where D; = (Di —y1l)---(Di —yil) = 0 for i = 1,...,p. (The specific formula for each

A;j is inconsequential in this proof.) Since X is a strictly-lower-triangular p x p block

17

matrix, X? = 0. Hence, the minimum polynomial for A divides Hle(x —~;)P. Moreover,
since the multiplicity of 7; is m;, the factor (z — 7;) occurs in the minimum polynomial
for A with multiplicity at most m;. Consequently, the minimum polynomial for A divides
Hle(x — i)™ for r; = min(m;,p). Thus, it follows from Theorem 2.1 that the order of
the DIRK formula is at most r + 1 for r = Ele r; since all the {~;} are real. |

An immediate consequence of this theorem is

COROLLARY 5.2. The order of a s-stage p-parallel g-processor SDIRK formula is at most
p+ 1, independent of s and q.

The last result limits the potential effectiveness of SDIRK formulas in a parallel com-
puting environment. Since algebraically stable s-stage SDIRK formulas of order s 41 exist
for s = 1,2, 3, there appears to be little advantage for low-order parallel SDIRK formulas.
However, there is, for example, no 4-stage SDIRK formula of order 5. Therefore, there is
potential for slight advantage for higher-order parallel SDIRK formulas. These schemes,
though, are problematic in that their stage-order is at most two — and is one only unless
a;; =1/2foralli=1,...,s.

On the other hand, if a parallel DIRK formula has at least two distinct diagonal coeffi-
cients, then it is possible to obtain some advantage over standard serial DIRK formulas.
For example, the 4-stage 2-parallel 2-processor DIRK formula shown in Figure 5.2 is 4th-
order and Ag-stable, but not A-stable. It is well-known [44] that there are no standard
4*h_order 2-stage DIRK formulas and Corollary 5.2 above precludes the existence of a 4th-
order 2-parallel SDIRK formula. However, it may be possible to find a 5%
DIRK formula, although we have not yet succeeded in doing so.

-order 2-parallel

1 1 0 0 0
§ 0 § 0 0
))
171 215
- =
0 44 44 0
2 | s o33
) 20 20)
11 25 11 25
72 72 72 72

Figure 5.2. A 4-Stage 2-Parallel 2-Processor
4th_Order Ag-Stable DIRK Formula.

Both Lie [38] and Iserles and Ngrsett [29] consider parallel DIRK formulas having the
restricted form shown in Figure 5.3, where each Ly is a lower-triangular matrix. These
schemes form a subclass of the Strictly-Block-Diagonal RK formulas discussed in the pre-
vious section. They are also a subclass of the parallel DIRK formulas considered here: if
the largest diagonal block L is of dimension p X p, then the internal stage values of such
a scheme can be reordered to yield a p-parallel ¢g-processor DIRK formula with each Ay,
(as well as each D) being a (possibly rectangular) diagonal block. An advantage of this

18

subclass over the more general class of parallel DIRK formulas considered above is that
the restricted form requires no communication between processors in the computation of
the internal stage values {Y, ;}.

Ch Ly 0 ... 0

C 0 Ly ... 0

C, 0 0 ... I,
B By ... B]

Figure 5.3. A Subclass of Strictly-Block-Diagonal RK Formulas.

Lie [38] derived a 3*-order 4-stage 2-parallel 2-processor SDIRK formula in this subclass
that is A-stable but not algebraically stable. By Corollary 5.2, this is the maximal possible
order for a 2-parallel SDIRK formula. He also derived a 4*f-order 4-stage 2-parallel 2-
processor DIRK formula of this restricted form having a coefficient matrix with two distinct
eigenvalues each of multiplicity two. This formula is not algebraically stable and its linear
stability properties are not given.

Lie [38] implemented a fixed-stepsize code based on his 3*-order 4-stage 2-parallel 2-
processor SDIRK formula. He reports some preliminary numerical experiments for this 2-
processor code using “macrotasking” on a Cray XMP /2 computer and a similar code that
uses one processor only on the same machine. For some simple test problems, he found a
speedup of about 1.75 to 1.90 for the 2-processor implementation over the corresponding
1-processor version.

Iserles and Ngrsett [29] derived the 4*f-order 4-stage 2-parallel 2-processor DIRK for-
mula in this subclass shown in Figure 5.4. Its coefficient matrix has two distinct eigenvalues
each of multiplicity two. This formula is A-stable but clearly not algebraically stable since
b3 and by are negative. Furthermore, Iserles and Ngrsett show that, independent of s,
g and the number of distinct eigenvalues of the coefficient matrix A, there is no s-stage
2-parallel g-processor DIRK formula in this subclass of order greater than four. This is a
stronger result than is possible to obtain from Theorem 5.1.

The PIRK formulation of van der Houwen, Sommeijer and Couzy [26] allows them to
derive a large class of parallel DIRK schemes enjoying both high order and good stiff
stability properties. Some preliminary numerical results in [26] demonstrate the potential
of this approach.

Finally, before closing this section, we comment briefly on an obvious extension of DIRK
formulas. The class of Block DIRK (BDIRK) formulas are those RK schemes having the
same structure as the DIRK formulas discussed in this section except that each diagonal
block Dy is allowed to be full. Similarly, Block SDIRK (BSDIRK) formulas are BDIRK

formulas having a coefficient matrix with a single eigenvalue only.

19

1/3 1/3 0 0 0

2/3 1/3 1/3 0 0
21 + /57 0 0 21 + /57 0
48 48
27 — /57 0 0 3 — Vb7 21 + /57
48 24 48
9+3vV57 9+3V57 14357 14357
16 16 16 16

Figure 5.4. A 4-Stage 2-Parallel 2-Processor
4*"_Qrder A-Stable DIRK Formula.

Theorem 5.1 can be extended easily for BDIRK formulas. We state this result without
proof as its verification is a straightforward extension of the proof of Theorem 5.1.

THEOREM 5.3. Let v1,...,7, be the distinct eigenvalues of the coefficient matrix A of a
s-stage p-parallel g-processor BDIRK formula. Assume that +; occurs with multiplicity
m; and that Hle(:c — ~;)™i is the minimum polynomial of diag(D;). Then the order of
the formula is at most r +d + 6 where r = Ele min(m;, m;p), d is the number of distinct
complex eigenvalues of A, and 6 = 1 if A has at least one nonzero real eigenvalue, otherwise

0 =0.
An immediate consequence of this theorem is

COROLLARY 5.4. The order of a s-stage p-parallel ¢-processor BSDIRK formula is at most
1 + min(s,hp), where m is the degree of the minimum polynomial of diag(D;).

Sharper versions of Theorem 5.3 and Corollary 5.4 can be obtained from Theorem 2.1
by taking into account which diagonal block D; has the minimum polynomial for which
the factor (x —~;) occurs with exponent ;. However, the statement of this sharper result
seems to be too “messy” to be aesthetically pleasing: for a specific BDIRK formula, it is
likely preferable to determine the appropriate order bound using Theorem 2.1 directly.

We have not yet seen examples of any potentially useful parallel BDIRK formulas.

6. Parallelism in Fully-Implicit Runge-Kutta Methods. In this section, we consider
Fully-Implicit RK (FIRK) formulas. As noted in §2, a FIRK formula is an IRK scheme
which is not a DIRK formula. That is, the stages of a FIRK formula cannot be re-ordered
so that the coefficients satisfy a;; = 0 for ¢ < j.

For an IRK formula, the first equation in (2.3),

is implicit in Y,,. Therefore, for general nonlinear f, some iterative scheme must be used
to solve (6.1). The most common nonlinear equation solvers used in IVP codes are simple
iteration

(6.2) Y = e@yn+ hnA @ FL

20

and Newton-like methods

(I —hoJDAY! = e @ yp 4+ hnA® FL - Y},

(65) =Yl +AY,,
in which J! ~ (A ® F.)/0Y. In both cases, Y! is the I*! approximation to Y, and
F! = F(zp, Y} Ryp).

Even if the RK formula is not implicit, both (6.2) and (6.3) permit the parallel evaluation
of the s f evaluations associated with F.. This observation is the basis for the parallel
predictor-corrector methods discussed in [5], [6], [23], [25], [26] and [31]. We shall not
discuss this novel approach here. Rather, in this section, we restrict ourselves to exploring
the potential for parallelism in more standard IRK methods.

IRK formulas have been used primarily to solve stiff IVPs. It is well-known that simple
iteration is ineffective in this context, since it does not converge unless the stepsize is
severely restricted. As a result, virtually all IRK methods for stiff problems incorporate
a Newton-like scheme to solve (6.1), although some codes also include simple iteration
as an option or automatically switch between simple iteration and a Newton-like scheme
depending on the local stiffness of the problem.

For large systems of ODEs, the dominant cost in the numerical integration is often the
solution of the linear system in (6.3). Therefore, in the remainder of this section, we
concentrate on the potential for parallelism in the solution of (6.3) and the consequences
for the choice of FIRK formulas for parallel IVP solvers.

Butcher [8] proposed an effective scheme for solving (6.3); variants of it are discussed in
[11] [51]. Central to this approach are the following two observations.

(1) Ifeach fy(xpn+cjhn, Yé’j), j=1,...,s,is approximated by a common m X m matrix
JL then the resulting approximation J! to d(A®F.)/0Y is J! = A®J.. Using the
latter approximation, we can rewrite the first equation in (6.3) in tensor-product
notation as

(6.4) (It @ I;n — hn A @ JLAYE = € @ yn + hnA ® FL =Y,

where Iy and I, are s X s and m X m identity matrices, respectively.
(2) It follows from the definition of the tensor-product of two matrices (see §2) that

(X1 ®Z1)(X2 ®@ Z2) = (X1X2) ® (Z122)

provided that the dimensions of X;, X3, Z; and Z; are such that the matrix prod-
ucts X71Xs and Z;Z, are well-defined.

Thus, a similarity transformation for either A or A™! can be used to simplify (6.4). The
variants of Butcher’s approach differ in their choice of this similarity transformation. As-
suming A is nonsingular, we present below a simple variant of this class of schemes that
captures the essence of the approach, although it may not be the most computationally
effective version. This and other variants of Butcher’s scheme can easily be modified to
permit singular A.

21

Given any nonsingular matrix 7', transform (6.4) to
(T @ ILn)(Is @ Im — hpn A @ JINT @ L) (T @ I,)AY)
=(I7' @ In)(e @ yn + hnA @ F, = ¥y)
= (T @ Im)(€ @ yn + hn(A @ In)(T @ L (T @ L)y — Yy0),
which is equivalent to
(6.5) (It @ Im — hnB R JDAY! = ¢ @ yp + hnB@ E! — Y,
where B = T71AT, é = T e, F! = (T71 @ I,)FL, Y} = (T7! @ I,,)Y}! and AY} =
vyl
For our similarity transformation, we choose T to transforms A to Jordan Canonical

Form:
H2 Y2 0 Ce 0
B=TA7=| 0 p3 v ... O
0 0 ... ps 7

where all equal eigenvalues are grouped together, p; = 0 if ;1 # ~;, and p; is either 0 or
vi if vi—1 = 7vi. (Note that this form of the Jordan Canonical Form with y; either 0 or v;
is valid because the nonsingularity of A ensures that v; # 0.) Since T', B and € all depend
on A only, they can be precomputed and thus regarded as alternative coefficients of the
formula.

Because of the structure of B, (6.5) can be rewritten as s systems, each of m equations:

n,2—1

(Im — B (AT + HEAY)
(6.6) b | i o
= €iYyn + hn%’(Frlz,i + &Frlz,i—l) - Yi,i + &AY;,i—l
Vi Vi
where we have introduced p; = 0 to avoid the need to treat the first equation as a special
case. Thus, the problem of solving one ms x ms system in (6.3) has been reduced to that of
solving s m x m systems. The potential benefit from this reduction in a parallel computing
environment is even greater than in a sequential computing setting, where it has long been
recognized as significant.

The family of SIRK formulas introduced by Burrage [3] and Butcher [9] and implemented
in STRIDE [7] has v; = vy for ¢ = 1,...,s and y; = v for i = 2,...,s, where v € R is
nonzero. A major advantage of these schemes is that the matrix I,, — hpyJ. on the left
side of (6.6) is common to all s systems. Therefore, only one m X m matrix factorization is
required to solve all s systems in (6.6), resulting in a significant computational saving on
sequential machines. In a parallel computing environment, s distinct matrices I, — hn7yiJL
could all be factored simultaneously, so the advantage enjoyed by formulas for which all
~v; are equal is arguably not as great. However, even for parallel machines, having all ~;
equal remains a computationally attractive property, since one might for example

(1) use several processors to factor I, — hpyJY, in parallel,

22

(2) employ the processors not involved with factoring I, — hnpyJ), to do some other
useful work (possibly on another problem or even for another user), or

(3) as noted in [26], use one extra processor to continually refactor and updated I, —
hpyJE while the others proceed with the integration using the most recently factored
Iy — hpyJY in (6.6).

The SIRK formulas in STRIDE have a serious disadvantage from a parallel computing

perspective: because p; = v # 0 for 7 = 2,...,s, the solution to the ¢ — 15* equation,
AYTi,i_l, appears on the right side of the i*® equation, for ¢ = 2,...,s. Thus, all s

equations cannot be solved simultaneously, although a fast recurrence approach, such as
that outlined in [20], might be used to solve the s systems more quickly than simply
calculating the Affri’i one after each other in the obvious sequential manner. A similar
difficulty for parallel implementations arises whenever a sequence of one or more p;’s
are nonzero, with the disadvantage becoming more severe as the length of the sequence
increases. (For either a parallel or sequential implementation, another minor disadvantage
associated with having u; # 0 is that more work is required to form the right side of (6.6).)

To avoid this sequential bottleneck in parallel FIRK implementations, several authors
have considered FIRK formulas for which A has s distinct eigenvalues, thus ensuring that
all 4; = 0 and consequently that the s systems in (6.6) are independent, allowing them to
be solved completely in parallel. However, these methods have the disadvantage that the
coefficient matrices, I, — hpy:JL, on the left side of (6.6) are all distinct. Consequently, to
solve these linear systems, either s m x m distinct matrices must be factored or a common
approximate matrix might be used on the left side of some of the systems in (6.6), possibly
with an iterative method to compensate for this simplification.

However, before abandoning SIRK formulas for parallel IVP codes, it seems natural to
ask if we could not have the best of both worlds: a SIRK formula with all y; = 0 — or at
least no long sequences of nonzero p;’s. Although this is possible, the next result shows
that this condition puts such a severe restriction on the order of a SIRK formula that the
scheme is unattractive from a computational point-of-view.

THEOREM 6.1. If the largest Jordan Block associated with the coefficient matrix A of a
SIRK formula is of size r, then the order of the formula is at most r + 1.

REMARK. An equivalent hypothesis, more closely related to the discussion above, is that
the longest sequence of nonzero p;’s associated with the transformed coefficient matrix

B = T71AT of a SIRK formula is of length r — 1.

PrOOF: The minimum polynomial associated with the coefficient matrix A of the SIRK
formula is m(z) = (x —)", where v € R is the single eigenvalue of A. Therefore, it follows
immediately from Theorem 2.1 that the maximum order of the formula is r + 1. i

This negative result leads us back to considering FIRK formulas for which the coefficient
matrix A has several distinct eigenvalues. Theorem 2.1 can be used to relate various
desirable properties for the parallel solution of (6.6) to the maximal order of such formulas.
We state just one more result of this nature below. Since it, like the previous theorem, is
an immediate consequence of Theorem 2.1, we omit the proof.

THEOREM 6.2. If the coefficient matrix A of a RK formula has ry distinct real eigenvalues,
ro distinct complex (nonreal) eigenvalues, and A is diagonalizable, then the order of the

23

formula is at most ry + 2ry + 6, where 6 = 1 if one of the real eigenvalues is nonzero and
6 = 0 otherwise.

We refer below to an IRK scheme based on collocation as an IRKC formula. Also, we call
a RK scheme having a coefficient matrix A with real eigenvalues only a real RK formula,
or, more specifically, a real IRK, FIRK or IRKC formula, as the case may be.

If r, of the eigenvalues of A are complex, then the corresponding ry linear systems
in (6.6) are complex also. There are several possible ways of coping with this, the two
most obvious being the use of complex arithmetic in the ry complex linear systems, or
a modification of the reduction scheme so that ry/2 real 2 x 2 blocks replace the rg/2
complex conjugate pairs of eigenvalues in B, giving rise to ry/2 linear systems similar to
(6.6), but each containing 2m, rather than m, equations. All the adaptions known to us
to accommodate complex eigenvalues in A lead to an increase in the computational work
required to solve (6.3). Also, one of the main advantages to be obtained by allowing A to
have complex eigenvalues is that the order of a s-stage formula can be increased beyond
s+ 1, the maximum possible for a s-stage real RK formula [44]. However, the stage order
of a s-stage RK formula is at most s, and this is obtained for IRKC formulas only. For a
large class of stiff problems, the “observed order” of a scheme is at most one more than
its stage order, due to the order reduction phenomenon (see [13, Ch. 7]). Consequently,
this advantage of increased order may be lost. Due in part to these two observations, most
preliminary research to date on the parallel implementation of FIRK formulas has focused
on real FIRK schemes, and real IRKC schemes in particular.

As noted above, the maximal order of a real RK formula is s + 1. If in addition, we
require that A be diagonalizable, then Theorem 6.2 restricts the order further to r + 1,
where r is the number of distinct real eigenvalues of A. Thus, all eigenvalues must be
distinct if a real RK formula with a diagonalizable A is it to attain its maximal order of
s+ 1. As the discussion below indicates, formulas that attain this maximal order can be
constructed easily.

To this end, we consider the stability function R(z) = P(z)/Q(z) of a RK formula
given in (2.5). Since we assume throughout this section that the coefficients b and A of
the RK formula are real, P and () are both real polynomials of degree at most s, and
Q(z) = [1;=1(1 — ~iz) where {v;} are the eigenvalues of A.

As noted in §2, it may happen that the order o of the stability function R(z) when
considered as a rational approximation to e® is greater than the order v of its associated
RK formula. However, Hairer and Tiirke [22] show that, if R(z) = P(z)/Q(z) is an
irreducible A-acceptable approximation to e* of order 7 > 1 with deg(P) < deg(Q) = s,
then there is a s-stage B-stable RK formula of order v = # having R as its stability
function. Although not stated explicitly in [22], the argument presented therein can be
extended easily to show also that, if R(z) = P(z)/Q(z) is an irreducible approximation to
e* of order v > 1 with s = max(deg(P),deg(Q)), then there is a s-stage RK formula of
order ¥ = ¥ having R as its stability function.

Because of the close connection between rational approximations to e* and RK formulas,
the former have been studied extensively. One useful tool for this analysis is the C-
polynomial theory of Ngrsett [41] and its extension by Ngrsett and Wanner [43]. We
formulate our results below in terms of the C-polynomial N(z) of [43] rather than the
p(z) of the original paper [41]. As noted in [43], N(z) = (—=1)°p(1 —), so it is simple

24

to translate results from one formulation to the other. However, several important results
are more naturally stated in terms of N(x).

As the following result is a minor extension of Theorems 2.1 and 4.1 of [41] written in
terms of N(z) rather than p(z), and it is closely related to Theorem 4 of [43], we state it
without proof.

THEOREM 6.3. R(z) = P(z)/Q(z) is an approximation to €* of order at least sp = deg(P)
and normalized so that P(0) = Q(0) = 1 iff there is a unique polynomial N of degree

s > max(deg(P), deg(Q)) normalized so that N(®)(z) = 1 for which

sp 8

(6.7) P(z)=) NC9(1)z* and Q(z) =) NC9(0):"

Moreover, the error associated with such a R is

e — R(z) = (Yy NETI)L +zs+1/(; N(z)e* =2 d;p) /Q(2)

i=sp+1

- (3 N“—“(l)zi) /Q(2)

i=sp+1

where, for i > 0, N (z) = d*N(z)/dz* and, for i < 0, N®(z) is defined recursively by
ND(z) = / NGO (1) gt
0

Ngrsett and Wanner [43] showed that N(z) provides a connection between rational
approximations to e* and IRKC formulas. We restate the essence of their result without
proof.

THEOREM 6.4. Let ¢y,...,cs be s distinct real numbers. R is the stability function of
the s-stage IRKC formula of order v > s with nodes cy,...,cs iff R(z) = P(2)/Q(z) is a
rational approximation to e* of order v > s with P and @) given by (6.7) for sp = s and
N(z)=(zx—c1) - (x —cq)/s.

It is a known, but possibly not well-known, result that all the principal truncation error
terms of an IRKC formula of order v have the form

(6.8) e(t) = # (1/ _1|_ T Z bic;-’)

where ¢ is any tree of order p(t) = v + 1 and w(t) is a nonzero rational constant that
depends on the tree ¢, but not on the formula. This is noted by Burrage in [6, p. 9], but
not proved there. As we know of no easily accessible proof of this result, we have included
one in the Appendix of [30].

Because of this last result for IRKC formulas, it makes sense to say that the principal
truncation error terms of one IRKC formula are smaller than those of another IRKC

25

formula, since, if one principal truncation error term is smaller, all others are as well by
the same constant of proportionality. Furthermore, let
(1) R(z) be a rational approximation to e* of order v > s,
(2) N(x) be its associated C-polynomial,
7 be the tree with one node only and #; = [, 7], be the tall branchless tree of order
3) 7 be the t ith de only and ¢ be the tall b hless t f ord
p(ty) = v+ 1, and
(4) e(ty) be the error term associated with the tall branchless tree tp for the IRKC
formula associated with R(z).

Then the principal error term N(¢~~1)(1) for the rational approximation R(z) is equal
to the principal error term e(tp) for the IRKC formula. That is, NC7¥=D(1) = e(t3).
Therefore, if Ry(z) and R(z) are two rational approximations to e* of the same order
v > s, Ni(z) and Nz(x) are their associated C-polynomials, and e;(tp) and ez(tp) are the
error terms for the tall branchless tree ¢ of order p(tp) = v + 1 for their associated IRKC
formulas, then Nl(s_y_l)(l) = e1(tp) and NZ(S_V_I)(l) = ez(tp). Consequently, for any tree
t of order p(t) = v + 1, the corresponding principal error terms for the IRKC formulas
satisfy eq(t)/e2(t) = e1(tp)/e2(ts) = Nl(s_y_l)(l)/Nés_y_l)(l). Thus, if the principal error
term Nl(s_y_l)(l) for R1(z) is smaller than the principal error term Nés_y_l)(l) for Ra(z),
then each principal error term eq(t) for the IRKC formula associated with Ry(z) is smaller
than the corresponding principal error term e3(t) for the IRKC formula associated with
R>(z) by the same constant of proportionality.

Moreover, many of the w(t) in (6.8) are the same. In particular, for v = s and p(t) = s+1,
all w(t) = 1, and, for v = s + 1 and p(t) = s + 2, either w(t) = 1 if t = [t1,...,tx] with
k>2orw(t)=—(s+1)if t = [t1]. As v — s increases, the number of distinct w(t) also
increases, but it is always much less than the number of trees of order p(t) = v + 1.

An important application of Theorems 6.3 and 6.4 is the construction of s-stage IRKC
formulas with either

(1) a coeflicient matrix with predetermined eigenvalues, or equivalently
(2) a predetermined stability function,

subject to the restrictions that

(a) the stability function R(z) = P(z)/Q(z) be of order at least s,
(b) max(deg(P). deg(Q)) < s, and

(¢) the roots cy,...,cs of the associated polynomial N(z) are real and distinct.

In case (1), the order of the IRKC formula is at least s and, in case (2), its order is the
same as that of the given stability function.

To see this, consider (1) first: that is, assume that we are given ~1,...,vs and asked to
construct a s-stage IRKC formula having a coefficient matrix A with eigenvalues vy, ..., 7s.
Form Q(z) = [[i_;(1 — viz) = 3i_, ¢i#* and let N(z) = Yi_, ¢iz® ¢/(s — i)!. Determine
P(z) by the first equation in (6.7) with sp = s. Since P,) and N satisfy equations (6.7),
it follows from Theorem 6.3 that R(z) = P(z)/Q(z) is a rational approximation to e*
of order v > s. Therefore, we have reduced (1) to (2): in either case, we have a rational
approximation R(z) = P(z)/Q(z) to €* of order v > s for which max(deg(P),deg(Q)) < s.
Therefore, either by construction in case (1) or by Theorem 6.3 in case (2), we obtain an
associated polynomial N(z) of degree s normalized so that N()(z) = 1 and satisfying

26

(6.7). If the roots ¢1,...,¢, of N(x) are real and distinct, then, by Theorem 6.4, the s-
stage IRKC formula with nodes ¢y, ..., ¢, is also of order v > s and has R(z) = P(z)/Q(z)
as its stability function. This completes the argument for case (2). For case (1), note
that Q(z) = [[i—;(1 —v:2) = det(I — zA). Therefore, 71,...,7, are the eigenvalues of the
coefficient matrix A of this IRKC formula.

Of restrictions (a)-(c) above, the only one that is problematic is (¢): the roots ¢1,..., ¢,
of the associated polynomial N(z) are real and distinct. It is easy to find examples of
rational approximations to e* for which the associated N(z) does not have distinct real
roots. For example, Ry1(z) = (1 + z + 22)/(1 + 22/2) and Ra(z) = 1/(1 — 2z + 22/2) are
both 2°4_order rational approximations to e*. Ny(z) = (22 +1)/2 and Nz(z) = (z —1)%/2
are the unique C-polynomials of degree two associated with Rq(z) and Ry(z), respectively.
Ni(z) has roots +¢ and Na(x) has a double root at @ = 1. Consequently, neither Rq(z)
nor Ry(z) is associated with an IRKC formula with real coefficients.

However, if Q(z) = [[;—,(1 —~viz) with all 7; € R and at most one v; = 0, then all roots
of the associated N(z) are real and distinct, and, consequently, there is a corresponding
real IRKC formula. Moreover, the restriction that at most one v; = 0 cannot be relaxed,
since, for an IRKC formula, the nodes ¢y, ..., ¢ must be distinct and the coefficient matrix
A for the formula satisfies A = CV SV ™!, where V = (cf_l) is the van der Monde matrix
formed from ¢y, ..., ¢c,, C = diag(cy,...,cs) and S = diag(1,1/2,...,1/s). (See [13, p. 61],
for example.) Since at most one ¢; = 0, A can have at most one eigenvalue v; = 0. Also
note that, if deg(Q)) < s, we can still write @ in the form Q(z) = [[;_;(1 — viz) by taking
s — deg(Q) of the v;’s to be zero. However, deg(Q)) equals the number of nonzero v;’s.
Therefore, deg((Q)) must be either s or s — 1 to satisfy the requirement that at most one
~vi = 0.

The result stated at the beginning of the last paragraph was developed in stages. Ngrsett
and Wanner [43] noted that all s roots of N are real if all s ~;’s are real. They did not,
though, establish the distinctness of the roots. Bales, Karakashian and Serbin [1] extended
the result of [43] by showing that all s roots of N are distinct if all s 7; are real and nonzero.
In addition, they showed that all s roots of N are positive if all s ~; are positive. The
following theorem, which augments these results, is a special case of a theorem from a
forthcoming paper on extensions to the C-polynomial theory of Ngrsett [41]. Its proof,
which will be given there, uses an adaptation of the bi-orthogonality theory of Iserles and
Ngrsett [27] [28], and is quite different from that employed in [1] or [43].

THEOREM 6.5. Let Q(z) = [[;—;(1 — 7:iz), where all v; are real and can be divided into
three disjoint groups: k4 of the ~; are positive, k_ of the v; are negative, and the remaining
ko = s — ky — k_ of the v; are 0. Then the roots of the associated C-polynomial N(x) are
all real and can be divided into three corresponding disjoint groups: k4 distinct positive
roots, k_ distinct negative roots, and a root of multiplicity ko at = 0.

REMARK. Although any of k4, k_ or kg may be 0, each of them is > 0 and k4 +k_+ko = s.
Also, note the k4 positive v; and k_ negative 7; need not be distinct to ensure that the
corresponding k4 positive roots and k_ negative roots of N are distinct. In particular, by
taking all the v; = v € R — {0}, we get a singly-implicit real IRKC formula of order either
s or s+ 1, with order s + 1 occurring iff N(_l)(l) =0.

We summarize below several negative results for real IRKC formulas. First, as noted

27

after Theorem 6.2, the order of a s-stage real RK formula can be at most s+ 1, whether or
not it is an IRKC formula. Moreover, the real IRKC formulas of order s+ 1 with minimum
principal truncation error terms are SIRK formulas, which follows from the corresponding
result in [44] for rational approximations and the discussion surrounding (6.8) above.
By Theorem 6.1, the Jordan Canonical Form of the coefficient matrix A associated with
such a SITRK formula must contain one block only of size s, from which it follows that
the associated transformed Newton equations (6.6) are completely coupled, making the
formula less than ideal for parallel implementation. However, this last negative result is
largely offset by the observation in [34] that, for the case s = 2 at least, there exist real
IRKC formulas of order s + 1 having “quite distinct” ~;’s, but with principal truncation
error terms very close to the minimum attained by a SIRK formula. That is, the principal
truncation error terms when viewed as functions of the v;’s seem to be quite flat near their
minimuimn.

Second, Burrage [4] proved that a s-stage B-stable IRKC formula must be of order 2s—1
or 2s. This and the restriction quoted above that a real IRKC formula can be of order
s 4+ 1 at most imply that these schemes can be B-stable for s = 1 or 2 only, and for s = 2
the order must be three while for s = 1 the order may be either one or two. It is easy to
find examples of such formulas.

Third, Wanner, Hairer and Ngrsett [52] showed that a s-stage real SIRK formula of
order s + 1 can be A-stable for s = 1,2,3,5 only. Keeling [36] generalized their result by
showing that the same restriction applies to all real IRK formulas. It is well-known that
A-stable s-stage SIRK formulas of order s+ 1 do exist for s = 1,2, 3,5, and that L-stable s-
stage SIRK formulas of order s exist for 1 < s < 6 and s = 8, but for no other s < 15. (See
[3] for example.) For s = 2 and 3, Keeling [36] exhibits a family of s-stage B-stable IRK
formulas of order s + 1, each having a coefficient matrix A with distinct real eigenvalues,
and he claims that a similar family of formulas exists for s = 5. The 2-stage schemes
are real IRKC formulas, but the others cannot be, as noted in the preceding paragraph.
Nevertheless, Keeling’s examples establish that s-stage A-stable IRKC formulas of order
s + 1 for which A has distinct real eigenvalues do exist for s = 3 and 5 also, since, as
outlined above, it is easy to construct IRKC formulas having the same stability functions
as the formulas given in his examples.

There are, though, some positive results about Ag- and I-stability of real IRKC formulas.
Bales, Karakashian and Serbin [1] showed that a s-stage real IRK formula of order s or
s+ 1 is Ag-stable — in fact strongly Ao-stable for s > 3 — if the eigenvalues {~;} of
the formula’s coefficient matrix A satisfy v; > 1/2 for i = 1,...,s. Keeling [36] provided
an alternate proof of this theorem that also indicates, for any s > 1, how to construct
a s-stage strongly Ag-stable IRKC formula of order s + 1 for which A has distinct real
eigenvalues. The same paper shows in addition, for any even s > 2, how to construct a
s-stage I-stable IRKC formula of order s for which A has distinct real eigenvalues.

Another set of positive results is due to Orel [45], who generalized the real-pole sandwich
theory of Ngrsett and Wanner [43] by relaxing the restriction that deg(P) = s. As a
result, he was able to find many more L-acceptable rational approximations of the form
(6.7) with deg(P) = sp < s having real poles only and order sp + 1. This forms the
basis of his conjecture that, for any sp, there is a S such that for all s > §, there
exist L-acceptable rational approximations with real poles only of the form (6.7) with

28

deg(P) = sp, deg(Q) = s and order sp + 1. Such a rational approximation cannot be
the stability function of an IRKC formula for sp < s — 1, since this would require that
N(S_i)(l) =0 for 2 =sp +1,...,s, which contradicts Theorem 6.5. However, the more
general result of Hairer and Ttirke [22] cited above ensures that we can associate a s-stage
B-stable IRK formula with each such A-acceptable rational approximation.

Karakashian and Rust [34] present some numerical results for a 2-stage 3*4-order A,-
stable IRK method based on the theory in [1]. The coefficient matrix A of this formula
has two distinct real eigenvalues, so the Newton iteration (6.3) associated with the formula
can be reduced to two completely independent systems of the form (6.6). Since their
test problem is linear, the computation can be simplified further. They compared the
CPU times of a simple fixed-stepsize implementation of this scheme running on one and
two processor for two parallel machines, an IBM-3081D and a Cray XMP. Their results
show that a speedup close to the optimal value of two is achievable with this simple
implementation if the problem is sufficiently large.

ACKNOWLEDGEMENT. This paper has benefited from discussions with several people. We
thank in particular Kevin Burrage, John Butcher and Bob Skeel as well as our students
and colleagues.

REFERENCES

1. L. Bales, O. Karakashian and S. Serbin, On the Ag-acceptability of rational approzimations to the
ezponential function with only real poles, BIT 28 (1988), 70-79.

2. L. G. Birta and O. Abou-Rabia, Parallel block predictor-corrector methods for ode’s, IEEE Trans.
Comput. C—36 (1987), 299-311.

3. K. Burrage, A special family of Runge-Kutta methods for solving stiff differential equations, BIT 18
(1978), 22-41.

4. High order algebraically stable Runge-Kutta methods, BIT 18 (1978), 373-383.

5. Solving nonstiff IVPs in a transputer environment, manuscript, CMSR, Univ. of Liver-
pool,, England.

6. The error behaviour of a general class of predictor-corrector methods, manuscript,
CMSR, Univ. of Liverpool,, England.

7. K. Burrage, J. C. Butcher and F. H. Chipman, An implementation of singly-implicit Runge-Kutta
methods, BIT 20 (1980), 326-340.

8. J. C. Butcher, On the implementation of implicit Runge-Kutta methods, BIT 16 (1976), 237-240.

9. A transformed implicit Runge-Kutta method, J. ACM 26 (1979), 731-738.
10, “The Numerical Analysis of Ordinary Differential Equations,” John Wiley & Sons,
New York, 1987.
11. — Towards effictent implementation of singly-implicit methods, ACM Trans. Math.

Softw. 14 (1988), 68-75.

12. M. T. Chu and H. Hamilton, Parallel solution of ODEs by multi-block methods, STAM J. Sci. Stat.
Comp. 8 (1987), 342-353.

13. K. Dekker and J. G. Verwer, “Stability of Runge-Kutta Methods for Stiff Nonlinear Differential
Equation,” CWI Monograph, North-Holland, Amsterdam, 1984.

14. R. Enenkel, “The implementation of parallel Runge-Kutta methods,” M.Sc. Thesis, Computer Science
Dept., University of Toronto, Toronto, Canada, 1988.

15. W. H. Enright and D. J. Higham, “Parallel defect control,” Tech. Rep. 237/90, Computer Science
Dept., Univ. of Toronto,, Toronto, Canada, 1990.

16. W. H. Enright, K. R. Jackson, S. P. Ngrsett and P. G. Thomsen, Interpolants for Runge-Kutta
formulas, ACM Trans. Math. Softw. 12 (1986), 193-218.

29

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

M. A. Franklin, Parallel solution of ordinary differential equations, IEEE Trans. Comp. C-27 (1978),
413-420.

C. W. Gear, “The potential for parallelism in ordinary differential equations,” Tech. Rep. UIUC-
DCS-R-86-1246, Computer Science Dept., Univ. of Illinois at Urbana-Champaign, Urbana, IL, 1986.
_, “Parallel methods in ordinary differential equations,” Tech. Rep. UIUCDCS-R-87-1396,
Computer Science Dept., Univ. of Illinois at Urbana-Champaign, Urbana, IL, 1987.

_, “Massive parallelism across the method in ODEs,” Tech. Rep. UIUCDCS-R—-88-1442,
Computer Science Dept., Univ. of Illinois at Urbana-Champaign, Urbana, IL, 1988.

E. Hairer, S. P. Ngrsett and G. Wanner, “Solving Ordinary Differential Equations I, Nonstiff Prob-
lems,” Springer-Verlag, Berlin, 1987.

E. Hairer and H. Turke, The equivalence of B-stability and A-stability, BIT 24 (1984), 520-528.

P. J. van der Houwen and B. P. Sommeijer, “Variable step iteration of high-order Runge-Kutta
methods on parallel computers,” Tech. Rep. NM—R8817, Dept. of Numerical Mathematics, Centre
for Mathematics and Computer Science, Amsterdam, The Netherlands, 1988.

“Block Runge-Kutta methods on parallel computers,” Tech. Rep. NM-R8906,
Dept. of Numerical Mathematics, Centre for Mathematics and Computer Science, Amsterdam, The
Netherlands, 1989.

Parallel iteration of high-order Runge-Kutta methods with stepsize control,
J. Comput. Appl. Math. 29 (1990), 111-127.
P. J. van der Houwen, B. P. Sommeijer and W. Couzy, “Embedded diagonally implicit Runge-Kutta

algorithms on parallel computers,” Tech. Rep. NM-R8912, Dept. of Numerical Mathematics, Centre
for Mathematics and Computer Science, Amsterdam, The Netherlands, 1989.

A. Iserles and S. P. Ngrsett, Bi-orthogonal polynomials, in “Polynémes Orthogonaux et Applica-
tions,” Lecture Notes in Mathematics #1171, Proceedings Bar-le-Duc, 1984, A. Dold and B. Eckmann
eds., Springer-Verlag, Berlin, 1985, pp. 92-100.

On the theory of biorthogonal polynomials, Trans. Amer. Math. Soc. 306 (1988),

455-474..

“On the theory of parallel Runge-Kutta methods,” Tech. Rep. DAMTP NA12 /
1888, Dept. of Applied Math and Theoretical Physics, Cambridge University, Cambridge, England,
1989.

K. R. Jackson and S. P. Ngrsett, “The potential for parallelism in Runge-Kutta methods. Part 1:
RK Formulas in Standard Form,” Tech. Rep. No. 239/90, Computer Science Dept., University of
Toronto, Toronto, Canada, 1990.

The potential for parallelism wn Runge-Kutta methods. Part 2: RK predic-
tor-corrector formulas, in preparation.

J. Kalvenes, “Experimentation with parallel ODE-solvers,” Tech. Rep. NM—-R8912, Mathematical
Sciences Div., Norwegian Institute of Technology, Trondheim, Norway, 1986.

O. A. Karakashian, On Runge-Kutta methods for parabolic problems with time-dependent coefficients,
Math. Comp. 47 (1986), 77-101.

O. A. Karakashian and W. Rust, On the parallel tmplementation of implicit Runge-Kutta methods,
SIAM J. Sci. Stat. Comput. 9 (1988), 1985-1090.

I. N. Katz, M. A. Franklin and A. Sen, Optimally stable parallel predictors for Adams-Moulton
correctors, Comp. & Maths. with Appls. 3 (1977), 217-233.

S. L. Keeling, On implicit Runge-Kutta methods with a stability function having distinct real poles,
BIT 29 (1989), 91-109.

W. Kutta,, Beitrag zur naherungsweisen Integration totaler Differentialgleichungen, Z. Math. Phys.
46 (1901), 435-453.

I. Lie, “Some aspects of parallel Runge-Kutta methods,” Math. and Comp. Rep. 3/87, Numerical
Mathematics Dept., Norwegian Institute of Technology, Trondheim, Norway, 1987.

W. L. Miranker, A survey of parallelism in numerical analysis, STAM Review 13 (1971), 524-547.
W. L. Miranker and W. Liniger, Parallel methods for the numerical integration of ordinary differential
equations, Math. Comp. 21 (1967), 303-320.

S. P. Ngrsett, C-polynomauals for rational approzimation to the exponential function, Numer. Math.
25 (1975), 39-536.

30

42

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

. S. P. Ngrsett and H. H. Simonsen, Aspects of parallel Runge-Kutta methods, in “Numerical Meth-
ods for Ordinary Differential Equations,” Lecture Notes in Mathematics #1386, Proceedings of the
I’Aquila Symposium, 1987, A. Bellen, C. W. Gear and E. Russo eds., Springer-Verlag, Berlin, 1989,
pp- 103-107.

S. P. Ngrsett and G. Wanner, The real-pole sandwich for rational approximations and oscillation
equations, BIT 19 (1979), 79-94.

S. P. Ngrsett and A. Wolfbrandt, Attainable order of rational approzimations to the exponential
function with only real poles, BIT 17 (1977), 200-208.

B. Orel, “Real pole approximations to the exponential function,” Tech. Rep. 1/90, Mathematical
Sciences Div., Norwegian Institute of Technology, Trondheim, Norway, 1989.

B. Owren, “Continuous explicit Runge-Kutta methods with applications to ordinary and delay dif-

ferential equations,”

Doktor Ingenigravhandling 1989:58, Mathematical Sciences Div., Norwegian
Institute of Technology, Trondheim, Norway, 1989.

B. Owren and M. Zennaro, Continuous explicit Runge-Kutta methods, in “to appear in Proceedings
of the London 1989 Conference on Computational ODEs,,” 1989.

“Order barriers for continuous explicit Runge-Kutta methods,,” Tech. Rep.

2/89,, Mathematical Sciences Div., Norwegian Institute of Technology, Trondheim, Norway, 1989.
submitted to Math. Comp.

R. D. Skeel and H.-W. Tam, Potential for parallelism in explicit linear methods, manuscript, Com-
puter Science Dept., Univ. of Illinois at Urbana-Champaign, Urbana, IL.

H.-W. Tam, “Parallel methods for the numerical solution of ordinary differential equations,” Ph.D.
Thesis, Tech. Rep. UITUCDCS-R-86-1246, Computer Science Dept., Univ. of Illinois at Urbana--
Champaign, Urbana, IL, 1989.

J. M. Varah, On the efficient implementation of implicit Runge-Kutta methods, Math. Comp. 33
(1979), 557-561.

G. Wanner, E. Hairer and S. P. Ngrsett,, Order stars and stability theorems,, BIT 18 (1978), 475-489.
P. B. Worland, Parallel methods for the numerical solution of ordinary differential equations, IEEE
Trans. Comp. C-25 (1976), 1045—-1048.

31

Appendix. Principal Error Terms for IRKC Formulas. In this appendix, we prove
the result associated with equation (6.8) for the principal error terms of an Implicit Runge-
Kutta Collocation (IRKC) formula. As noted in §6, this result is stated by Burrage in [6,
p. 9], but not proved there. As we know of no easily accessible proof of this result, we
have included one below. We also note at the end of this section that a few closely related
results mentioned in §6 follow from our proof.

THEOREM A.l. Each principal error term of an IRKC formula of order v satisfies

e(t) = # (U—ll—l —Zbic;’)

where t is any tree of order p(t) = v + 1 and w(t) is a nonzero rational constant that
depends on the tree t, but not on the coefficients of the formula.

PrOOF: A s-stage IRKC formula of order v = s +r, 0 < r < s, satisfies the Butcher
conditions

B(s+r): Zbicf_lzl/k, k=1,...,s+r,
i=1

8

C(s): Zaijc?_lch/k, i=1,...,s, k=1,...,s,

i=1
which may be rewritten in matrix form as

B(s+r): bT k=1 =1/k, k=1,...,s+r,
C(s): A1 = * k=1,...,s,

where c® = (c§,..., c*)T. Since all the ¢;’s are distinct, B(s + r) and C(s) imply that the

M) 8
formula also satisfies

: 1
D(r) : Zbicf_laij: %bj(l—c?), j=1,....s, k=1,...,r
=1

(See for example [13, Theorem 3.2.4].)

For convenience, we augment A by adding to it a s+ 15¢ row consisting of b7 in positions
1,...,s and a s + 1% column consisting of s + 1 zeros. We also augment b and ¢ by adding
to b a s + 15 component b,y; = 0 and adding to ¢ a s + 15* component c,11 = 1. The
vector ¢ for the Butcher series for the formula consists of s+ 1 components, with the error
in the formula associated with any tree ¢ being e(t) = (1 — ¢s4+1(2))/p(t)!.

We use below the standard bracket notation for trees. If ¢4, ..., t,, are trees, then t =
[t1,...,tm] is the tree formed by adding a new root and joining it by a new edge to the
root of each of t1,...,tm. (See for example [21, p. 152]).

Although not explicitly stated in [21], it follows immediately from Corollary 11.7 therein
that, for any tree t = [t1,...,tm],

(A1) Bt) = p(t)Ad(t1) - D(tm).

32

Using (A.1) together with C(s), it is easy to show by induction on p(t) that
(A.2) o(t) =cP® for p(t) < s.

For the remainder of the proof, assume that p(t) =v+1=s+r+1,0 <r < s. That
is, e(t) is a principal error term for the formula. Either
(I) t =[t1,...,tm] with all p(t;) < s, or
(IT) t = [t1,...,tm]| with one p(t;) > s and all other p(t;) <'s,
since 14+ p(t1) + -+ + p(tm) = p(t) < 2s + 1.

For case (I),

8() = p(H)AG(H) .. B(tm) = p(1) AP,

whence

Gusa(t) = p(DT PO = (v +)BT

e(t)ZLHl(t): 1(1 _bTCy>

p(t)! ! v+1

and

as required with w(t) = 1.
For case (II), assume without loss of generality that the ¢; for which p(t;) > s is t;.
Therefore, p(t;) < s for i = 2,...,m. Consequently, by (A.1) and (A.2),

(A3) B(t) = p(t) Ag(t1)cAO)1,

We need to apply rule (A.3) at most r times to arrive at a formula containing p’s, A’s and
¢’s only. To see this, note that, each time we apply rule (A.3), the order of the tree taking
the place of t; in the recurrence decreases by at least 1 and we don’t need to apply rule
(A.3) to determine ¢(t;) for p(t1) < s+ 1, since, in this case, ¢(t;) must be p(t;)AcP(t)—1
by (I).

The remainder of the proof is an induction on the number of times that we need to apply
rule (A.3) before we arrive at a formula containing p’s, A’s and ¢’s only.

If we need to apply rule (A.3) just once, then

b(t1) = p(ty)AcPt) =1,

Therefore,
é(t) = p(t)p(t1)A (Acp<t1)—1> (D =p(t)-1
whence
$sta(t) = p(t)p(t) Z bi Z aijcg(tl)_l AR
i=1 j=1
= p(t)p(t1) Z (Z biaijcf(t)_f’(tl)_l) c;)(tl)—l‘
j=1 \i=1

33

Since p(t) — p(t1) < r, we can apply D(r) to the sum in brackets to get

bara(t) = (tl Zb ((t) P(t1)>](tl)—1
7=1

Pt)—p

CpBplt) [N pt)-1 N p(0)-1
= bic; - bic;
o) — plt) \ 2 2
and finally B(s + r) to the first sum to get

b= PO (1)

p(t) = p(t1) \p(t:
= iy (o ~ e
=1+ ﬁu — p(t)pT P
=1+ ﬁu — (v 4+ 1)pTe).
Consequently,

as required.
For the induction step, assume that, if we need to apply rule (A.3) at most k times
before we arrive at a formula containing p’s, A’s and ¢’s only, then

e(t) = (t) (u—lu — ch”)

where w(t) is a nonzero rational constant that depends on the tree ¢, but not on the
coefficients of the formula. Now consider the case that, for tree t, we need to apply rule

(A.3) k+ 1> 2 times. Thus,
B(t) = p(t)Ad(ty)cPH—plt) -1
= p(t)p(t1)A <A¢(t2)c”(t1)_f’(t2)—1> PO =p(t) =1

whence
bor1(t) = p(t)p(t1) Z b; Z Clijﬁbj(tz)cg(tl)_p(tz)_l cf(t)_p(tl)_l
i=1 j=1
— Z (Zb aijct P(t) p(t1)— 1) qu(tz)c?(tl)_p(tz)_l.
=

34

Since p(t) — p(t1) < r, we can apply D(r) to the term in brackets to get

t)p(t : B o
bar1(t) = M(l) Z b; <1 _ C;3(t) p(t1)) ¢j(t2)65(t1) p(t2)—1

o(6) — pl(tr) 2
p(t)p(t ° p(t1)—p(t2)—1 - p(t)—p(t2)—1
(A.4) = L= | Y bidilta)c] =) bigilta)¢ :
Io(t) - [)(t]) i=1 =1
Consider t = [tz,'rp(tl)_”(tz)_l], where 7! represents [trees each with one node. Since,
o(f) = plts) < plt) = v+ 1,
(A.5) bar1(f) = p(t2) Y bigi(tz)cf P = 1,
=1

Similarly, for t= [tZa Tp(t)_p(tz)_l]a P(E) = P(t) = v + 1, whence
¢>3+1(t~) = p(t) Z bi¢i(t2)c£’(t)_)0(tz)—1.
i=1

Because of the relationship between t and ¢ involving #; and t,, k applications of rule (A.3)
to t are sufficient to yield a formula containing p’s, A’s and ¢’s only. Therefore, by the
induction hypothesis,

o 1—desa(t) _w() (1 T v
e(t) = (1/—|—+1)! oyl (1/—|—1_bc>7

where w(#) is a nonzero rational constant that depends on the tree #, but not on the
coefficients of the formula. Hence,

(A6) dapa(D) = plt) 3 bida(ta)ef VDT = 1 (1~ (v + BT e).

Substituting (A.5) and (A.6) into (A.4), we get

bapa(t) = A (s w1 - (4 7))

p(t) = p(t) \p(t1) p()

et p(ty) plt) o .
=00 —plt) o6 = p(t) T o(t) = plte) ()1 — (v +1)bTe¥)

_ /)(tl) w s —(y TCV
=1 + ,O(t) _ P(tl) (t)(l (+ 1)b)7

from which it follows that

1 =0epa(t) _w() (1 T v 1 o plt)
e(t) = O (V—I- s b e) where w(t) = —w(t)m.

Moreover, w(t) inherits from w(t) the property of being a nonzero rational constant that
depends on the tree ¢, but not on the coefficients of the formula. |

35

A few additional observations are worth noting. We see from the proof above that, for
a s-stage IRKC formula of order v = s, w(t) = 1 for all trees ¢ satisfying p(t) = s + 1,
since we can apply rule (I) to determine all associated ¢s41(t). Similarly, for v = s+ 1 and
p(t) = s+ 2, either

(1) t =[t1,...,tx] with k£ > 2 and all p(¢;) < s, from which it follows that w(t) =1, or

(2) t = [t1] with p(t1) = s + 1, from which it follows that w(t) = —(s + 1).

As v — s increases, the number of distinet w(t)’s also increases, but this number is always
much less than the number of trees of order p(t) = v + 1.

It also follows from the relations in the proof above and a straightforward induction
argument that, for a s-stage IRKC formula of order v = s+ r with 0 < r < s, w(tp) =
(=1)" (s+r)---(s+1)/r!, where tp = [, 7], is the tall branchless tree of order p(tp) = v+1
and 7 is the tree with one node only. Equivalently,

_ (_1)1’ 1 T st+r
e(ts) = slr! s—l—r—l—l_bc ’

Furthermore, as noted in §6, e(t) = N(""1(1), where N(z) is the C-polynomial associ-
ated with the IRKC formula. It is easy to verify directly that

Neroay = EU (L e
sl \s+r+1

as required.

Keywords. Numerical Solution, Initial Value Problem, IVP, Ordinary Differential Equation, ODE, Runge-
Kutta Method, Parallel Computation.
1980 Mathematics subject classifications: 65L05

Professor K. R. Jackson, Computer Science Dept., University of Toronto, Toronto, Ontario,
Canada M5S 1A4. E-mail: krj@na.toronto.edu

Professor S. P. Ngrsett, Division of Mathematical Sciences, Norwegian Institute of Technology,
N-7034 Trondheim—NTH, Norway. E-mail: norsett@imf.unit.no

36

