
Deadlock detection in distributed database systems:
A new algorithm and a comparative performance analysis

Natalija Krivokapić
�

, Alfons Kemper
�

, Ehud Gudes
�

�

Universität Passau, Lehrstuhl für Informatik, 94030 Passau, Germany; e-mail: <lastname>@db.fmi.uni-passau.de>
�

Ben-Gurion University of the Negev, Department of Math. & Comp. Science, Beer-Sheva, 84105, Israel;
e-mail: ehud@indigo.bgu.ac.il

Abstract. This paper attempts a comprehensive study of dead-
lock detection in distributed database systems. First the two
predominant deadlock models in these systems, and the four
different distributed deadlock detection approaches are dis-
cussed. Afterwards, a new deadlock detection algorithm is
presented. The algorithm is based on dynamically creating
Deadlock Detection Agents (DDAs) each being responsible
for detecting deadlocks in one connected component of the
global Wait-For-Graph (WFG). The DDA scheme is a “self-
tuning” system: After an initial warm-up phase, dedicated
DDAs will be formed for “centers of locality”, i.e., parts of
the system where many conflicts occur. A dynamic shift in lo-
cality of the distributed system will be responded to by auto-
matically creating new DDAs while the obsolete ones termi-
nate. In this paper we also compare the most competitive rep-
resentative of each class of algorithms suitable for distributed
database systems based on a simulation model, and point out
their relative strengths and weaknesses. The extensive exper-
iments we carried out indicate that our newly proposed dead-
lock detection algorithm outperforms the other algorithms in
the vast majority of configurations and work loads and—in
contrast to all other algorithms—is very robust with respect
to differing load and access profiles.

1 Introduction

During the last decade computing systems have undergone a
rapid development, which has a great impact on distributed
database systems. While commercial systems are gradually
maturing, new challenges are imposed by the world-wide in-
terconnection of computer systems. This creates an ever grow-
ing need for large-scale enterprise-wide distributed solutions.
Mariposa [SAL

�

96] is a recent prototype of a system ad-
dressing this demand. In future, distributed database systems
will have to support hundreds or even thousands of sites and
millions of clients and, therefore, will face tremendous scala-
bility challenges with regard to performance, availability and
administration.

Deadlocks can arise in each database system that permits
concurrent execution of transactions using pessimistic syn-
chronization schemes, i.e., locking protocols, which is the
case in most of todays (distributed) database systems. In cen-
tralized database systems deadlock detection and resolution
has been thoroughly investigated, e.g., in [ACM87]. Dead-
locks have also been studied in other areas, such as operating
systems.

Surveys of earlier work on distributed deadlock detection
in distributed database systems are given in [Kna87, Elm86,
Sin89]. The surveys described different algorithms, but no
quantitative analysis, in terms of benchmarking, has been car-
ried out.

First we describe the two predominant deadlock models
underlying locking-based database transaction synchroniza-
tion. Then, the four different distributed deadlock detection
approaches are briefly surveyed: timeout, path-pushing, prob-
ing and global state detection schemes, and representatives of
these classes are described.

To reflect the new developments, in this paper we present
a new deadlock detection algorithm designed for distributed
object systems. Also a comprehensive simulation study of
different deadlock detection algorithms is given.

In our computational model transactions are carried out
under the control of a transaction manager; synchronization
is achieved by a two-phase locking scheme, which could, for

2

example, be based on semantic locking. The locking scheme
is entirely under the control of the object managers. The ex-
ecution and commit processing of transactions is controlled
by the transaction managers.

The proposed algorithm detects deadlocks by dynami-
cally creating Deadlock Detection Agents (DDAs). Each DDA
maintains one part of the wait-for-graph (WFG) and searches
for cycles. In the resource model—the underlying deadlock
model of database transactions—a cycle always constitutes
a deadlock. Transactions start executing without any DDA.
Only if a conflict with some other transaction(s) occurs a
transaction becomes associated with a DDA: either a DDA
one of the conflicting transactions was already associated with
or, if no such DDA exists, a newly created one. If two trans-
actions that are already associated with different DDAs en-
counter a conflict, their two DDAs are merged into a sin-
gle one. This scheme guarantees that all—but only “real”—
deadlocks will be detected, which is one of the main problems
distributed deadlock detection algorithms face.

In a large-scale distributed database system one can ex-
pect that centers of locality will be formed. These centers of
locality comprise those transactions that access (compete for)
the same objects. The DDA scheme automatically establishes
different DDAs for different centers of locality—thereby de-
centralizing the deadlock detection.

The DDA scheme is a “self-tuning” system: After an ini-
tial warm-up phase, dedicated DDAs will become established
for each center of locality. Moreover, if a shift in the system’s
load is encountered—e.g., because of a shift of activity be-
tween different time zones in the course of a day within an
enterprise-wide distributed system—the DDA scheme adapts
automatically. New DDAs will be created for the newly form-
ing centers of locality and the obsolete DDAs will eventually
terminate.

In order to evaluate the performance of different schemes
we built a simulation system and chose to implement repre-
sentatives of different classes of algorithms that seem to be
the most efficient ones and are suitable for distributed da-
tabase systems. We have implemented the following algo-
rithms: 1) the DDA approach as the representative of global
state detection algorithms, 2) the edge-chasing algorithm de-
scribed in [RB89], that generates the fewest messages, 3) the
often cited path-pushing algorithm of System R* [Obe82]
and 4) different timeout approaches.

The rest of the paper is organized as follows. In Section 2
we outline the underlying model of computation. Section 3
gives an overview of the deadlock problem and the two dead-
lock models that mainly apply in distributed database sys-
tems. A classification of distributed algorithms for these mod-
els and representatives of the different classes are described
in Section 4. In Section 5 the new deadlock detection scheme
is presented. The performance comparison of the different al-
gorithms is reported in Section 6. Finally, Section 7 concludes
this paper.

2 The Model of Computation

The investigation of distributed deadlock detection algorithms
presented here is based on a very general distributed data-
base model, consisting of a collection of sites on which trans-
actions and objects are residing. The execution and commit
processing of transactions is controlled by transaction man-
agers (TMs), while objects are controlled by object managers
(OMs). An OM receives requests for operation executions
upon the objects it controls, sent by TMs, and communicates
the objects’ answers back to the TMs. In order to simplify the
presentation, but without loss of generality, we assume that
each TM and OM controls only a single transaction and ob-
ject, respectively. Therefore, we will often synonymously use
the term transaction for TM and object for OM.

In our model each object and transaction has a unique
identifier. Many deadlock detection algorithms require a to-
tal ordering on transactions for deadlock resolution and as-
sume that the transactions’ identifiers can be used for this
purpose, e.g., to determine the youngest transaction. How-
ever, after a transaction is aborted it has to be restarted with
a new identifier, otherwise information regarding the aborted
and the restarted execution of the transaction could not be
distinguished—possibly leading to inconsistencies. However,
changing the identifier could alter the ordering of transac-
tions, e.g., an old transaction might become the youngest. To
avoid this, in our system a transaction is associated with a
timestamp (additionally to the identifier), indicating the time
it has entered the system, which is not modified after an abort
and can therefore be used for transaction ordering. For sim-
plicity reasons in the rest of the paper we use identifiers for
the ordering of transactions and assume that they contain such
a timestamp.

Transactions and objects communicate via asynchronous
message passing. Transactions send, through their TMs, re-
quests to objects, i.e., to their OMs, which, in turn, send ac-
knowledgments (and/or results) back to the TMs.

We assume an error-free communication, meaning that
each message sent arrives within finite time and is transmit-
ted correctly. This assumption is needed by deadlock detec-
tion algorithms, since they gather information through mes-
sages. If messages would get lost, deadlocks might not be
detected. In systems in which this cannot be guaranteed, e.g.,
when parts of the system are connected through an unreliable
network, transactions have to set a timeout and abort after it
expires. This is similar to what is done in other systems us-
ing network communication, e.g., the WWW, ftp, etc.. This
timeout to handle communication errors should not be con-
fused with the timeout approach to detect transaction dead-
locks. The communication timeout is supposed to handle the
rare cases in which a message cannot be delivered and, there-
fore, is set to a much larger value than the timeout handling
deadlocks.

A two-phase locking protocol is assumed: During the first
phase TMs request operation executions on (possibly) differ-
ent objects; the acquired locks are maintained by the OMs
on behalf of the holding transaction. In the second phase, the

3

TMs initiate the commit processing after which the locks are
released.

A transaction
���

consists of a sequence [� �����	� ��
� ������� ;
� �����	� ����� ���������������] of operation invocations �	� ����� ������� on one
or several objects ��� —the “

� ������� ” denotes additional param-
eters of the invocation. The corresponding TM requests the
execution of the operations in strictly sequential order; that
is, it first sends a message to object � � requesting the in-
vocation of operation �	� ��
� ������� . The next request—i.e., the
one to object � � requesting the execution of �	� ����� ������� —is
not sent before the TM receives an acknowledgment from � �

that the requested invocation �	� �
� ������� has been successfully
executed. Thus, transactions are single-threaded.

An object manager receives the requests for operation in-
vocations on its object and schedules them in some order
(e.g., FIFO). The object manager maintains the lock table and
a compatibility matrix in which the commutativity of any two
operation invocations is maintained. Based on this informa-
tion the OM decides whether or not the locks needed for the
requested operation can be granted. If not, the operation in-
vocation is delayed and, thereby, the particular transaction’s
execution is blocked until the required locks are available. If
the locks can be granted, the OM associates the lock mode
with the corresponding transaction and invokes the requested
operation.

We adopt a semantic lock model [SS84, Kor83], which
is more flexible than an exclusive or read/write lock model.
With the exclusive lock model, an object can be accessed by
only one transaction at a time. The read/write lock model, in
contrast, allows multiple readers to hold locks on an object at
the same time while writers need exclusive locks.

The semantic lock model exploits the semantics of oper-
ations, i.e., their commutativity, to increase the possible con-
currency, so even multiple transactions updating a data item
can concurrently hold locks on it. Consider an object bank
consisting of a set of accounts. With semantic locking, if
transaction

�
� has made a deposit to ��� � ! � , transaction

�
�

could also deposit money to this account, before
�

� releases
the corresponding lock. This is possible since two deposit op-
erations commute, i.e., their order of execution is irrelevant.

3 The General Deadlock Problem

In the vast majority of modern database systems concurrency
control is based on locking mechanisms. Most systems em-
ploy the strict 2PL protocol [GR93]. Locking protocols can
lead to deadlocks. A deadlock is a permanent, circular wait
condition. A set of transactions is deadlocked iff each of the
transactions waits for locks held by other transactions from
this set [BHG87]. All transactions from the set are in a wait-
ing state, i.e., are blocked, and none of them will become
unblocked without interference from outside.

Different locking models can be used by concurrency con-
trol algorithms. In the exclusive and the read/write lock mod-
els a transaction waiting for a lock to be granted has to wait
for all transactions currently holding locks on that object.

When semantic locking is employed, a transaction may have
to wait for only a subset of the holders of the object. Also,
different transactions being blocked on the same object may
have to wait for different subsets of holders of the object.

Handling deadlocks involves two problems: deadlock de-
tection and deadlock resolution. In a DBMS deadlock res-
olution means that one of the participating transactions, the
victim, is chosen to be aborted, thereby resolving the dead-
lock.

A deadlock detection algorithm is correct if it satisfies
two conditions: 1) every deadlock is eventually detected (ba-
sic progress property), and 2) every detected deadlock really
exists, i.e., only genuine deadlocks are detected (safety prop-
erty).

While the first condition is intuitive, the second one needs
to be explained. Although a deadlock is a stable property,
due to stale information it is possible that the same dead-
lock is detected and/or resolved twice. Detected deadlocks
that do not really exist (anymore) are called phantom dead-
locks, see [KS94b]. One could argue that an algorithm detect-
ing phantom deadlocks could still be considered correct; but
unnecessary transaction aborts are too expensive to be toler-
able.

Each deadlock detection algorithm may detect phantom
deadlocks if spontaneous aborts are permitted. If an algo-
rithm decides to abort a transaction in order to resolve a dead-
lock, and at the same time some other transaction involved
in the same deadlock aborts spontaneously—thus resolving
the deadlock—the algorithm is breaking a phantom deadlock.
Therefore, we will assume that no spontaneous aborts occur
in the system.

3.1 Wait-For-Graph

Blocking conditions between transactions can be represented
through a transaction wait-for-graph (WFG). A WFG is a di-
rected graph in which nodes correspond to transactions and
a directed edge from

� �
to

� � expresses that
� �

waits for a
resource currently held by

� � . A deadlock can be detected
by examining the structure of the WFG. Which graph struc-
tures indicate a deadlock depends on which deadlock model
applies, as described in the next section.

3.2 Different Deadlock Models

Depending on the computational model, mainly on the types
of requests made by transactions, different deadlock models
apply. In distributed DBMS the single resource and the AND
model are prevailing, so only those will be discussed here.
Descriptions of the other models such as the OR model and
the general model, which are much less common, are given
in [BO81, MC82, Kna87, KS94a,BHRS95].

The simplest, and most widely used model in DBMSs is
the single resource model. In this model a transaction has
only one outstanding request at a time, i.e., it requests a lock
on one object, waits until it is granted and only afterwards

4

requests a lock on the next object. Although a transaction has
only one outgoing request at a time, it may wait for more
than one transaction. [Kna87] erroneously concludes that in
the single resource model a transaction can wait for only one
other transaction, implying that each node in the WFG has
only one outgoing edge. This is true only for the exclusive
locking model.

A deadlock in the single resource model corresponds to a
cycle in the WFG. Therefore, algorithms for this model de-
clare a deadlock when a cycle of waiting transactions is de-
termined. The cycle is resolved if one of the involved trans-
actions is aborted, thereby releasing its locks.

Numerous algorithms have been proposed for this model
[Obe82, RBC88, Bad86, SH89, MM79, KS91]. Some of these
algorithms will be described in Section 4.

In a computational model in which a transaction can send
more than one request at a time and has to wait until all of
them are granted, deadlocks are described by the AND (or re-
source) model. This model applies, for instance, in systems
supporting nested transactions, or when a transaction can re-
quest locks on several objects simultaneously. A deadlock in
this model is again indicated through a cycle in the WFG.

As far as we can see, some of the algorithms designed for
the single resource model could easily be extended for dead-
lock detection in a model in which a transaction can issue
multiple requests at a time. Since the models are so similar
sometimes the authors claim that their algorithms are for the
AND model, although the computational model they describe
is a single resource one, e.g. [RBC88], while others make re-
strictions to their model basically reducing it to a single re-
source model [Obe82]. An algorithm for deadlock detection
in the AND model is given in [LK95], but it is not clear how
deadlocks can be resolved with this algorithm. Algorithms es-
pecially designed for DBMSs supporting nested transactions
are [Ruk91, RHGL97].

4 Distributed Deadlock Detection Algorithms

Numerous deadlock detection algorithms have been devel-
oped for distributed DBMSs, surveys can be found in [Kna87,
Elm86, Sin89]. This paper focuses on distributed algorithms
for the single resource and the AND model only. We classify
the distributed algorithms based on the technique they use,
similar to the classification proposed in [Kna87], explain the
different techniques and describe one representative of each
class in more detail. We chose those algorithms that appear
to be the best in their class, i.e., induce the fewest number of
messages and are correct or detect the fewest phantom dead-
locks in their class. First, in Section 4.1 we will take a look at
deadlock resolution strategies.

4.1 Deadlock Resolution

Deadlock resolution strategies determine which transaction(s)
are to be aborted in order to resolve the deadlock(s). Many

resolution strategies have been proposed for centralized sys-
tems. Some of them have been compared by [ACM87], in a
simulation study of a centralized system. Based on the results
of the simulation, two conditions were determined each res-
olution strategy should guarantee: 1) it is always guaranteed
that at least one transaction in the system can finish (guaran-
teed forward progress), and 2) no transaction will be aborted
(and restarted) an indefinite number of times (no indefinite
restarts).

The first condition is related to the basic progress prop-
erty stated in Section 3. This property guarantees that no dead-
lock will exist forever but it does not ensure that any transac-
tion will ever finish. This is ensured by the first of the above
conditions, by guaranteeing that the transaction processing
will progress. A deadlock detection and resolution algorithm
can achieve what is intuitively expected, i.e., that every trans-
action that enters the system will eventually finish, only if the
deadlock detection is correct, i.e., fulfills the conditions given
in Section 3, and the resolution strategy guarantees the above
conditions. Obviously the given conditions also hold for dis-
tributed DBMSs.

4.2 The Timeout Approach

In this algorithm a transaction sets a timeout every time it
makes an operation request. If it does not receive the ac-
knowledgment that the operation has been executed success-
fully before the timeout expires, it assumes that it is involved
in a deadlock and aborts.

The algorithm is simple and therefore easy to implement.
Also, it does not cause any network traffic due to deadlock
detection. The main disadvantage of the algorithm is that it
aborts too many transactions. The algorithm aborts transac-
tions that may not be deadlocked, thus causing unnecessary
roll-backs and restarts of transactions.

Another disadvantage is that the timeout interval has to
be tuned. If it is too short even more transactions are unnec-
essarily aborted, if it is too long deadlocks will persist in the
system for a long time, thus delaying transactions in the dead-
lock and those waiting for locks held by them. Therefore, the
timeout interval has to be chosen carefully, which is difficult
when applications of widely differing profiles are running in
the system. Usually it is set to be much longer than the aver-
age execution time of a transaction [BN97, Hof94].

In [BN97] it is said that it may sometimes be desirable
to abort too many transactions, since if a transaction waits
for a longer time than the timeout interval although it is not
deadlocked, this indicates that the locking load is too high.
This may be true but a deadlock detection algorithm should
not be responsible for the scheduling.

Another drawback of this algorithm is its “resolution strat-
egy”. The timeout scheme can neither guarantee that one trans-
action can finish, nor that a transaction will not be aborted
an indefinite number of times. In particular, when the load is
high, long transactions have no chance to get through.

5

However, the algorithm performs surprisingly well in dis-
tributed DBMSs1 if it is carefully tuned, and therefore, many
systems have implemented it because of its simplicity [BN97].

To alleviate the drawbacks of the timeout approach, some
systems, e.g., Oracle [LMB97], introduce a deadlock detec-
tor at each site, responsible for detecting local deadlocks.
Deadlocks involving not only local transactions are resolved
through a timeout.

4.3 Classification of Distributed Algorithms

Many different distributed deadlock detection algorithms for
distributed DBMSs have been published. They can be divided
into the following categories (cf. [Kna87]): 1) path-pushing,
2) probe-based, and 3) global state detection algorithms.

Before we describe the different classes and algorithms,
we will summarize the assumptions we make. They have been
explained in previous sections, here we recall them. The first
two assumptions regard the behavior of transactions: They
follow the 2PL protocol, and do not spontaneously abort. Fur-
ther an error-free communication is assumed, meaning that
each message reaches its destination within finite time and
that each received message is correct. Of course, algorithms
also have to assume that there is a total ordering on trans-
actions so they can choose a victim to resolve a deadlock.2

Some algorithms make additional assumptions that will be
pointed out in the algorithm’s description.

4.4 Path-Pushing Algorithms

Path-pushing algorithms explicitly maintain the WFG. Each
site periodically collects local wait dependencies, builds a lo-
cal WFG, searches for cycles in it, and resolves the cycles it
detects. Parts of the rest of the WFG are sent to some other
(neighboring) sites. They incorporate the received wait de-
pendencies into their local WFG and search for cycles in it.
Afterwards the site again passes parts of the WFG on to other
sites.

It is interesting to observe that many of the published
path-pushing algorithms have turned out to be incorrect. Most
of them detect phantom deadlocks while some algorithms
even fail to detect real ones. E.g., counterexample to the al-
gorithm presented in [MM79] is given in [GS80].

Obermarck’s Algorithm

The algorithm by Obermarck [Obe82] was implemented in
System R* [WDH

�

81] and optimizes the path-pushing strat-
egy by sending a part of a possible cycle, i.e., a “path”, to
another site only in case the first transaction in the path has a
higher priority than the last one. This reduces the number of
messages by one half.

1 For centralized DBMSs it performs poorly, as shown
in [ACM87].

2 In our system the transaction’s identifier can be used for this
purpose.

Despite this optimization, the algorithm imposes signif-
icant overhead when it performs deadlock detection. This is
done periodically, so the whole WFG has to be searched for
cycles.3 Additionally, the paths that have to be sent to other
sites have to be identified. Also incorporating newly arrived
paths from one site implies that the previous information re-
ceived from this site has to be exchanged in the WFG for the
new information.

In [Elm86] it is stated that the algorithm detects phantom
deadlocks, since the parts of the WFG sent between the sites
belong to asynchronously taken snapshots, i.e., might be in-
consistent. Even if the snapshots were taken synchronously,
the algorithm might detect false deadlocks, since inconsisten-
cies can arise due to the breaking of cycles by the algorithm
itself.

4.5 Probe-Based Algorithms

Probe-based algorithms do not explicitly maintain the WFG
but send a special kind of messages, probes, along the edges
of the WFG. There are two kinds of probe-based algorithms:
edge-chasing and diffusing computation.

4.5.1 Edge-Chasing Algorithms

When a transaction
���

requests an operation execution on an
object and becomes blocked because it has to wait for locks
held by other transactions, a probe is sent to each of these
transactions, i.e.,

� �
initiates a probe computation. A blocked

transaction that receives a probe has to forward it to all trans-
actions holding locks it waits for. If a probe initiated by

� �
returns to

� �
, this probe must have traversed a cycle which

constitutes a deadlock.
A transaction that has requested an operation execution

does not know whether it is blocked or the operation is cur-
rently being processed. Also, if it is blocked it does not know
which transactions it waits for. Objects have this informa-
tion, so in fact they send the initiation probe on behalf of the
blocked transaction. For the same reasons a transaction for-
wards the probes to the object it waits for and the object then
sends the probes to the appropriate transactions.

Numerous edge-chasing algorithms have been developed
[CM82,CMH83,RBC88,SN85,SH89,KS91,CKST89,LK95],
again, some of them turned out to be incorrect, see [RBC88,
CKST89, KS91].

We will describe the algorithm by Roesler et al., [RBC88,
RB88, RB89], which is an improvement of [CM82, SN85].
The algorithm seems to induce the least amount of messages
and detects fewer phantom deadlocks than other algorithms
in this class. Moreover, it can handle semantic locking while
some algorithms, such as [SN85], can handle only exclusive
locking.

3 When deadlock detection is done continuously it has to be
checked only whether the new edge(s) have created a cycle.

6

Algorithm by Roesler et al.

In order to reduce message traffic in this algorithm objects
forward probes only to those transactions that have an identi-
fier4 lower than that of the initiator of the probe. Probes that
are being sent to transactions with a lower identifier are called
antagonistic probes.

The strategy of sending only antagonistic probes reduces
the number of messages and additionally assures that each
cycle will be detected only once. Only the probe initiated by
the transaction with the highest identifier will be forwarded
through the whole cycle.

To reduce the number of probe initiations transactions as
well as objects store the probes that they receive in order to
forward them when a dependency occurs at some later time.
This is necessary in order to avoid periodical re-initiation
of deadlock detection, which would drastically increase the
number of messages.

However, the stored probes incur a performance penalty:
They have to be removed when a deadlock is detected in order
to bring the WFG back to a consistent state. Therefore, an
object detecting that an antagonistic edge has ceased to exist
has to send an (antagonistic) antiprobe for each probe that
has arrived along the edge corresponding to the disappearing
dependency. The antiprobe mimics the behavior of the probe,
i.e., it follows the same paths and “cleans up” the WFG.

Sending antiprobes reduces, but does not eliminate, the
likelihood of detecting phantom deadlocks [RB88]. A probe
may pass along an edge that has ceased to exist before the
antiprobe deletes it, thus detecting a phantom deadlock.

The algorithm is designed for the single resource model.
It makes the additional assumption that messages arrive in the
order in which they were sent.

4.5.2 Diffusing Computation

In algorithms in this class a transaction starts a diffusing com-
putation [DS80,Cha82] when it has to wait for a lock. A dead-
lock is indicated, if the computation terminates.

A node of a directed graph starts a diffusing computation
by sending messages to its successors. Upon receiving such
a message a node can send messages to its successors, and so
on. In order to determine when a diffusing computation ter-
minates, nodes can also receive signals from their successors
and send signals to their predecessor [DS80, Cha82]. Based
on the signals it receives, the initiator can decide whether it
is deadlocked or not.

Using diffusing computation is an “overkill” for the de-
tection of single resource and AND-model deadlocks. In these
models a deadlock is indicated by a probe that returns to its
initiator, which induces much less overhead than diffusing
computation. Therefore, algorithms based on diffusing com-
putation [KS94a,KS97,MC82] are usually designed for more
complex deadlock models for which edge-chasing algorithms
cannot be used.

4 Identifiers are used to denote the priority of a transaction.

4.6 Global State Detection

The main problem distributed deadlock detection algorithms
encounter is that information may be stale and/or inconsis-
tent, thus leading to the detection of phantom deadlocks. To
avoid this, global state detection algorithms try to obtain a
consistent snapshot of the WFG, and search for deadlocks in
it.

In [CL85] an algorithm is given that on-line obtains a con-
sistent snapshot of the system. An algorithm for detection
of generalized deadlocks using these snapshots is presented
in [BT87]. Another algorithm, also for the generalized model,
is presented in [CDAS96]. However, this approach appears to
be rather inefficient, since each blocked transaction initiates
a deadlock detection process.

An algorithm for the AND model is presented in [ESL88].
In this algorithm one TM, e.g.,

��� �
, will have full control

over all transactions that are in the same connected compo-
nent of the WFG as

���
, and will additionally manage all ob-

jects any of these transactions have accessed.
��� �

will also
maintain the corresponding part of the WFG and search for
cycles in it. If the component splits into two (or more) com-
ponents,

��� �
will pass over the control of the component(s)

it is not part of to a TM in the new component. Note that a
split of the WFG here means that the WFG has split and the
sets of objects accessed by transactions from different com-
ponents are disjunctive.

The algorithm assumes synchronous communication, i.e.,
when a transaction wants to make a request to an object it has
to wait until the object is ready to receive it. Despite this unre-
alistic simplification, the algorithm incurs a severe overhead:
All requests for operation executions to an object on which
some transaction holds a lock will have to be forwarded, so
sometimes a local request might go to a distant site. Also, a
TM will take charge over another TM even when they do not
conflict but only access the same object.

In Section 5 we present a new global state detection al-
gorithm. The algorithm creates agents to which objects, i.e.,
their OMs, report wait dependencies between transactions, so
the agents can perform deadlock detection. Different agents
are responsible for different parts of the WFG, i.e., different
connected components within the WFG and have a consistent
snapshot of it. The algorithm is easy to integrate in a system,
deals with asynchronous message passing and does not even
depend on correct message ordering.

5 Deadlock Detection Agents (DDAs)

The main idea of the algorithm is to distribute the information
about the global WFG between different agents, called dead-
lock detection agents (DDAs), in a way that for every cycle
in the graph there is one DDA having complete information
about it. Each cycle belongs to one connected component of
the global WFG, so for each connected component there will
eventually be one DDA responsible for detecting cycles in it.

7

This is achieved by allowing transactions to be associated
with at most one DDA. Since only one DDA detects dead-
locks one transaction is involved in, the same deadlock will
not be detected twice, which is an inherent problem other
algorithms for distributed deadlock detection encounter. By
guaranteeing, that for each node in the WFG there is only
one DDA having outgoing edges from this node in its part
of the graph, the algorithm avoids detecting phantom dead-
locks. This will be explained in more detail in Section 5.6.
Moreover, a DDA has information about the whole connected
component it is responsible for and can therefore even further
reduce the number of transactions to be aborted, by deliber-
ately choosing the victim.

The emergence of a new connected component leads to
the creation of a new DDA. In case two connected compo-
nents of the WFG join to one component, the two correspond-
ing DDAs are also merged, and when the part of the global
WFG one DDA is responsible for disappears, the DDA ter-
minates.

The algorithm will be presented for the single resource
model. We will also show how to extend it for the AND
model. The DDA scheme does not require a particular lock
model; all it assumes is that there is a component reporting
every dependency to a DDA.

In a large-scale distributed database system it is likely
that different types of transactions access different groups
of objects, thereby creating centers of locality. Dependencies
will arise between transactions belonging to the same cen-
ter, building connected components of the WFG. In an initial
warm-up phase dedicated DDAs for these centers of locality
will be formed. Due to commits or aborts of transactions one
connected component can split up into different connected
components. In this case, the corresponding DDA is respon-
sible for cycle detection in all of these components. If the
connected components belong to the same center of locality,
they will most likely soon merge into one connected compo-
nent again. If, however, the connected components split be-
cause the access profile of the system shifted such that new
centers of locality emerge, new DDA(s) will automatically
emerge and the previous DDA(s) will eventually terminate.

The DDA scheme combines the advantages of distributed
deadlock detection algorithms (e.g., load distribution, local-
ization of deadlock detection in the vicinity of the involved
transactions) with the global view of (parts of) the WFG the
centralized scheme has—thus getting the best of both worlds.
It avoids detecting phantom deadlocks despite its distribution.
Moreover, it can dynamically adjust to the system’s load and,
in particular, it automatically adjusts to shifts in the system’s
hot spots by forming new DDAs in that vicinity.

The algorithm does not make additional assumptions to
those described in Section 4.3, i.e., 2PL, error-free message
transmission, and no spontaneous aborts of transactions. For
deadlock resolution a total ordering of transactions is needed.

�
�

my dda: � �
�

my dda: �

���
my dda: �

�

�

�

�
create � �

�
�
�

op request

	
�

� �

�
��
 �

��
��
 ���

set dda(to: � �)
set dda(to: � �)
set dda(to: � �)

to
���

to
�

�

to
�

�

Fig. 1 Creation of a DDA

5.1 DDA Creation

The proposed algorithm dynamically creates DDAs when they
are needed. A deadlock can occur only if there exists a con-
flicting lock on at least one object. As long as there are no
conflicting lock requests, i.e., there are no dependencies be-
tween the accessing transactions, no DDA is needed. The lock
management in the underlying model is done by the objects
themselves, i.e., their object managers, hence, they are also
responsible for the creation of DDAs.

When a transaction requests an operation on an object on
which another transaction already holds a lock that conflicts
with the one required for the requested operation, a DDA is
needed. If the object has no knowledge of a DDA—even if
one of the involved transactions already is associated with
one—a new DDA has to be created.5 The object creates it
and passes the dependencies to it. All of the involved transac-
tions become associated with the DDA. Becoming associated
with a DDA means that the transaction is sent the identifier
of the DDA and that all following operation requests by this
transaction will contain the identifier of its DDA. The object
that created the DDA records the association of a transaction
with its DDA.

An example is shown in Figure 1.
�

� and
��

are hold-
ing non-conflicting locks on � � , and none of the transac-
tions is associated with a DDA.

�
� , also not yet associated

with a DDA, requires a lock conflicting with locks held by�
� and

��
—denoted through dashed arrows. So dependen-

cies
�

��� �
� and

�
��� ��

arise. � � creates DDA � � and
passes the dependencies to it. The object records the asso-
ciation of the transactions with � � . After being created, � �
sends a message to each of its new transactions, so they be-
come associated with it. After receiving such a message

�
� ,�

� , and
� �

will send the identifier of � � with each of their
future operation requests.

If a transaction’s request conflicts with a set of locks al-
ready granted, and either the requesting transaction or one of
the transactions holding the locks already has a DDA, the ob-
ject knows about, no DDA has to be created. If there is only

5 A DDA has to have a unique identifier and a total ordering on
these identifiers is needed. The same kind of identifiers as it is used
for transactions can be employed.

8

one such DDA, the dependencies are reported to it and all the
other transactions will become associated with this DDA. In
case the transactions have different DDAs, they have to be
merged, as described in the following section.

5.2 DDA Merger

A conflicting lock request can create dependencies that lead
to a join of two or more connected components of the WFG
into one component. In this case the DDAs responsible for
these components have to be merged. The initiation of a merge
is explained below. Here the merging of two DDAs is de-
scribed; merging more than two DDAs is done analogously.

When DDAs have to be merged, the DDA with the higher
identifier, i.e., the younger one, which we will refer to as � � ,
is merged into the older one, i.e., the one with the lower iden-
tifier. ��� will denote the older DDA. On receiving a request
to merge into ��� , � � sends all the information it has to ��� .
This includes the dependencies � � has received so far, the
list of other DDAs that have previously been merged into it,
and some other administrative information. � � then records
the identifier of ��� and becomes passive. This means that
from now on � � will forward all the information relevant for
deadlock detection it receives to ��� . This way messages sent
to � � will still be processed. When � � receives the merg-
ing message sent by � � , it adds the received dependencies
to its part of the WFG, thereby checking for cycles. It also
adds the other information it got to the information it already
has. Afterwards it sends a message to each of the transac-
tions it became responsible for through the merger, so they
become associated with it. Additionally a message is sent to
each DDA that has previously been merged into � � , inform-
ing them that from now on they should forward to ��� instead
of to � � . Note that this is done only for efficiency reasons, to
prevent building forward chains between DDAs. It has no im-
pact on the correctness of the algorithm, since � � forwards
the information it gets to ��� anyway.

An example is given in Figure 2. In this example � � is
responsible for

�
� ,

�
� , and

� �
while

� �
and

���
are associ-

ated to � � . It is obvious that � � and � � have to be merged,
since the dependencies they know about belong to one con-
nected component of the WFG. When � � receives a request
to merge into � � , in the first step it sends the information it
has to � � . In the second step � � informs

��
and

� �
that their

DDA has changed, and finally, in the third step, � � requests
��� and ��� to change their forwards.

Note that only transactions are informed about the merg-
ing of their DDAs. This implies that only they know their
current DDA, or at least will get to know it within finite time,
while objects may still refer to a DDA already merged into
a new one. Due to the forwarding of messages this will not
result in loss of information.

Initiation of a Merge

The merge of two or more DDAs can be initiated by an object
or by a transaction. It is possible that different transactions

involved in a conflict on one object have different DDAs.
This means, that the conflict has caused the join of two or
more connected components of the WFG into one, and there-
fore the corresponding DDAs have to be merged. The object
chooses one DDA to report the dependencies to, and initi-
ates the merging of the other DDAs involved, into the chosen
one. The merge is initiated by sending a list of DDAs to be
merged along with the dependencies. The chosen DDA sends
a merge request message to each of these DDAs.

The object chooses the DDA with the lowest identifier,
i.e., the oldest one. The oldest one is chosen in order to avoid
an infinite number of merges. In case the requesting trans-
action has a DDA different from the oldest one, the depen-
dencies are sent indirectly, via the DDA of the requesting
transaction. The message then also contains a merge request,
i.e., the information that the DDA has to merge into the older
DDA. Since each transaction can wait for only one object,
by sending the dependencies to the DDA of the requesting
transaction, the algorithm guarantees, that at each point of
time, only one DDA has outgoing edges from the node in the
WFG corresponding to one transaction. As will be shown in
Section 5.6, this is sufficient in order to avoid detection of
phantom deadlocks.

The merging of DDAs can also be initiated by a transac-
tion. An example is shown in Figure 3. If transaction

�
� is

associated with � �
	 , but has accessed object � � before it be-
came associated to this DDA, the object does not have this
information. When a conflict on � � involving

�
� arises, the

object can decide to send the dependencies to � � , since it
has the information that

�
� is associated to this DDA. De-

pendencies
��� � �

� and
��� � �

� will be sent to � � . Upon
receiving the dependencies, � � will send a message to

�
� and���

, informing them that they are associated with it. When
�

�

receives this message, it will notice that � � and � ��	 have de-
pendencies it is involved in.

�
� will then initiate the merging

of � ��	 into � � . The message flow induced by this example
is shown in Figure 4.

A transaction does not become associated with the new
DDA immediately after it has initiated the merging of its pre-
vious DDA into the new one. This happens only after the
new DDA confirms the merge, by sending a set merge dda
message to the transaction. Until then the transaction stays
associated with the old DDA. If the transaction immediately
changed its DDA the following could happen: Its new DDA
receives the information that the transaction waits for some
other transactions, before the previous DDA has merged into
it. This could result into two active DDAs having outgoing
edges from one transaction (node) in their WFGs—which
could possibly lead to the detection of phantom deadlocks.

5.3 Deadlock Resolution

A DDA starts a deadlock detection every time it receives new
dependencies, i.e., it performs continuous detection. Depen-
dencies an object sends to a DDA consist of one transaction
waiting for a set of other transactions. Therefore the waiting

9

� �
���
 � �

��� ���

� �

�
�

�
�
�

�

���

� � � �

merge into

���	�

change forward (old: � � , new: � �)

��
�� set merge dda (old: � � , new: � �)
����

merge-req. (into: � �)

forwarding
“channel”

�

� �

�

� �

��

Fig. 2 Merging of two DDAs

� ����
 �
�

���
my dda: � �

� : ��
� : � �

�
�

my dda:
� �

�
�

my dda:
� ���

� ������
 �
�

	
�

op request

�����

set dda (to: � �)
��
��

merge into����� merge req. (into: � �)�����

����
� �
 �

����
 �
�

��
�� �

��

�
�

�

�

�

Fig. 3 Transaction initiates merging

� � 	
� � � �

� � ���
op request

dependencies
set dda

merge req

merge into

set dda

set merge dda

�
�

�
�

�

Fig. 4 Messages sent on a merge initiation by a transaction

transaction is a member of all cycles currently existing in the
part of the WFG the DDA is responsible for. Hence the dead-
lock detection involves only a depth-first search starting from
the waiting transaction. If a cycle is found, the DDA resolves
it. Currently this is done by choosing the youngest transac-
tion from the cycle to be aborted, if there is only one cycle. If
more than one cycle have arisen through the new dependen-
cies, the transaction whose wait dependencies newly arrived
is aborted, and therefore all cycles get resolved. Since the
DDA has complete information about the cycles in its part of
the graph, any other deadlock resolution strategy could eas-
ily be integrated into the algorithm. Note that this is a clear
advantage over other deadlock detection algorithms.

Besides from objects, a DDA can learn about new depen-
dencies from another DDA merging into it. Currently the al-
gorithm runs a depth-first search starting from each new node,
i.e., treating each new node with its outgoing edges as new
dependencies. This could also easily be replaced by a better
strategy.

As will be explained in Section 5.5, for efficiency reasons,
a DDA records the transactions it has aborted and those it
knows have committed.

5.4 DDA Termination

The simplest possibility is that a DDA terminates after it has
not received any message for a long enough period of time,
i.e., a timeout. In the current system we have implemented
this version, since DDAs that are not needed any more cause
almost no overhead.

Another alternative is that a DDA terminates after all trans-
actions in its part of the WFG have terminated. One possibil-
ity is that a DDA collects additional information about its part
of the graph, i.e., about transactions which belong to this part
of the graph but the DDA does not yet know of. The needed
information can be provided by the transactions (as part of
the message the transaction sends to its DDA upon its termi-
nation). This information is processed only by active DDAs,
which then request obsolete DDAs to “dissolve”.

5.5 Data Structures and Pseudo-Code for Deadlock
Detection

For deadlock detection the object’s structure has to be aug-
mented by a list of transactions accessing it and the DDAs
those transactions are associated with. Of course, each trans-
action needs to know its DDA (if it has one). As explained in
the previous section, after a transaction initiates a merge of its
current DDA into a new one, it waits for the confirmation of
this merge before it becomes associated with the new DDA.
In the meantime it stores it in next. Messages from DDAs to
a transaction can arrive in a different order from the one in
which they were sent. A transaction can receive a message
that � � has merged into �"! before it has learnt that � � is
responsible for it. In order to avoid unnecessary forwards of
messages, a transaction stores the set merge dda messages in
dda merges, until it can use the information they contain. In
the following we will describe the structure of a DDA, shown
in Figure 5.

A DDA is an object having the following special attributes:
ta list, wfg, forw addr, dda list and term tas. The ta list is

10

T �

�
�
�

�

� �

wfg

� � ��� � ��� ������� �
term tas

� �
� � � � �	������� ��
 �

ta list
—

forw addr � � � � � � ��������� �� �
dda list

Fig. 5 DDA Structure

a list of all transactions the DDA is currently responsible
for. The WFG information is maintained in the wfg structure.
For a passive DDA, the forw addr contains the address of
the DDA the DDA has merged into. A DDA maintains the
DDAs that have merged into it in dda list. (These DDAs for-
ward all their messages.) Dependencies involving a transac-
tion may be received after it has terminated. To avoid adding
this transaction again to the wfg, the DDA keeps track of
the transactions that have terminated, i.e., it has aborted or
it knows have committed, in term tas. This information is
needed only for efficiency reasons, i.e., to avoid unnecessary
set dda and set merge dda messages and to keep the WFGs
smaller.6 Note that this should also be done in other algo-
rithms explicitly maintaining a WFG.

5.5.1 Code for Objects

The only change in the objects’ code has to be made for the
case a lock needed for an operation execution requested by a
transaction cannot be granted. In this case the object has to
determine a DDA to send the dependencies to.

– An operation request from transaction
� � is received

receive operation request
if lock can be granted
then grant lock
else (conflict with locks held by

�
� �	������� ���)

determine DDA (create a new one if there
is no DDA)

send dependencies and DDAs to be merged
into DDA (to determined DDA)

update TA/DDA Association List
fi

Determining a DDA is done as follows. If
� � is already as-

sociated with a DDA, this one is chosen. The object chooses
the DDA with the lowest identifier from the set of DDAs the
transactions

�
����������� ��� are associated with if

� � is not al-
ready associated with a DDA. It is possible, that transactions�

����������� ��� , and
� � are associated with different DDAs.7 This

causes a merge of these DDAs into the one with the lowest
identifier. Note that the dependencies, along with the list of

6 For the extension of the algorithm for the AND model at least
aborted transactions have to be recorded in term tas in order to pre-
vent detection of phantom deadlocks.

7 Transactions
�

� �	������� ��� may not conflict, e.g., if they all per-
form a read on the object, so they can have different DDAs.

DDAs that have to be merged, are sent to the DDA of
� � (if

it has one). If this DDA has to be merged into another DDA,
the message also contains a merge request.

The object relies only on its own information about trans-
actions being associated with DDAs when it determines a
DDA. This information might be stale and lead to additional
overhead (creating a DDA that is not needed), but it will not
lead to incorrectness (loss of information) since the transac-
tions will recognize the unnecessary creation and request the
merging of the DDAs.

When the object has finished the execution of an oper-
ation it sends an acknowledgment to the requesting transac-
tion. As described earlier this message also contains the DDA
of the transaction, either the one the transaction has sent with
its request or, if the transaction did not have a DDA but did
cause dependencies, the one the object has sent these depen-
dencies to. If the object has initiated a merge of DDAs, the
transaction will learn about it from the DDA, not from the
object.

5.5.2 Code for Transactions

Messages may not arrive in the order in which they were sent,
so set merge dda and set dda messages sent from different
DDAs to a transaction may arrive in a “wrong” order. The
transaction deals with this by storing information from re-
ceived set merge dda messages in dda merges.

– Transaction
� � requests an operation on object � �

operation request
send operation request to

	�
(with my dda,

if
� � has one)

receive operation ack([DDA new])
case

the operation request contained a DDA:
return

operation ack does not contain a DDA:
return

default:
proceed as on receive set dda
update my dda

end

If the operation request contained a DDA the object sends
the dependencies (if the transaction had to wait) to this DDA
and returns its identifier to the transaction. This information
is not new to the transaction, the transaction may even have
the information that this DDA has already been merged into
another DDA. Therefore it ignores it.

In case the transaction did not have a DDA when request-
ing the operation, it checks whether it has to initiate a merge
(as in receive set dda). This can be the case if it became asso-
ciated with a different DDA while waiting for operation ack.
In order to guarantee, that only one DDA has outgoing edges
from

� � in its part of the WFG, the transaction becomes as-
sociated with the DDA it got from the object, even if it has
initiated the merging of this DDA. The transaction stays as-
sociated with this DDA until it receives a message that the
merge has been accomplished.

� � may already have this in-
formation in dda merges on receiving operation ack.

11

– Transaction
� � receives a set dda(DDA new)

receive set dda(DDA new)
case

my dda = � : // not yet associated
// with any DDA

my dda := DDA new
next := DDA new

my dda = DDA new: // I knew it already
return

next
�� DDA new:

initiate merging, if needed
update next

end

The DDA (identifier) stored in next is the DDA the transac-
tion is associated with or is to become associated with, but
waits for the message that its previous DDA has merged into
it. The transaction has to wait in order to guarantee that only
one DDA has outgoing edges from the node

� � . To reduce
unnecessary forwards, the transaction always uses next, not
my dda, for a merge.

In the last case transaction
� � checks (in dda merges)

whether DDA new has merged into some other DDA (� �
).� � then initiates merging of � �

(or DDA new if � �
does not

exist) and next. Of course, no merging is needed if � �
(or

DDA new in case there is no � �
) equals next.

– Transaction
� � receives a

set merge dda(DDA new, DDA merged)

receive set merge dda(DDA new, DDA merged)
insert received information in dda merges
if my dda = � : // not yet associated

// with any DDA
then my dda := DDA new

next := DDA new
return

fi
if next � DDA new then next = DDA new fi
update my dda considering dda merges

DDA merged is the DDA that has merged into DDA new.
next represents the oldest DDA

� � knows it will be associated
with, so in case DDA new is older than next, next is updated.

my dda is updated to DDA new or a DDA DDA new has
merged into.

5.5.3 Code for DDAs

When a DDA is merged into another DDA it becomes passive
and forwards all messages it receives, except forward end
and change forward. Here we consider only active DDAs.

– DDA � � receives a message from an object containing
a list of dependencies, a list of DDAs to be merged and
(possibly) a merge request

receive dependencies(dependencies, list of DDAs,
[merge request])

filter out dependencies involving transactions
contained in term tas

add dependencies to wfg

update ta list
send set dda(self) to all new transactions
if message does not contain merge request
then send merge request(self) to all (new) DDAs

in the received list,
check for cycles in wfg

else (message contains merge request(DDA merge))
send merge request(DDA merge) to all

(new) DDAs in the received list,
merge into DDA merge

fi

The dependencies are always sent to the DDA of the blocked
transaction. If the object knows about a DDA (with a lower
identifier) of another transaction involved, it initiates a merge,
by adding a merge request to the message. The list of DDAs
to be merged is also sent along with the dependencies. � �
requests the DDAs from the list to merge, either into itself or
into DDA merge. Of course, no message needs to be sent to
DDAs already merged into � � .

– DDA receives a merge request(DDA new)

receive merge request(DDA new)
if own id � DDA new
then merge into DDA new
else if own id � DDA new

then send merge request to DDA new
fi

fi

The case that the identifier of the DDA receiving the message
is smaller than the identifier of DDA new can arise due to
the forwarding of messages. When this happens the receiving
DDA sends a merge request message to DDA new.

– DDA receives a merge into message

receive merge into(wfg, ta list, dda list, term tas)
update ta list and wfg according to received term tas
filter out received information involving transactions

contained in term tas
send set merge dda to all transactions in

the received ta list
update own ta list
send change forward to all DDAs in

the received dda list
append this list and the sender to own dda list
add received wfg to own wfg
append received term tas to own term tas
check for cycles in wfg

5.6 Correctness Issues

A deadlock detection algorithm is correct if all deadlocks that
occur in the system are detected in finite time and all detected
deadlocks really exist—at the time of their detection, see Sec-
tion 3. In this section we will argue that the presented DDA
algorithm is correct under the following assumptions.

We assume that message passing is error-free, i.e., that
all messages that are sent arrive in finite time and are cor-
rect. Also the assumption is made that an existing dependency

12

� � � � � ceases to exist only if the transaction
� � commits

or aborts. Under these assumptions the proof by Wuu and
Bernstein [WB85] is applicable, saying that each cycle in the
global WFG indicates a deadlock in the system. It also im-
plies that each deadlock is permanent, i.e., a deadlock cannot
be resolved without interference from outside. In case this
is not true, every deadlock detection algorithm may detect
phantom deadlocks, since it may detect a cycle that has al-
ready been spontaneously resolved. Of course, aborts on be-
half of the deadlock detection algorithm are not considered
as spontaneous aborts.

5.6.1 All Deadlocks are Detected

Observation 1 All outgoing edges from one node are main-
tained in the same DDA.

This Observation follows from the construction of the algo-
rithm. Outgoing edges from one transaction arise iff a trans-
action waits for locks on one object. They are reported to a
DDA and the waiting transaction learns about this DDA be-
fore it can make any further lock requests. This implies that
after a transaction waits for the first time on some object, it
knows which DDA is responsible for it and sends this DDA’s
identifier with every following lock request. Therefore, the
objects on which the transaction waits at some later point
of time will send the dependencies, that represent outgoing
edges from the corresponding WFG node, to the same DDA.

If the (younger) DDA � � one transaction is associated
with merges into another (older) DDA, ��� , the transaction
becomes associated with ��� , but only after its previous DDA
� � became inactive. So at each point of time only one of the
DDAs contains outgoing edges from the corresponding node
of the WFG.

After merging into � � the previous DDA � � forwards all
dependencies it receives to � � , so no information is lost.

Observation 2 Let
� �

be a node involved in a cycle�
� � ����� � � � � � � � ����� � �

�

of the global WFG. Then at some point of time the incoming
edge to

� �
involved in this cycle will be part of the WFG of

the same DDA having the outgoing edges from
� �

in its part
of the graph.

From Observation 1 it follows that all outgoing edges from� �
are administrated by one DDA, say � � .

� �
has the infor-

mation that it is associated with � � , or a DDA merged into
� � . If

� �
is involved in a cycle, then there is an edge

� � � � �
in the global WFG that is also part of this cycle. The depen-
dency represented by this edge was recognized by an object
and sent to a DDA. If it was sent to � � nothing has to be
proved. If it was sent to some other DDA, this DDA will in-
form

� �
that it became its DDA.

� �
will recognize that it has

two DDAs and initiate their merging, so eventually a single
DDA will have the edge

� � � � �
and all the outgoing edges

from
� �

in its part of the WFG.

Observation 3 All deadlocks in the system will be detected
and resolved in finite time.

Let
�

� � �
� � ����� � ��� � �

� constitute a cycle of the
global WFG. From Observation 2 follows that at some point
of time there will be one DDA having all outgoing edges from�

� and edge
� � � �

� in its part of the WFG. This is in partic-
ular true for edge

�
� � �

� , so the DDA will also contain all
outgoing edges from

�
� (Observation 2), in particular edge�

� � � �
. Continuing this will lead to the conclusion that at

some point of time all edges involved in the cycle will be part
of the WFG of one DDA. Note that DDAs also merge “in
direction” of the DDA with the lower identifier—therefore,
eventually this process must terminate.

Since a DDA starts a deadlock detection each time it re-
ceives new dependencies, the cycle will be detected and re-
solved when the edge completing the cycle reaches the DDA.
As every deadlock is represented by a cycle in the graph, ev-
ery deadlock will be detected and resolved.

5.6.2 No Phantom Deadlock Detection

Before showing that no phantom deadlocks are detected, we
have to analyze what could lead to their detection. Under the
assumptions we made, a deadlock cannot be resolved sponta-
neously and each cycle in the global WFG indicates a dead-
lock in the system. Therefore, the only possibilities that a
phantom deadlock could be detected are that the same dead-
lock is detected by two different DDAs, or that by resolving
one deadlock another deadlock also gets resolved, without the
appropriate DDA noticing this.

One cycle can be detected at only one DDA since each
dependency is reported to only one DDA and no other DDA
has knowledge about it, as long as this DDA is active. If the
DDA merges into another DDA it sends the dependencies to
this DDA and again only one DDA has them.

For edge-chasing algorithms it is also true that each cycle
is detected only once. A problem, however, arises when two
cycles have at least one common node, as shown in Figure 6.
If

�
� 	 (

�
��) is the transaction with the largest identifier in the

right-hand (left-hand) cycle, the following could happen. The
probe sent on behalf of

�
� 	 passes

�
��	 before

�
��	 is chosen as

a victim to resolve the left-hand cycle. Then, after resolving
the left-hand cycle,

�
� 	 would be aborted to break the right-

hand cycle which does not exist any more—due to aborting�
��	 . This inherent problem of edge-chasing algorithms was

also reported in [RB88]. The above problem cannot happen
in our DDA scheme.

When a DDA aborts a transaction to resolve a cycle it
removes all edges the corresponding node is involved in. In
particular it removes all outgoing edges from this node. Since
only this DDA has outgoing edges from one node (Observa-
tion 1), if the transaction was involved in more than one cy-
cle, all of these cycles will be removed from the graph, so no
wrong deadlock detection is possible.

In order to reduce the number of aborts due to deadlocks
even further, the DDA scheme employs the following heuris-
tics. If the transaction “closing” a cycle is involved in more
than one deadlock, this transaction is chosen as the victim.

13

����� � � �����
�
...

�

�
�

���

...

�
� ���� ����������

�
���

� �

��

Fig. 6 Cycle Overlaps

Such a heuristics cannot be employed in an edge-chasing ap-
proach.

Thus, there are two reasons why the edge-chasing algo-
rithms can be expected to induce more aborts. First, they in-
herently detect some phantom deadlocks. Secondly, they can-
not deliberately choose transactions involved in several cy-
cles. This observation is also backed by our simulation results
in the next section.

5.7 Extension for the AND Model

The DDA approach can easily be extended to detect dead-
locks in a model where one transaction can issue multiple
requests in parallel.

The only reason why the presented algorithm is not suf-
ficient for the AND model is that multiple requests of one
transaction could lead to more than one DDA being responsi-
ble for it. Consider transaction

�
� having no DDA at the time

it makes requests to � � and � � . If at both objects dependen-
cies arise, the objects might send them to different DDAs, or
even create two DDAs for them. This could lead to detection
of phantom deadlocks, since both DDAs would search for cy-
cles

�
� is involved in. Note that this problem does not occur

if
�

� already has a DDA when it makes the request, since
the DDAs would properly merge before they start looking for
cycles.

To avoid this problem, when used in the AND model the
algorithm has to be extended as follows: Each transaction
gets a dummy DDA assigned when it starts execution. Objects
treat the dummy DDA in the same way as a “normal” one, the
difference is, that a dummy DDA is instantiated only when it
receives a message, i.e., a dependency involving the trans-
action arises. This way each transaction always has a DDA
(and sends its identifier with every request it makes), so no
phantom deadlocks are detected.

6 Comparative Performance Evaluation

Many distributed deadlock detection algorithms have been
proposed, but only few quantitative comparisons of deadlock
handling schemes in database systems exist. [ACM87] con-
centrated on a simulation study of various deadlock handling

and deadlock avoidance algorithms in a centralized database
system. [Cho90] compares the algorithm of [CKST89] with
an algorithm that combines the path-pushing and the edge-
chasing approach. [Buk92] presents a comparison of a cen-
tralized and a distributed approach. In [YHL94] two edge-
chasing algorithms and the timeout approach were compared.

In this section we present the results of a much more com-
prehensive simulation study that compares distributed dead-
lock detection algorithms from different classes. The algo-
rithms we have analyzed are the DDA scheme, as a represen-
tative of global state detection, the path-pushing algorithm by
Obermarck [Obe82], the edge-chasing algorithm by Roesler
et al. [RB89] and various timeout approaches. These algo-
rithms cover all the different classes of algorithms, except the
diffusing computation category. As already described in Sec-
tion 4.5.2, the diffusing computation-based algorithms are not
competitive for the restricted computational models underly-
ing database transactions. Deadlocks occurring in the single
resource and the AND model can be detected much more ef-
fectively with inherently less expensive algorithms, like the
edge-chasing algorithms.

6.1 Simulation Model

In our simulation model a distributed database system con-
sists of an arbitrary but, for one simulation run, fixed num-
ber of sites. Each site has one (time shared) CPU server, so
at any point in time only one autonomously operating entity
(e.g., object, transaction, deadlock detector) can be active at
one site. A site is responsible for properly scheduling the en-
tities located on it. They are scheduled on a first-come/first-
serve basis. The system also models network latency: mes-
sages sent from one entity to another take different time, de-
pending on the distance between their locations. Messages
sent within a LAN take much less time than messages sent
between distant sites. For simplicity, we omitted modeling
I/O servers. However, we believe that this does not have an
impact on the performance of deadlock detection algorithms
because it will equally influence the throughput and response
time achieved using different algorithms. To account for I/O
delays, some “thinking time” is incorporated in the duration
of operation execution.

Rather than having transactions enter the system at arbi-
trary points in time, we started a number of transactions at the
beginning of a simulation run and the system then preserved
the same number of active transactions (multiprogramming
level, mpl) throughout the simulation. Instead of measuring a
“cold start”, we let the system run for a while and then, after
the “warm-up phase”, started to record the transaction pro-
cessing. After completing the warm-up phase we recorded
10000 commits and analyzed the results.

The warm-up phase was intended to bring the system into
a stable operational condition. It turned out that the differ-
ent algorithms reach this stable condition after vastly differ-
ent intervals. The real detection algorithms reach it rather
soon, whereas the timeout approaches are very sensitive to

14

prolonged high-load runs. We report several experiments to
demonstrate this effect.

When a transaction is initiated at a processor, it sends its
first operation request to the object it wants to access. If the
lock needed for this operation can be granted, the object ac-
knowledges the operation by sending a message to the trans-
action. Upon receiving this message the transaction can send
its next operation request. In case the lock cannot be granted,
the object manager takes actions depending on the deadlock
detection strategy used. If the edge-chasing algorithm is used,
the object manager generates a probe; if the DDA approach
is employed, dependencies are sent to a DDA, or a DDA is
created. In case of the path-pushing algorithm and one of the
timeout schemes the object manager sends the dependencies
to the local deadlock detector.

Once a transaction has executed all of its operation re-
quests, or was chosen as a victim of deadlock detection, it
starts a commit or abort, by sending appropriate messages to
the objects it has accessed. An aborted transaction has to be
restarted after a restart delay. The delay varies for the dif-
ferent experiments, depending on the transaction mix, but is
fix within one experiment. For a committed transaction a new
one is started, at a random site, in order to maintain a constant
multiprogramming level (mpl), i.e., number of active transac-
tions. The transaction to be started is chosen according to the
transaction mix specified for the experiment.

6.2 Implementation of the Algorithms

The implementations of the edge-chasing and the DDA ap-
proaches are straightforward, as described in previous sec-
tions, because no adaptation to the computational model is
needed.

For the timeout approach transactions were changed in a
way that a transaction sets a timeout each time it requests an
operation execution on an object. If the operation execution
is not acknowledged before the timeout expires the transac-
tion aborts and is restarted after a restart delay. From now
on we will refer to this algorithm as the pure timeout algo-
rithm. The timeout approach augmented by a local deadlock
detector at each site will be called the timeout&detection al-
gorithm. As in the pure timeout approach, a transaction sets
a timeout when it requests an operation execution and aborts
if the acknowledgment does not arrive before the timeout ex-
pires. Additionally, an object sends dependencies to its local
deadlock detector when dependencies occur. The detectors
search for cycles in this local WFG and resolve deadlocks
they detect, so the victim releases its locks faster.

The path-pushing algorithm had to be adapted to our com-
putational model. In this algorithm each transaction starts ex-
ecution on one site. If it wants to access data located at some
other site, the transaction creates an agent at that site, if it
does not already exist, which performs the request. Agents
of one transaction are correlated through a unique transaction
identifier. The algorithm assumes that when a transaction’s
agent is created at a site the local deadlock detector automati-
cally knows about it. Also it assumes that the detector knows

to which site an agent has sent a request, i.e., to which site
it has moved its activity. In our implementation we did not
really move the transaction but only informed the detectors
about the transaction’s current locus of control. That is, when
a transaction moves its activity to another site it has to inform
the remote deadlock detector about it, by sending a message
to it. The transaction also has to send a message to its current
local detector.

We investigated the cost of this adaptation by not “charg-
ing” the corresponding messages, i.e., by not counting them
and letting them arrive immediately. This means that a re-
quest would cost as much as it costs in the other algorithms,
which is not quite fair, since the algorithm needs additional
information that cannot be obtained without any costs. How-
ever, except for the (modest) increase in the number of mes-
sages, this had only a minimal impact on the results.

This algorithm’s overhead is dominated by its handling
of the WFG—the costs for sending the messages informing
deadlock detectors about the current locus of control turned
out to be negligible. In a system in which some transactions
access objects at more than one or two sites, the parts of the
WFG that have to be sent grow tremendously; therefore, it
takes a long time to construct the messages that have to be
sent and to “unpack” them by the receiver. Also, since one
edge might be sent several times as part of different paths,
even with relatively small graphs the overhead becomes con-
siderable. An important difference between this algorithm and
the other ones explicitly maintaining the WFG is that the
path-pushing scheme periodically exchanges parts of its WFG,
while the other algorithms continuously update it.

6.3 Performance Experiments

We ran a number of experiments in order to study the perfor-
mance of the algorithms under different loads. In the first sce-
nario we generated a load of only fairly short transactions in
a relatively homogeneous system representing one LAN. In
this environment we analyzed the impact the timeout value
has on the performance of the timeout algorithms. Also the
behavior of different algorithms under the given load and the
change in their behavior over time is studied. The perfor-
mance of the algorithms was analyzed in two more scenarios.
In the second scenario the same environment as in the first
one was given, but a more typical load was introduced: a mix
of short and a small number of very long transactions. The
third scenario represents a WAN consisting of several LANs.

The following performance measures were obtained from
the experiments: the number of messages, the restart ratio, the
throughput and the response time. The restart ratio is defined
as the number of aborts relative to the number of transactions
executed. The throughput is measured in the number of com-
mitted transactions per millisecond, while the response time
is the time transactions stay in the system, i.e., the time from
the moment a transaction is started until its commit.

The simulation parameters used in the experiments are
given in Figure 7. The number of objects used for the simu-
lation runs is relatively small, but larger object bases lead to

15

No. of sites 100
No. of objects 10000
mpl 10,..,300 (400)
Operation execution 25 milliseconds
Undo of an operation 15 milliseconds
Commit (per operation) 3 milliseconds
Message delay local 3 milliseconds
Message delay within a LAN 10 milliseconds
Message delay remote, in WAN 200 milliseconds
Receiving (sending) a message 0.5 milliseconds
Cycle detection
(DDA, timeout&detection)

1 milliseconds

Merging two DDAs 2 milliseconds

Fig. 7 Simulation Parameter Setting

��� � ��� � ��� � ��� �
��� � no — — —
��� � no yes — —
��� � no no yes —
��� � no yes yes yes

Fig. 8 Compatibility Matrix

very few conflicts and even fewer deadlocks, so the behavior
of the algorithms could not be investigated. Also, as pointed
out in [ACM87], it is important to analyze the behavior of the
algorithms under workloads with high conflict probabilities
in order to evaluate their performance when “hot spots” exist
in a database.

The synchronization was based on semantic locking. All
objects were of the same type, having four operations; their
compatibility matrix is shown in Figure 8.

The mpl used in the experiments varies depending on the
given load. It ranges from 50 to 400 in the experiments where
only short transactions were run; in other experiments, in
which a small percentage of long transactions were added to
the system, it varies between 10 and 300.

The transaction size, i.e., the number of accesses a trans-
action performs, is not given here, since we introduce dif-
ferent types of transactions to study realistic load profiles.
The size ranges from the average size of 8 accesses, which
is relatively short, to the size of 100, representing long trans-
actions. Also the likelihood of an access being local varies
for different transaction types. Therefore, the actual size of
transactions and the probability of a request being local will
be specified for each experiment separately.

The system-based parameters (message delays, cycle de-
tection etc.) are based on measurements in our local area net-
work. Other parameters are based on parameter settings of
other simulation studies, [Buk92, Cho90], and our estimate
of their average realistic values.

For the path-pushing algorithm the costs for handling the
WFG was experimentally derived. Other schemes explicitly
maintaining the WFG, i.e., the DDA and timeout&detection,
continuously update the WFG and search for cycles in it.
They insert new edges and only have to check whether these
edges lead to a cycle, since the WFG was acyclic before the

Average transaction size 8
Range of transaction size 4–12
Timeout values 1.5s, 3s, 5s, 10s
Interval for path-pushing 0.1s
Restart delay 1s
Transaction type 1
Likelihood of a lock
requested being local

100%

Share of type 1 50%
Transaction type 2
Likelihood of a lock
requested being local

60%

Share of type 2 50%

Fig. 9 Additional Simulation Parameters for Scenario 1

update. The path-pushing algorithm periodically updates the
WFG and only periodically searches for cycles in it. Each
time one site sends the paths of interest to another site, it has
to search its whole WFG for potential cycles that have to be
sent. The receiving site then has to exchange the old infor-
mation for the newly arrived one. The time consumption for
these operations strongly depends on the size of the graph,
so we could not give an estimate for it, but had to calculate
the actual costs anew each time. The costs for performing
deadlock detection for this algorithm includes building the
WFG, by incorporating local and received dependencies, and
analyzing it. Analyzing the WFG means finding all cycles
in it and identifying the paths that have to be sent to other
deadlock detectors. In our simulation system these costs to-
tal in 1/8 millisecond per edge in the paths the detector has
received. This cost measure was derived from performance
experiments conducted on a Sun SPARCstation10/20, with a
SuperSPARC processor.

The path-pushing algorithm is very sensitive towards the
variation of the length of the interval after which it starts the
periodic deadlock detection. We have tuned the length of this
interval by running some simulations with different values for
it. This was done for each of the different scenarios.

Generally, the results we report constitute averages of sev-
eral simulation runs. The number of simulation runs per ex-
periment depends on the variation of the results. The standard
deviations of the recorded results are shown (as error-bars) in
the graphs.

6.3.1 Scenario 1: Only Short Transactions in one LAN

In this scenario we compare the different algorithms when the
system’s load consists of short transactions only, as was done
in other simulation studies [Cho90,Buk92,ACM87]. Though
this is not a realistic scenario in a highly distributed system,
since it represents only one part of the typical load, it helps
understanding the algorithms.

Parameters used in this simulation are given in Figure 9.
Most operation execution requests made by these transactions
will be local: we introduced two types of transactions, one
making only local requests, and the other making 60% local
and 40% requests to randomly chosen objects in the system.

16

0

0.05

0.1

0.15

0.2

0.25

0.3

50 100 150 200 250 300 350 400

T
hr

ou
gh

pu
t [

#T
A

s/
m

s]

Multiprogramming-Level

Pure Timeout 1.5s
Pure Timeout 3s
Pure Timeout 10s
Timeout & Detection 1.5s
Timeout & Detection 5s
Timeout & Detection 10s

Fig. 10 Throughput for different timeout intervals

Adjusting the Timeout Interval

We have varied the values for the timeout interval in order to
determine the optimal value for it. As described in [ACM87],
the optimal timeout interval depends on the given workload
and the mpl. Too short as well as too long timeout durations
lead to performance degradation. A small value leads to too
many restarts, a large timeout interval degrades the perfor-
mance because deadlocks stay in the system for too long.

Figure 10 demonstrates the variations in the throughput
induced by different intervals. The optimal value for the time-
out&detection algorithm is about 5s. Decreasing the value to
1.5s significantly reduces the performance. For small mpls,
when the system’s load is low and deadlocks are rare, the al-
gorithm performs well even for a short timeout interval, but
with higher load it causes too many restarts. A timeout inter-
val that is too long, e.g., 10s in this set-up, leads to a conges-
tion of the system.

The pure timeout algorithm performs significantly worse
than the timeout&detection algorithm—in this scenario—for
all timeout intervals. For low mpls the optimal timeout inter-
val is about 1.5s, but on high mpls the throughput drops below
the one achieved with an interval of 3s. For mpls beyond 300
we could not obtain any results with the short interval. An
interval length of 3s seems to be the best value overall, al-
though for low mpls it is not optimal. A timeout interval of
10s performs poorly for any mpl, due to the congestion of the
system it imposes.

The warm-up phase was 20000 commits; as the next ex-
periment shows the timeout approaches achieve about their
best throughput there.

Prolonged System Operation Under the Same (High) Load

This simulation experiment investigates the changes of the
algorithms’ performance over the time under a relatively high
load. Figures 11 and 12 show the behavior of the algorithms
over the time for mpls of 300 and 400, respectively—starting
from a “cold” system. A point in the graph represents the
throughput achieved during the last 10000 commits.

For both mpls the real detection algorithms become sta-
ble very fast8, whereas the timeout approaches reach a sta-
ble state much later. The problem the pure timeout approach
encounters, is that it does not have a resolution strategy but
aborts all transactions “creating problems”. The timeout&de-
tection algorithm partly alleviates this problem by truly re-
solving at least local deadlocks. When a number of transac-
tions try to execute operations that need conflicting locks, a
good resolution strategy guarantees that at least one of them
will finish, thus reducing the congestion. The timeout ap-
proaches accumulate these “problematic situations”, so after
some time almost no progress is possible. The pure time-
out algorithm degrades very fast from the beginning. The
timeout&detection algorithm maintains a surprisingly high
throughput level for a long time, even at the mpl of 400, but
then degenerates to a very low throughput. Note that the rel-
atively high locality of the transactions is favorable for this
algorithm.

The throughput of the real deadlock detection algorithms
does not decrease over time, because they systematically re-
solve the occurring problems, not allowing them to stay in
the system forever. The costs for this problem solving is the
reason why at the beginning the timeout algorithms perform
better; the price for their high throughput at the beginning is
a very low throughput later on.

Variation of the Multiprogramming Level

The throughput results of the algorithms with a short warm-
up phase (20000 Commits) and a long warm-up phase (70000
commits) are summarized in Figures 13 and 14, respectively.
The measured results in Figure 13, for the mpls of 300 and
400, correspond to the left vertical lines in Figures 11 and 12,
while the results shown in Figure 14 correspond to the right
vertical lines. For the timeout approaches only the (previously
measured) optimal timeout values are considered.

As could be expected from Figures 11 and 12 the real
deadlock detection schemes achieve approximately the same
throughput after the long as after the short warm-up phase.
The timeout approaches have a much lower throughput af-
ter the longer warm-up phase for reasons explained above.
The circled value in Figure 14 shows the result for the time-
out&detection algorithm as far as we could obtain it. We had
to stop some of the simulation runs since they ran for hours
on our fastest machines (Sun’s Ultras) without making any
progress. For mpls beyond 300 we could not obtain any re-
sults. After a long warm-up phase the DDA performs much
better than the other algorithms, as demonstrated in Figure 14.

The results the algorithms have achieved with a warm-up
phase of 20000 will be discussed next, while additional re-
sults measured with the long warm-up phase will be omitted,
since they would not convey any new information.

For low mpls, where conflicts are rare, the algorithms per-
form alike, except for the pure timeout approach which un-
necessarily aborts too many transactions and thus performs

8 The high standard deviation of the path-pushing algorithm will
be explained later

17

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20000 40000 60000 80000 100000 120000 140000

T
hr

ou
gh

pu
t [

#T
A

s/
m

s]

Commits

warm-up phase for mpl = 300, window size = 10000

DDA
Roesler

Obermarck 0.1s
Pure Timeout 3s

Timeout & Detection 5s

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20000 40000 60000 80000 100000

T
hr

ou
gh

pu
t [

#T
A

s/
m

s]

Commits

warm-up phase for mpl = 400, window size = 10000

DDA
Roesler

Obermarck 0.1s
Pure Timeout 3s

Timeout & Detection 5s

Fig. 11 Behavior over time, mpl 300 Fig. 12 Behavior over time, mpl 400

0

0.05

0.1

0.15

0.2

0.25

0.3

50 100 150 200 250 300 350 400

T
hr

ou
gh

pu
t [

#T
A

s/
m

s]

Multiprogramming-Level

DDA
Roesler
Obermarck 0.1s
Pure Timeout 3s
Timeout & Detection 5s

0

0.05

0.1

0.15

0.2

0.25

0.3

50 100 150 200 250 300 350 400

T
hr

ou
gh

pu
t [

#T
A

s/
m

s]

Multiprogramming-Level

DDA
Roesler
Obermarck 0.1s
Pure Timeout 3s
Timeout & Detection 5s

Fig. 13 Throughput, warm-up phase 20000 Fig. 14 Throughput, warm-up phase 70000

poorly. The given load is ideal for the timeout&detection al-
gorithm. Most deadlocks here are local and can therefore be
detected by the local deadlock detector, thus the algorithm
resolves these deadlocks faster than other distributed algo-
rithms. Therefore, for high mpls, a tuned timeout value and
a short warm-up phase the timeout&detection algorithm per-
forms better than other algorithms.

The DDA outperforms the other algorithms even after a
short warm-up phase: the edge-chasing, the path-pushing and
the pure timeout approach. The reason for the poor perfor-
mance of the pure timeout approach was explained previ-
ously, the results achieved by the edge-chasing and the path-
pushing algorithms are discussed below.

As pointed out in previous work [RB88], the performance
of distributed deadlock detection algorithms strongly depends
on the number of messages they induce. With the increase of
the system’s load the number of messages the edge-chasing
algorithm generates grows drastically (see Figure 15) leading
to a decrease in the throughput.

Obermarck’s path-pushing algorithm appears to be more
robust than the edge-chasing algorithm for lower mpls, but
completely deteriorates for higher mpls. Some of the simu-

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

50 100 150 200 250 300 350 400

M
es

sa
ge

s

Multiprogramming-Level

DDA
Roesler
Obermarck 0.1s
Pure Timeout 3s
Timeout & Detection 5s

Fig. 15 Number of messages, warm-up phase 20000

lation runs beyond the mpl of 300 exceeded our computing
facilities and some of them had no chance of ever getting
done, i.e., to finish the required 10000 transactions, so we had
to stop them. It turned out that the path-pushing algorithm
is very sensitive to a “degeneration” of the WFG, meaning

18

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

50 100 150 200 250 300 350 400

R
es

po
ns

e-
T

im
e

[m
s/

T
A

]

Multiprogramming-Level

DDA
Roesler
Obermarck 0.1s
Pure Timeout 3s
Timeout & Detection 5s

Fig. 16 Response time, warm-up phase 20000

that the WFG becomes large with lots of cycles in it. Un-
fortunately, this situation occurred randomly in a number of
simulation runs. This is also the reason for the high standard
deviation of the simulation results of this algorithm.

The number of messages induced by the DDA approach
does not significantly increase with a growing mpl. The rea-
son is that even at high mpls each dependency is sent only
once from an object to a DDA. Of course, there will be more
merges when the mpl is higher, but only in the beginning be-
fore the centers of locality have built. Also, merging does not
induce high message traffic.

Apart from the throughput and the number of messages
sent during the simulation, we have also measured the re-
sponse time of transactions. The huge number of messages
the edge-chasing algorithm induces, and the time the path-
pushing algorithm spends constructing the WFG and search-
ing for cycles in it, increases the response time of transac-
tions, see Figure 16. The response time achieved by the DDA
algorithm is much shorter than for the path-pushing and the
edge-chasing algorithms, but longer than for the timeout ap-
proaches. Note that only the response times of committed
transactions are considered. This favors the timeout schemes,
since transactions staying in the system for a long time that
have not yet finished, i.e., some of the problematic transac-
tions which are aborted again and again, are not included in
these measurements.

The restart ratio of the different algorithms is as one would
expect, see Figure 17. The DDA does not detect phantom
deadlocks and therefore aborts less transactions than the other
algorithms, although the differences in this experiment are
not too significant.

6.3.2 Scenario 2: Mix of Transactions in one LAN

In this scenario we examine the behavior of algorithms in the
same environment as in the first one, but with a more realistic
transaction mix. Additional simulation parameters are given
in Figure 18.

The load in the following experiment consists of three
types of transactions: relatively short transactions accessing

0

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200 250 300 350 400

R
es

ta
rt

-R
at

io

Multiprogramming-Level

DDA
Roesler
Obermarck 0.1s
Pure Timeout 3s
Timeout & Detection 5s

Fig. 17 Restart ratio, warm-up phase 20000

Timeout value 5s
Interval for path-pushing 0.1s
Restart delay 5s
Transaction type 1
Average transaction size 8
Range of transaction size 4–12
Likelihood of a lock
requested being local

100%

Share of type 1 30%
Transaction type 2
Average transaction size 16
Range of transaction size 12–20
Likelihood of a lock
requested being local

60%

Share of type 2 68%
Transaction type 3
Transaction size 100
Access pattern random
Share of type 3 2%

Fig. 18 Additional Simulation Parameters for Scenario 2

only local objects, transactions twice that length accessing
local objects with a probability of 60% and remote ones with
40%, and a few long transactions accessing randomly chosen
objects.

Throughput

This mix of transactions induces a heavier load on the sys-
tem than it was the case in the first scenario, so the maximum
throughput is lower and is obtained at a lower mpl. The rea-
son is that longer transactions hold locks for a long period
of time, and therefore all transactions waiting for these locks
also stay longer in the system—even if they are short and only
conflicts, but no deadlocks, occur.

Due to the higher load the system stabilizes much faster.
Figure 19 demonstrates this for the mpl of 150. This leads to
a small standard deviation in the measurements which is in
most cases not even visible in the graphs. For Obermarck’s
path-pushing algorithm we could not obtain results for the

19

0

0.005

0.01

0.015

0.02

0.025

0 20000 40000 60000 80000 100000

T
hr

ou
gh

pu
t [

#T
A

s/
m

s]

Commits

warm-up phase for mpl = 150, window size = 10000

DDA
Roesler

Pure Timeout 5s
Timeout & Detection 5s

Fig. 19 Behavior over time, mpl 150

mpl of 150, since the algorithm induced an enormous over-
head, exceeding our computing facilities.

In this scenario the DDA scheme outperforms the other
algorithms, see Figure 20. For lower mpls the edge-chasing
algorithm performs almost as good as the DDA scheme, since
the number of probes sent is not too large. With an increas-
ing mpl the number of messages sent by the edge-chasing al-
gorithm drastically grows—compared to the DDA scheme—
and the throughput degrades. For the mpl of 150 the DDA
achieves a throughput between 24% and 35% higher than the
edge-chasing algorithm, cf. Figures 19 and 20. For the mpl of
250 the DDA achieves a 90%, and for the mpl of 300 even
a 117%, higher throughput than Roesler’s edge-chasing algo-
rithm. The timeout approaches also perform poorly since they
again accumulate “problems”—in this scenario even faster
than in the first one. For the mpl of 150 the DDA performs
between 46% and 67% better than the timeout&detection al-
gorithm9, cf. Figure 19. An mpl of 300 leads even to a 263%
higher throughput by the DDA compared to the timeout&de-
tection algorithm, cf. Figure 20. In this scenario the locality
of transactions is not as high as in the previous one, so many
deadlocks involve objects from two (sometimes even more)
sites, leading to almost equal performance of the pure time-
out and timeout&detection algorithms. The path-pushing al-
gorithm by Obermarck achieves a low throughput even for
low mpls. As explained above, the algorithm is sensitive to
large WFGs so for mpls beyond 100 we could not obtain any
results.

The reason for the poor performance of the edge-chasing
algorithm is that it induces a high overhead by sending a large
number of probes, see Figure 21. The timeout approaches
also send many messages due to the enormous number of
aborted transactions, as will be explained later. The time-
out&detection algorithm sends even more messages than the
pure timeout algorithm since additional deadlock detection
messages are sent.

9 Considering only results after the warm-up phase, i.e., 20000
commits for this experiment.

0

0.005

0.01

0.015

0.02

0.025

0.03

0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

#T
A

s/
m

s]

Multiprogramming-Level

DDA
Roesler
Obermarck 0.1s
Pure Timeout 5s
Timeout & Detection 5s

Fig. 20 Throughput, warm-up phase 20000

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

0 50 100 150 200 250 300

M
es

sa
ge

s

Multiprogramming-Level

DDA
Roesler
Obermarck 0.1s
Pure Timeout 5s
Timeout & Detection 5s

Fig. 21 Number of messages

Both timeout approaches favor short transactions above
the long ones, as can be seen in Figures 22–24. Figure 22
shows the average response time per operation over all trans-
action types. Here the response time is given in milliseconds
per operation because of the wide range of the transactions’
lengths. The DDA achieves the best response time. The edge-
chasing algorithm has a poor response time, again because of
the large number of probes it induces. The response times of
the timeout approaches are long because they disadvantage
long transactions. This becomes evident when the response
times for transactions of different types are examined sepa-
rately. For transactions of type 1 and 2, i.e., relatively short
transactions, the timeout algorithms achieve much better re-
sponse time than the edge-chasing algorithm and even than
the DDA scheme. Figure 23 shows the response time of trans-
actions of type 1 and 2. However, for type 3, i.e., long trans-
actions, the timeout algorithms achieve a poor response time,
see Figure 24, since these transactions are often aborted. This
is not true for the DDA and the edge-chasing algorithm, since
they favor old, not short, transactions in order to guarantee
forward progress of all transaction types. Note that here only
committed transactions are considered, so transactions that
have been in the system for a long time, but have still not

20

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100 150 200 250 300

R
es

po
ns

e-
T

im
e

[m
s/

O
pe

ra
tio

n]

Multiprogramming-Level

DDA
Roesler
Obermarck 0.1s
Pure Timeout 5s
Timeout & Detection 5s

Fig. 22 Response time, all transactions

0

20000

40000

60000

80000

100000

120000

140000

0 50 100 150 200 250 300

R
es

po
ns

e-
T

im
e

[m
s/

T
A

]

Multiprogramming-Level

DDA
Roesler
Obermarck 0.1s
Pure Timeout 5s
Timeout & Detection 5s

Fig. 23 Response time, short transactions

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

0 50 100 150 200 250 300

R
es

po
ns

e-
T

im
e

[m
s/

T
A

]

Multiprogramming-Level

DDA
Roesler
Obermarck 0.1s
Pure Timeout 5s
Timeout & Detection 5s

Fig. 24 Response time, long transactions

committed are not included in the results, which favors the
timeout approaches.

The restart ratio of the algorithms is shown in Figure 25.
The timeout approaches abort a transaction on the average
fifteen times, on the mpl of 300. Aborting a transaction so

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300

R
es

ta
rt

-R
at

io

Multiprogramming-Level

DDA
Roesler
Obermarck 0.1s
Pure Timeout 5s
Timeout & Detection 5s

Fig. 25 Restart ratio

Number of LANs 5
Number of sites per LAN 20
Timeout value 5s, 7s
Restart delay 5s

Every 10s for 1s–5s
Network disturbances between two random

LANs
Transaction type 1, as in load 2
Share of type 1 35%
Transaction type 2, as in load 2
Share of type 2 13%
Transaction type 3, as in load 2
Share of type 3 2%
Transaction type 4
Average transaction size 8
Range of transaction size 4–12
Likelihood of a lock
requested being local

60%

Likelihood of a lock
requested being in same LAN

40%

Share of type 4 50%

Fig. 26 Additional Simulation Parameters for Scenario 3

many times implies that much more messages have to be sent,
explaining Figure 21.

6.3.3 Scenario 3: Mix of Transactions in a WAN

In the last experiment we analyze the algorithms in a WAN
environment, consisting of several LANs. We have utilized
the transaction types10 from scenario 2 and added one new
type, which accesses only local objects and objects within the
LAN it is started in. The additional simulation parameters are
given in Figure 26. In order to simulate the irregularities of
message delivery in a WAN, we introduced network distur-
bances. Every 10 seconds the connection between two ran-
domly chosen LANs was disturbed for a random time dura-
tion between 1 second and 5 seconds (in one direction only).
This means that sending of messages along this connection

10 However, non-local accesses of these transactions constitute
WAN-wide accesses.

21

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

#T
A

s/
m

s]

Multiprogramming-Level

DDA
Roesler
Obermarck 0.1s
Pure Timeout 5s
Timeout & Detection 7s

Fig. 27 Throughput

would be delayed, meaning that the arrival of messages would
be postponed up to the length of the disturbance.

Throughput

The throughput of the algorithms measured in this experi-
ment is presented in Figure 27. It shows the superiority of
the real deadlock detection algorithms over the timeout ap-
proaches, although they have been tuned for this experiment.
Again, on low mpls the algorithms perform alike, but as the
mpl increases the throughput of the timeout approaches sig-
nificantly drops. For the mpl of 200 the DDA and the edge-
chasing algorithm achieve a throughput about 95% higher
than the timeout approaches. The path-pushing algorithm by
Obermarck again performs poorly on higher mpls because of
the large WFGs it constructs, so we could not obtain any val-
ues for mpls beyond 200.

In this experiment the edge-chasing algorithm and the
DDA perform alike. This is surprising since the DDA scheme
outperformed it in the previous experiments. The reason is
that the long message delays will, in some rare cases, post-
pone the detection of deadlocks by a DDA. Also, in the given
environment, the DDA may sometimes take longer to de-
tect local deadlocks—in case two DDAs mainly responsible
for deadlock detection in different centers of locality merge.
When the reason for the merge disappears, i.e., the centers of
locality split up again, it takes some time before new dedi-
cated DDAs form again.

Also the number of messages, the restart ratio and the re-
sponse time have been measured, but these graphs did not re-
veal any new information, so we will not present them here.

6.4 Summary of the Experiments

In this section we reported on a thorough simulation study of
the behavior of deadlock detection algorithms for distributed
DBMSs in different environments. We ran quite a number of
simulation experiments for many different database configu-
rations—only a fraction of which could be presented here.

However, they all showed the same relative trends that were
observed on those experiments we discussed here.

Our study showed the importance and the difficulty of de-
termining a good timeout interval for the timeout approaches,
since it varies depending on the given load and the mpl.

The behavior of the algorithms over the time was ana-
lyzed, showing the stability of the DDA and the edge-chasing
scheme, and the lacking robustness of the timeout approaches
over prolonged heavy system loads, even when only rela-
tively short transactions are involved.

On loads including mainly short but also a few long trans-
actions, as introduced with the second scenario, all algorithms
stabilized very fast, on different throughput levels. The DDA
outperformed the other algorithms in this scenario by achiev-
ing a significantly higher throughput. The timeout algorithms
performed much worse from the very beginning, while the
edge-chasing algorithm performed well on low mpls, but de-
teriorated on higher mpls. The path-pushing algorithm per-
formed better than the edge-chasing algorithm on lower mpls
in the first scenario, but showed very poor performance in the
other scenarios. In some of them no simulation results could
be obtained for this algorithm.

In the last experiment, simulating a WAN environment,
the timeout approaches performed poorly on higher mpls. The
DDA and the edge-chasing algorithm achieved a much higher
throughput.

The simulations show that overall the DDA outperforms
the other true deadlock detection algorithms. It performs bet-
ter or as good as other algorithms in all the different scenar-
ios. Additionally, the DDA is the only algorithm of the an-
alyzed ones that showed robustness towards different loads.
For each of the other algorithms there was at least one exper-
iment where we could either not obtain results for all mpls, or
the throughput degraded almost to zero. The robustness of an
algorithm is of great importance, especially in a distributed
system where no global load control is feasible.

The reason the DDA outperforms the other algorithms is
because it is robust against very high loads, i.e., it does not
“explode” when the load increases. It establishes DDAs for
the centers of locality which resolve deadlocks in these cen-
ters. Each dependency is sent only once from an object to a
DDA, so the number of messages does not increase signifi-
cantly and deadlocks can be detected fast since the informa-
tion has short “travel time”.

7 Conclusion

In this paper deadlocks in distributed DBMSs have been ana-
lyzed. We identified the deadlock models that are represented
in DBMSs and gave a detailed survey of existing algorithms
for these models.

We have devised a new distributed deadlock detection al-
gorithm, based on dynamically created deadlock detection
agents (DDAs). A DDA is responsible for one connected com-
ponent of the WFG. When a new component emerges a new
DDA is created. In case two previously unconnected com-
ponents interconnect the corresponding DDAs will merge.

22

When a component dissolves the DDA terminates after some
time. This way the DDA scheme adapts very well to shifting
hot spots and varying loads.

The paper also reports on a very thorough simulation study
of deadlock detection algorithms which shows that the DDA
scheme outperforms the other algorithms and is robust to-
wards all the different loads. Therefore, we have implemented
DDAs in our persistent, distributed system of autonomously
operating objects, called AutO [KGI

�

97].
The computational model of AutO basically corresponds

to the one described in Section 2. Objects are extended by
an autonomous behavior, which is modeled through asyn-
chronous message passing. Object managers are integrated
into the objects, i.e., objects autonomously manage their re-
sources, e.g., locks. Transactions, i.e., transaction managers,
are also realized as autonomous objects.

AutO operates on many different sites connected through
the Internet. It is fully implemented in Java, so it can run on a
wide variety of platforms. Such a system has to be robust and
reliable with respect to different workloads and access pro-
files. Based on the results of our simulation study, we chose
the DDA as the best deadlock detection algorithm for our pur-
pose. Porting the DDA-code from the simulation system into
Java we were able to very quickly implement the deadlock
detection method—which has proven to be very robust in a
“real” system, just as the simulation results have indicated.

8 Acknowledgments

We would like to thank Stefan Pröls for his great help on the
implementation of the algorithms. We also thank the anony-
mous referees for their helpful suggestions.

References

[ACM87] R. Agrawal, M. J. Carey, and L. W. McVoy. The perfor-
mance of alternative strategies for dealing with dead-
locks in database management systems. IEEE Trans.
Software Eng., 13(12):1348–1363, December 1987.

[Bad86] D. Z. Badal. The distributed deadlock detection algo-
rithm. ACM Trans. Comp. Syst., 4(4):320–337, Novem-
ber 1986.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Con-
currency Control and Recovery in Database Systems.
Addison-Wesley, Reading, MA, USA, 1987.

[BHRS95] J. Brzezinski, J.-M. Helary, M. Raynal, and M. Sing-
hal. Deadlock models and a general algorithm for
distributed deadlock detection. Journal of Parallel
and Distributed Computing, 31(2):112–125, December
1995.

[BN97] P. A. Bernstein and E. Newcomer. Principles of Trans-
action Processing. Morgan Kaufmann Publishers, San
Mateo, CA, USA, 1997.

[BO81] C. Beeri and R. Obermarck. A resource class inde-
pendent deadlock detection algorithm. In Proc. of the
Conf. on Very Large Data Bases (VLDB), pages 166–
178, Cannes, France, 1981.

[BT87] G. Bracha and S. Toueg. Distributed deadlock detection.
Distributed Computing, 2:127–138, 1987.

[Buk92] O. Bukhres. Performance comparison of distributed
deadlock detection algorithms. In Proc. IEEE Conf. on
Data Engineering, pages 210–217, Tempe, AR, Febru-
ary 1992.

[CDAS96] S. Chen, Y. Deng, P. Attie, and W. Sun. Optimal dead-
lock detection in distributed systems based on locally
constructed wait-for graphs. In Proc. of the 16th Intl.
Conf. on Distributed Computing System, pages 613–
619, 1996.

[Cha82] E. J. H. Chang. Echo algorithms: Depth parallel oper-
ations on general graphs. IEEE Trans. Software Eng.,
8(4):391–401, 82.

[Cho90] A. N. Choudhary. Cost of distributed deadlock detec-
tion: A performance study. In Proc. IEEE Conf. on Data
Engineering, pages 174–181, L.A., CA, February 1990.

[CKST89] A. N. Choudhary, W. H. Kohler, J. A. Stankovic, and
D. Towsley. A modified priority based probe algorithm
for distributed deadlock detection and resolution. IEEE
Trans. Software Eng., 15(1):10–17, January 1989.

[CL85] K. M. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems. ACM
Trans. Comp. Syst., 3(1):63–75, February 1985.

[CM82] K. M. Chandy and J. Misra. A distributed algorithm
for detecting resource deadlocks in distributed systems.
In Proc. of the ACM Symposium on Principles of Dis-
tributed Computing, pages 157–164, 1982.

[CMH83] K. M. Chandy, J. Misra, and L. M. Haas. Distributed
deadlock detection. ACM Trans. Comp. Syst., 1(2):141–
156, May 1983.

[DS80] E. W. Dijkstra and C. S. Scholten. Termination detec-
tion for diffusing computations. Information Processing
Letters, 11(1), August 1980.

[Elm86] A. K. Elmagarmid. A survey of distributed deadlock
detection algorithms. ACM SIGMOD Record, 15(3):37–
45, 1986.

[ESL88] A. K. Elmagarmid, N. Soundararajan, and M. T. Liu. A
distributed deadlock detection and resolution algorithm
and its correctness proof. IEEE Trans. Software Eng.,
14(10):1443–1452, October 1988.

[GR93] J. Gray and A. Reuter. Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann Publishers,
San Mateo, CA, USA, 1993.

[GS80] V. D. Gligor and S. H. Shattuck. On deadlock detec-
tion in distributed systems. IEEE Trans. Software Eng.,
6(5):435–440, September 1980.

[Hof94] M. Hofri. On timeout for global deadlock detection in
decentralized database systems. PROCESS-LETTERS,
51(6):295–302, September 1994.

[KGI
�

97] N. Krivokapić, S. Grießer, M. Islinger,
M. Keidl, S. Pröls, S. Seltzsam, and A. Kem-
per. AutO—A distributed system of au-
tonomous objects. http://www.db.fmi.uni-
passau.de/projects/auto/auto.html,
1997.

[Kna87] E. Knapp. Deadlock detection in distributed databases.
ACM Computing Surveys, 19(4):303–328, December
1987.

[Kor83] H. F. Korth. Locking primitives in a database system.
Journal of the ACM, 30(1):55–79, January 1983.

23

[KS91] A. D. Kshemkalyani and M. Singhal. Invariant-based
verification of a distributed deadlock detection algo-
rithm. IEEE Trans. Software Eng., 17(8):789–799, Au-
gust 1991.

[KS94a] A. D. Kshemkalyani and M. Singhal. Efficient detec-
tion and resolution of generalized distributed deadlocks.
IEEE Trans. Software Eng., 20(1):43–54, January 1994.

[KS94b] A. D. Kshemkalyani and M. Singhal. On characteriza-
tion and correctness of distributed deadlock detection.
Journal of Parallel and Distributed Computing, 22:44–
59, July 1994.

[KS97] A. D. Kshemkalyani and M. Singhal. Distributed detec-
tion of generalized deadlocks. In Proc. of the 17th Intl.
Conf. on Distributed Computing System, pages 553–
560, 1997.

[LK95] S. Lee and J. L. Kim. An efficient distributed deadlock
detection algorithm. In Proc. of the 15th Intl. Conf. on
Distributed Computing System, pages 169–178, 1995.

[LMB97] L. Leverenz, R. Mateosian, and S. Bobrowski. Oracle8
Server – Concepts Manual. Oracle Corporation, Red-
wood Shores, CA, USA, 1997.

[MC82] J. Misra and K. M. Chandy. Termination detection
of diffusing computations in communicating sequential
processes. ACM Trans. Programming Languages and
Systems, 4(1):37–43, January 1982.

[MM79] D. A. Menasce and R. R. Muntz. Locking and dead-
lock detection in distributed data bases. IEEE Trans.
Software Eng., 5(3):195–202, May 1979.

[Obe82] R. Obermarck. Distributed deadlock detection algo-
rithm. ACM Trans. on Database Systems, 7(2):187–208,
June 1982.

[RB88] M. Roesler and W. A. Burkhard. Deadlock resolution
and semantic lock models in object-oriented distributed
systems. In Proc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 361–370, Chicago, IL, USA,
May 1988.

[RB89] M. Roesler and W. A. Burkhard. Resolution of dead-
locks in object-oriented distributed systems. IEEE
Trans. on Comp., 38(8):1212–1224, August 1989.

[RBC88] M. Roesler, W. A. Burkhard, and K. B. Cooper. Ef-
ficient deadlock resolution for lock-based concurrency
control schemes. In Proc. 9th Int. Conf. on Distributed
Computing Systems, pages 224–233, 1988.

[RHGL97] F. F. Rezende, T. Härder, A. Gloeckner, and J. Lutze.
Detection arcs for deadlock management in nested
transactoins and their performance. In Proc. of the
15th British Nat. Conf. on Databases, London, UK, July
1997.

[Ruk91] M. Rukoz. Hierarchical deadlock detection for nested
transactions. Distributed Computing, 4:123–129, 1991.

[SAL
�

96] M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah,
J. Sidell, C. Staelin, and A. Yu. Mariposa: A wide-
area distributed database system. The VLDB Journal,
5(1):48–63, January 1996.

[SH89] B. A. Sanders and P. A. Heuberger. Distributed dead-
lock detection and resolution with probes. In Proc. of
the Third Intl. Workshop on Distributed Algorithms, vol-
ume 392 of Lecture Notes in Computer Science (LNCS),
pages 208–218, New York, Berlin, etc., 1989. Springer-
Verlag.

[Sin89] M. Singhal. Deadlock detection in distributed systems.
IEEE Computer, 22(11):37–48, November 1989.

[SN85] M. K. Sinha and N. Natarajan. A priority based dis-
tributed deadlock detection algorithm. IEEE Trans.
Software Eng., 11(1):67–80, January 1985.

[SS84] P. M. Schwarz and A. Z. Spector. Synchronizing
shared abstract types. ACM Trans. Computer Systems,
2(3):223–250, 1984.

[WB85] G. T. Wuu and A. J. Bernstein. False deadlock detec-
tion in distributed systems. IEEE Trans. Software Eng.,
11(8):820–821, 1985.

[WDH
�

81] R. Williams, D. Daniels, L. Haas, G. Lapis, B. Lindsay,
P. Ng, R. Obermarck, P. Selinger, A. Walker, P. Wilms,
and R. Yost. R

�

: An overview of the architecture.
IBM Research, San Jose, CA, RJ3325, December 1981.
Reprinted in: M. Stonebraker (ed.), Readings in Da-
tabase Systems, Morgan Kaufmann Publishers, 1994,
pp. 515–536.

[YHL94] C. Yeung, S. Hung, and K. Lam. Performance evalua-
tion of a new distributed deadlock detection algorithm.
ACM SIGMOD Record, 23(3):21–26, 1994.

