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Abstract

Deadlock prevention for routing messages has a central role in communication networks, since
it directly influences the correctness of parallel and distributed systems. In this paper we
extend some of the computational results presented in [10] on acyclic orientations for the
determination of optimal deadlock free routing schemes. In this context, minimizing the
number of buffers needed to prevent deadlocks for a set of communication requests is related to
finding an acyclic orientation of the network which minimizes the maximum number of changes
of orientations on the dipaths realizing the communication requests. The corresponding value
is called the rank of the set of dipaths.

We first show that the problem of minimizing the rank is NP-hard if all shortest paths
between the couples of nodes wishing to communicate have to be represented and even not
approximable if only one shortest path between each couple has to be represented. This last
result holds even if we allow an error which is any sublinear function in the number of couples
to be connected.

We then improve some of the known lower and upper bounds on the rank of all possible
shortest dipaths between any couple of vertices for particular topologies, such as grids and
hypercubes, and we find tight results for tori.
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1 Introduction

Massively parallel computers with thousands of processors are considered the most promising
technology to gain computational power. Large-scale multiprocessors are usually organized as
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ensembles of nodes, each having its own processor, local memory, and other supporting devices. The
way nodes are connected to one another varies among machines. In a direct network architecture,
each node has a point-to-point, or direct, connection to some number of other nodes. Since
they do not physically share memory, nodes must communicate by passing messages through an
interconnection network. Neighboring nodes may send messages to one another directly, while
nodes that are not directly connected must rely on other nodes in the network to relay messages
from source to destination. This is accomplished by a routing function that selects, for each pair
of nodes u and v, the set of edges incident on u that can be used to forward messages to v.

Many different models can be defined for message routing in a communication network depend-
ing on the way each message moves through the network and it is buffered along the path. In
this paper, we consider the packet routing (or packet switching) and the wormhole routing models
(see [23, 9, 13, 20]). In the former model each message consists of a single entity (packet) which
moves through the network and a set of buffers is assigned to each vertex. A buffer is the basic
storage unit able to contain a single packet. Every time a packet is received by a vertex v, it is
first stored in one buffer of that vertex and then, if v is not its destination, it is forwarded to an
adjacent vertex according to the routing function. When the next vertex on the path has not free
space, the packet cannot be forwarded. In the wormhole routing model each message consists of a
sequence of flits of equal size, which is usually called worm (different worms may have a different
number of flits). At each vertex a set of buffers is assigned to each outgoing arc, each capable of
containing a single flit. Only the first flit of the worm is subject to the routing selection, while
the others follow it along the path in a pipeline fashion. A path can be viewed as a sequence of
arcs and if e; and ey are two successive arcs which must be crossed by a worm, a flit of the worm
residing in one buffer of e; cannot traverse e; if es has not free space.

Since only a finite amount of buffers is assigned to each vertex or arc and messages are allowed
to request buffers while holding others, both models are exposed to the occurrence of situations in
which no message can be delivered because of cyclic waitings. Such situations are called deadlocks
and they influence not only the efficiency of the routing strategy but also its correctness.

A possible approach for deadlock handling is deadlock detection and resolution [2, 6, 5, 7, 16,
21, 22], in which the routing algorithm does not take care of deadlocks that are solved by a flow
control procedure whenever they occur. In general,this approach requires global control. Since the
routing mechanism is a basic mean of communication among the nodes of a distributed system, in
which assuming global control is not too realistic, in this paper we consider a different deadlock
handling approach, i.e., deadlock prevention in which the routing function is properly designed in
order to avoid the occurrence of deadlocks.

Several techniques have been developed to design deadlock-free routing functions in which dead-
locks are avoided by ordering the buffers and allowing each message to use them in a monotonically
increasing fashion ([17, 15, 19, 9, 1, 12, 11, 18, 3, 4, 8, 13] among the others). As a consequence
of the monotone usage of the buffers, resource dependencies are modeled by a directed acyclic
graph (DAG) and this insures deadlock prevention. DAG-based methods can be used with slight
modifications both for packet and wormhole routing.

In this paper a similar idea is considered, in which the ordering in the set of buffers of each
vertex (arc) is based on the concept of acyclic orientations of a graph (see for example [15, 24]).

Informally, an acyclic orientation of a graph G is a directed acyclic graph a obtained by orienting
the edges of G. The buffers contained in each vertex (arc) are then partitioned into a suitable
number of classes and a packet (flit) using buffers of class ¢ moves to buffers of class i + 1 every
time two consecutive traversed links cause a change of orientation in the graph representing the

communication network N, i.e. exactly one link corresponds to an edge of its orientation —(> N).
Such rule guarantees the acyclicity of the resource dependencies graph. The method thus defined
was introduced in [10], but it is formally equivalent to the “Peaks and Valleys” scheme presented
in [15]. However, in this last paper, the author did not give results for specific network topologies.



A more general definition can be found in [24], together with some results on ring networks.

For any DAG-based deadlock prevention technique, and for every network, there exists a lower
bound on the number of buffers which have to be maintained at each vertex or arc to allow deadlock-
free routing. Of course, a deadlock prevention technique is as better as the buffer requirement is
smaller. For this reason, we are interested in optimal deadlock-free routing algorithms, where
“optimal” here means that the buffer requirement is minimal among all the algorithms preventing
deadlocks by acyclic orientations.

In this paper, we first show (section 4) that approximating the number of buffers yielded by an
optimum acyclic orientation is NP-hard even within a f(k) factor of the optimum solution, where k
is the number of source-destination couples wishing to communicate and f is any sublinear function.
Moreover, we prove the hardness of finding an optimal acyclic orientation when all shortest paths
between each couple of vertices wishing to communicate have to be represented.

We then turn our attention to fixed topologies (section 5), by proving some lower and upper
bounds on the buffer requirements for butterflies, tori, grids and hypercubes. There is still a little
gap left between lower and upper bounds for grids and hypercubes, while the results for tori are
tight.

Finally, in section 2 we give the basic notation and definitions we use throughout the paper, in
section 3 we show some preliminary results and in section 6 we discuss some conclusive remarks
and we address some open problems.

2 Definitions

A communication network can be modeled as a digraph G = (V, E) in which vertices represent
processors and arcs communication links between pairs of processors. Since we consider networks
in which two processors can communicate in both directions, in the rest of this paper we always
refer to symmetric digraphs.

A source vertex u wishing to send a message to a destination vertex v must choose an outgoing
link onto which forwarding the message. This is accomplished by using a routing function f, :
V — 2% that selects for each destination vertex v the set of links incident on u that can be used to
forward messages to v. The set Fg = {f, | u € V} will be called the routing function for G. Due
to efficiency requirements, F; is usually designed in order to route messages along shortest paths
(minimal routing). According to the degree of freedom left to the messages to choose their paths, a
routing function is called oblivious if exactly one shortest path can be used to send a message from
node u to v (|fu(v)| = 1 for any (u,v), adaptive if a message can choose among several shortest
paths, fully adaptive if it allows messages to use any shortest path. Notice that, it would be better
to design an adaptive routing function, since an oblivious one, although very simple, is less fault
tolerant and too congestion sensitive, and a fully adaptive routing function gives messages much
more freedom degrees than required in practical situations. Nevertheless, in order to study the
dependancy of the buffer requirement on the number of paths covered by the routing function, we
shall mainly refer to the oblivious and fully adaptive cases.

Definition 2.1 An acyclic orientation of a digraph G = (V, E) is an acyclic digraph 8: (v, E)
such that Eg E.

— —

Definition 2.2 Let G= (V, E) be an acyclic orientation of G = (V, E). We say that two consec-
utive arcs (u,v) and (v,w) cause a change of orientation if exactly one of the two arcs belongs to
—

E.
Definition 2.3 Let az (v, E) be an acyclic orientation of G = (V,E). Given a dipath P =

{ur,us,...,up) in G, let ¢ be the number of changes of orientation caused by all the pairs of
consecutive arcs along P.



We define the rank r(P, a) of P with respect to 8 as r(P, a) =c+ 1 if (u1,u2) GE and
r(P,G) = ¢ +2 if (u1,us) €.

Given a set P of dipaths in G, the rank of P with respect to 8‘ is defined as r(P,a‘) =
maxpep r(P, 5)

Finally, the rank of P is rq(P) = mina r(P, Z‘)

Informally, if a dipath P has rank r, then P can be expressed as the concatenation of r directed
—
subpaths Py,..., P. such that for each i, 1 < i < r, P; is a dipath in G if i is odd and P; is a

Z
dipath in the opposite orientation of G if 7 is even.
For the sake of brevity, if a set of dipaths P includes all shortest dipaths connecting any couple of

— —
vertices in the network, then we denote (P, G) and r¢(P) respectively as r(G) and rg. Similarly,
if a set of dipaths P includes ezactly one shortest dipath connecting any couple of vertices in the

network, then we denote r(P, Z‘) and rg(P) respectively as r°(G) and r&.

In packet (wormhole) routing let us denote as s, (Sy4,,) the number of buffers assigned by the
routing scheme to vertex u (arc (u,v)). Then, the importance of acyclic orientations is stated
by the following classical theorem (see [15] for a formally equivalent theorem and [24] for a more
general statement).

—
Theorem 2.1 Given a network G, an acyclic orientation G of G and a set of dipaths P there
exists a deadlock free packet (wormhole) routing scheme for G which routes messages along the

dipaths in P and is such that for each vertex u (each pair of arcs (u,v), (v,u)) s, < T('P,a)
—
(8up + 8v,u <7(P,G))-

Notice that in wormhole routing the previous theorem bounds per each pair of adjacent vertices
uw and v the sum of number of buffers assigned to (u,v) and (v, u).

3 Preliminary results
In this section we provide some preliminary results about acyclic orientations.

Theorem 3.1 For any network G, there exist a set of paths P including at least one path between
—

N
each pair of nodes and an acyclic orientation G such that r(P,G) = 2.

Proof. Consider the spanning tree T rooted at any chosen node u, and let P be the set of all
—
directed paths induced by the edges of the tree. Consider the orientation G in which the edges

=
of G are directed from the leaves of T towards u. For any pair of nodes s and d, G covers the
portion of the path from s to d arriving at their nearest common ancestor and its reversal covers
the remaining portion. O

The above result simply states that there always exists a deadlock free routing scheme based
on acyclic orientations for a connected graph using at most 2 buffers at each node (edge). This
upper bound is tight, as shown in the following theorem:

Theorem 3 2 Given a network G and a set of paths P including at least one path for any pair of
nodes, (P, G) > 2 for any acyclic orientation G

N
Proof. Let G be an acyclic orientation for G. Given any pair of nodes (s,d), by hypothesis
there exists a directed path p; € P from s to d. and a directed path p, € P from d to s both



— — —
covered by G. If r(P,G) = 1, then p; and p, induce a cycle in G, thus contradicting the definition
of acyclic orientation. O

Since we are interested only in shortest paths, we can improve the above lower bound as follows.

Lemma 3.3 Given a ring network Ry of 4 nodes, it does not exist any acyclic orientation —() R,)
for Ry such that r(—(> Ry)) < 3.

Proof. Let V = {vo,v1,v2,v3}, E = {(Vi,V(i+1)mod4)}. By the acyclicity of —(> R,), there

must exist a node v; such that arcs (v(i+1)moda,>vi) and (V(;_1)mod4,v;) are included in —(> Ry).
The assertion follows by observing that in this case one more change of orientation is required for
the shortest path < V(i4+1) mod 4> Vi> V(i—1) mod 4 >. O

Similarly, since in any ring of 5 nodes there exists a unique shortest path connecting nodes
V(i+1) modn AN V(i_1) modn, the following lemma is easily proved.

Lemma 3.4 Given a ring network Rs of 5 nodes, it does not exist any acyclic orientation —() Rs)
such that ro(—(> R5)) < 3.

As a consequence of the above two lemmata, the following theorems hold.

Theorem 3.5 Given a graph G containing ot least one cordless cycle of length at least 4, it does
—

not exist any acyclic orientation G such that r(Q) < 3.

Proof. It directly follows from lemma 3.3 by observing that r(a) is at least as much as the

minimum size of a similar acyclic orientation for the subgraph induced by nodes in a cordless cycle
of length 4. O

Theorem 3.6 Given a graph G containing at least one cordless cycle of length greater or equal to
— —
5, it does not exist any acyclic orientation G such that size less than r°(G) < 3.

N

Proof. It s a direct consequence of lemma 3.4. Indeed, r°(@) is at least as much as the
minimum rank of an acyclic orientation for the subgraph induced by nodes in a cordless cycle of
length 5. O

As far as upper bounds are concerned, the following theorem holds.

Theorem 3.7 [2/] For every ring network there exists an acyclic orientation —(> R) such that

(% R)) = 3.

4 Finding minimal acyclic orientations.

In many applications not all pairs of vertices need to exchange messages with each other. Thus, it
is worthwhile to specify a set R = {(s1,%1),---, (8k,tx)} C V2 of communication requests denoting
the couples of vertices wishing to communicate.

Given a network G, a set of communication requests R, a set P of dipaths connecting all pairs
in R and an integer k¥ > 0, we now consider the problem of deciding if rg(P) < k.

Unfortunately, it turns out that the problem of minimizing rg(P) is NP-hard. We start proving
such assertion from the fully adaptive case.



Theorem 4.1 Given a graph G, a set of communication requests R and the set of dipaths P
containing all shortest dipaths connecting each couple in R, it is NP-hard to decide if r¢(P) < 5.

Proof. Consider the 3-SAT problem: given a boolean function f in conjunctive normal form in
which each clause contains exactly three literals, decide if there exists a truth assignment satisfying
f- We will provide a polynomial-time reduction which associates to an instance of 3-SAT a network
G and a set of communication requests R such that there exists a truth assignment for f if and
only if rg(Pg) < 5, where Pg is the set containing all shortest dipaths between each couple in R.
Then the assertion will follow from the NP-completeness of 3-SAT [14].

We say that an orientation a is acceptable for < G, R > if r(PR,a) < 5. Notice that if a is
acceptable then for any request (s;,t;) € R the dipath from s; to ¢; can have at most 4 changes of
orientation.

Let f =c¢1 A ... A ¢y be a formula in conjunctive normal form defined on the set of variables
X = {z1...2n} such that each clause contains three literals. The corresponding network G is
constructed as follows.

We associate to each variable z; 10 columns grouped two by two: the network is built from a
set of 10n columns divided into 5 blocks of 2n columns each. We will denote these columns as C (%)
with1<i<n,1<b<5and C € {P,Q}. P(i) (resp. Q»(¢)) is the column of type P (resp. Q)
belonging to block b and associated to variable z;. Columns of type P will be said constrained and
the ones of type @ free. C' will denote a generic column. Columns are parallel vertical dipaths of
length L (which will be specified later) and the set of vertices of a column C'is {C.z | 0 <x < L}.
For a given vertex v = C.x, we say that x and C are respectively the coordinate and the column
of v. The edges of column C join vertices C.z and C.(x + 1) for 0 < x < L — 1. For reasons that
will be explained in a few lines, columns are divided into 40n + 1 horizontal slices of thickness S.
More formally, the slice s (0 < s < 40n + 1) is the subgraph induced by the vertices of coordinate
x € [sS,(s+1)S—1]and so L = (40n+1)S. We will denote by atom A, ; the subset of the vertices
in slice s and block b.

We say that @ is uniform on column C and slice s if C' is uniformly oriented downward or

upward in the slice s, that is, either the dipath from C.(sS) to C.((s + 1)S — 1) belongs to a or
the dipath from C.((s +1)S — 1) to C.(sS) belongs to C. Similarly, Cis uniform on slice s (resp.
on atom A, ;) if 5 is uniform on each column of slice s (resp. of atom A, ;). We will say that 8 is

—
strongly uniform downward (resp. upward) on atom A, if G is uniform on A, ; and furthermore
all columns of type P (the constrained ones) are oriented downward (resp. upward). Again, this

means that all the dipaths from P;(7).(sS) to Py(%).((s+1)S —1) belong to Z* (resp. all the dipaths
—
from Py(7).((s +1)S — 1) to Py(i).(sS) belong to @), for 1 <i < n.
Now, we put in the set of requests the pairs formed by the initial and the terminal vertices of
— —
each column (all the couples (C.0,C.(L — 1)). Then, if @ is acceptable for this set of request, G
is uniform on at least one slice. Indeed, since the unique shortest dipath from C.0 to C.(L — 1)
is the column C itself, we know that on each column there are at most 4 changes of orientation.
Since the total number of columns is 10n and each column may contribute to the non uniformity
of at most 4 slices, the maximum number of non uniform slices is 40n. Hence, there must exists a
uniform slice, because the total number of slices is 40n + 1.

We now add some new edges and requests so that any acceptable orientation a has to be
strongly uniform on an atom A, ;. In each slice we perform the same construction as described
in the following. We refer to the coordinate of a node in slice s by its offset from the coordinate
of the initial vertex of the slice so = sS, so in what follows the vertex C.(sS + z) will be simply
denoted as C.zx.

The edges needed to complete the following dipath are added (see figure 1).



T= < P10, P(1)1, P20, P21, P30, ... Pin)l,

P(1).0, P(1).1, P(2).0, P21, P(3).0, ..., Pn)1,
P3(1).0, P3(1).1, P3(2).0, P3(2).1, P(3).0, ..., Pi(n)1,
Pi(1).0, Pui(1).1, Py(2).0, Pi(2).1, Pi(3).0, ..., Pui(n)1,
Ps(1).0, Ps(1).1, Ps5(2).0, Ps(2).1, Ps(3).0, ..., Ps(n).1>

The communication request (P;(1).0, Ps(n).1) is added to the set of requests.

N
Let us consider now a slice sg, such that G is uniform on sg. Since the dipath from P; (1).0 to

—
P;(n).1 has at most four orientation changes, G is necessarily such that for some by, 1 < by < 5,

all columns @, (7), 1 < i < n, have the same orientation in slice sg. Thus 6 is strongly uniform
downward or upward in the atom A p,.

The remaining and the key part of our construction is devoted to show the requests (and the
shortest dipaths) associated to the clauses of f in such a way that f is satisfiable if and only if

there exists an acceptable orientation a for a strongly uniform block.

To this aim, we add edges and requests for each atom and each clause in the same way. We
first split the vertices of a column C' in slice s as follows. On each column and for each slice s we
reserve hg vertices (namely vertices C.z with = € [sS,sS + hg — 1]) for the path T defined above,
h vertices per clause ¢, (namely vertices C.x with z € [sS + ho + kh,sS + ho + (k + 1)h — 1]) and
ho vertices (namely vertices C.z with x € [sS + hg + mh, sS + hg + mh + hg — 1]) at the end of the
atom to separate it from the next one. Thus, S = mh + 2hy. The two parameters hg and h will
be adjusted later in such a way that the dipaths that we consider in the proof are unique shortest
dipaths. In order to have simpler notations, for the clause ¢, in a generic atom A, ; we will denote
the vertex Cy(i).sS + kh + hg + z by Cy(3).z.

Let ¢, =1, V1, Vi, with ji1 < jo < js, where [;, is either z;, or T;,. The node E is defined
as Q(j3).1if lj, = z3, or as Q(js).0 if l;, = T3. The communication request (P(j;).0, E) is added
to the set of requests and the edges necessary to build the following dipaths are added to G ( see
also figure 2):

o < P().0, P(41)-1, Q(j1).0, Q(jr)-1, P(j2).0 > if lj, = xj,
< P(j1).0, P(j1).1, Q(j1)-1, Q(j1)-0, P(j2).0 > if l;; =75,

e < P(j2).0, P(j2).1, Q(j2).0, Q(j2)-1, P(js).0 > if I, = x;,
< P(j2).0, P(j2).1, Q(j2).1, Q(j2).0, P(j3).0 > if I, = T3,

o < P(§3).0, P(j3)1, Q(j3)0, Q(ja)-1>if Ij; = xj,
< P(43).0, P(j3)-1, Q(j3)-1, Q(43)-0 > if lj; =7,

.
Consider now an acceptable orientation G for the set of communication requests {(C.0,C.(L —
=

—
1))} for every column C and a strongly uniform atom A, s, for G. It is possible to associate to G
a truth assignment for X as follows. In slice s, all columns P, (i) are oriented downward (resp.

2,
upward ) if @ is strongly uniform downward (resp. upward) in the atom, and each column @, (¢)
can be independently oriented downward or upward. If the orientations of Py, (i) and Qp, (i) are
identical (resp. opposite) we will associate to z; the value true (resp. false).



Pi(1) Q1(1) Pi(2 Pi(n) Q1(n) P>(1) Ps(n) Qs(n
Pi(1).1

Figure 1: The dipath constructed in each slice

Notice that, if the truth assignment associated to the strongly uniform atom A, 3, is such that

>

the clause ¢, is false, then the dipath from P(j;).0 to E when @G is strongly uniform downward or
Sy

upward in the atom has to use the orientations GGGGGG, where G is the reversal of G Hence,

such a dipath has at least 5 changes of orientation, i.e. rank at least 6, and G cannot be acceptable.
—
Thus, if G is acceptable then f is satisfiable.
N
To complete the proof we must provide an acceptable orientation G when f is satisfiable. To

e
this aim, we choose a truth assignment for variables x; satisfying f and we define G as follows:
constrained columns are directed downward, free columns are directed according to the truth
assignment (as previously shown), horizontal arcs are directed from left to right. More formally:

all columns of Py(i) such that 1 < b < 5 and 1 < ¢ < n are directed downward (that is arc
—
(Py(i).x, Py(i).(x + 1)) is in G).
if z; is true all columns Qp(i) such that 1 < i < n are directed downward ((Qp(%)-z, Qp(7).(z +
1)) Ga), otherwise they are directed upward ((Qs(?).(z + 1), Qp(4).7) Ga) :

if there is an edge between two vertices Cy(i).x and Cy (i').2' with b < b or b = b’ and i < ¢/,
then the arc (Cy(%).z, Cy (i').2') belongs to 8

if there is an edge between two vertices Py(i).z and Qp(i).z', then the arc (Py(i).z, Qp(7).z")
—
belongs to G.

Such an orientation is clearly acyclic (any dipath in 6 either stays on a column and goes upward
or downward, or it goes strictly from left to right). Since all the clauses are true under the chosen
truth assignment and consequently each of them contains at least one true literal, one can check
that the dipaths associated to clauses have rank at most 5. All the other requests are fulfilled with
no change of orientation, thus we have constructed an acceptable orientation for the graph G.

In order to complete the proof it suffices to observe that by choosing hg > 2n and h > 10 all the
considered dipaths are the (unique) shortest ones. This leads to S = 10m+4n, L = (40n+1)(10m+
4n) and to a total number of vertices in the graph equal to 10nL = 10n(40n + 1)(10m + 4n).

O

Concerning the adaptive and the oblivious cases, things are even worse. In fact, consider
the possibility of devising polynomial time algorithms able to find approximate solutions, that is,
solutions whose sizes have constant approximation error with respect to the optimal ones. The
formal definition of the approximation error of a minimization problem II is defined as ((‘Z*)) , where

m(S*) is the size of an optimum solution S* and m(S,4) is the approximate solution computed by
some algorithm A. A problem is said to be e-approximable if a polynomial time algorithm A exists
such that the approximation error is never greater than e.

The technique used in the previous theorem can be exploited to prove that, in the oblivious
and adaptive cases, it is NP-hard even to approximate rg(P).



P(1) QGr)  P(2) QG2)  P(js) Qo)
P(j1)-0 W P(3s)-0 clause z;, Vxj, V xj,
P(jl)‘l | | | | | | P(j3)'1 offset = kh + ho
clause -z, V 1z, V 1xj,
offset = (k+ 1)h + ho
W clause x;, V 1z, V x;,
offset = (k + 2)h + ho

Figure 2: Sample of 3 out of 8 possible clauses.

Figure 3: Two possible truth assignments to clause C = z;1 V i V z;3: () satisfying ¢, (b) not
satisfying C.



Theorem 4.2 Given a graph G and a set of communication requests R in G, it is NP-hard to
approximate the

min{rg(P) : P includes exactly one shortest dipath for each couple in R}
within an error in O (k) for any € < 1, where k = |R).

Proof. We still use a polynomial-time reduction from the 3-SAT problem. In this case, the
reduction builds a network Gy and a set of communication requests Ry corresponding to a boolean
formula f such that there is a large gap between the number of changes sufficient for a set of
shortest dipaths in Gy connecting each couple in Ry when f is satisfiable and the number of
changes necessary for any set of shortest dipaths when f is not satisfiable.

The construction of Gy is very similar to the one shown in theorem 4.1: we still have a number
S of slices and a number B of blocks, each block b including n pairs of columns P, (i) and Q(3),
1 <i < n. This time, the thickness of each slice is 70m + 40n. Again, we have the communication
requests (Py(4).0, Py(2).(L — 1)) and (Qp(7)-0,Qp(i).(L — 1)). As in the previous theorem, we have
that every acceptable orientation makes at least one atom strongly uniform, where acceptable now
means that it produces no change of orientation in at least one shortest dipath connecting every
pair of communication request.

The only differences with the network of the previous theorem are:

o the number of slices S = n?,
e the number of blocks is B = n?, and

o for each clause c;, n* communication requests (E}, F}), (E?, F?), ..., (E;?Z, FJFZ) are included
in R (one for each slice) and any shortest dipath connecting E]h to FJh must use one out of
7 shortest dipaths in each block b.

More precisely, let ¢, = 1;, V1;, V 1}, with j1 < jo < js, where [}, is either z;, or Z;,. Instead of
formally describing the 7 shortest dipaths that must be used in block b to connect E* to F}*, they
are shown in figure 4. Each of such “subpath” corresponds to a truth assignment satisfying f.

Needless to say, the previous construction can be performed in polynomial time. We now claim
that if f is satisfiable an acceptable orientation for the network exists, otherwise every acyclic
orientation requires at least n2 — 1 changes for any set of shortest dipaths connecting the couples
in Rf.

Suppose first that f is satisfiable and let A be a truth assignment satisfying f. The same
orientation a described in the proof of theorem 4.1 with rank at most 5 can now be used: all
horizontal edges are oriented from left to right, all columns P downwards, column Q(4) is oriented
downwards if z; has received by A the value true, upwards otherwise. In this case, since each
clause c; is satisfied, there exists one shortest dipath connecting E;’ to FJh that uses only edges in

a: in every block the subpath corresponding to a truth value assigned by A to the literals in ¢; is
chosen . Trivially, no change of orientation is now necessary.

Conversely, we now prove that if f is not satisfiable then every shortest dipath connecting
any communication request requires a non constant number of changes. If f is not satisfiable,
every truth assignment A’ is unable to satisfy at least one clause. Notice that, if we orient the
edges of a according to a truth assignment A’ (as explained above) that does not satisfy clause
cj, then each of the seven subpaths to be used in a block to connect E;’ to th requires at least
two changes. Thus, an acyclic orientation corresponding to a truth assignment yields at least
B =n? — 1 changes. On the other hand, trying to have a lower the number of changes needed to
the shortest dipaths from EJ’” to Fjﬁ while keeping the horizontal edges oriented from left to right
corresponds to increasing the number of changes necessary to the columns: if a dipath from E;L to

10
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Figure 4: The seven dipaths in block b corresponding to the seven possible truth assignments
satisfying clause Cj = z41 V 7@ V 2;3.
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th uses n? —I changes then I columns involved in that dipath need at least 2 changes. Thus, if all
pairs (E}, F}), (B3, F7),.. ., (EJT-‘2, Fj"Q) should be connected by using at most n? — I changes then
at least one of the involved 6 columns would require

> [

changes. This means that if the horizontal edges are all oriented from left to right every set of
shortest dipaths P has rank at least

ra(P) = Hlkin{max{n2 —k, [gn?l}} —n2.

Observe now that orienting some horizontal edge from right to left could help only if the columns
are oriented according to a truth assignment A’ and all horizontal edges corresponding to a false
literal in clause ¢; are oriented from right to left. However, in this case

e cither some literal in some other clause ¢ is true under A’ and orienting its horizontal edges
from left to right (so that one of the dipaths from E" — [ to F}* uses a constant number of

changes) would induce a cycle in 5

e or all horizontal edges are oriented from right to left. In this last case, it is sufficient to
invert the orientation of every column to obtain the symmetric (and equal) situation of the
horizontal edges oriented from left to right.

Hence, changing the orientation of the horizontal edges does not help in keeping “small” the number
of changes and the above claim is proved.

Suppose now an g(k)-approximation algorithm 7' exists for the minimum acyclic orientation
problem, with g(k) some sublinear function in the number of communication requests k. Thus, if
r*(G, k) = min{rg(P) : P includes exactly one shortest dipath for each couple in R} and rT (G, k)
denotes the minimum number of changes used by the acyclic orientation found by T for any set of
shortest dipaths connecting the couples in Ry, the following relation holds:

rT (G, k)
— < g(k).
G, x) = IW
We now show how it is possible, by using 7" and the reduction above, to decide if a boolean
formula is satisfiable in polynomial time. Consider a boolean formula f: transform f into a pair
(Gy,Ry) and apply to it algorithm T'. If f is satisfiable then T finds for (Gy, Ry) an acyclic

orientation 8’ such that rT(Gy, k) < g(k)r*(Gy,k), where k is the size of Ry; conversely, if f is not
satisfiable then T finds for (G, Ry) an acyclic orientation such that r7(Gy, k) > r*(Gy, k) > n?,
n being the number of boolean variables used by f. Since k =O(n?), then g(n®) < n? whenever
g(k) < k%, that is, a k%—approximation algorithm for the minimum acyclic orientation problem is
also a polynomial time algorithm deciding satisfiability.

Finally, notice that if in the reduction above we use O(n") instead of n? slices and blocks, the
number of communication requests becomes O(n”*3) and the rank in the case of a no instance
becomes O(n"). This implies that a g(k)-approximation algorithm cannot exist for any g(k) <

k73 . Since the previous assertion holds for any h > 0, the theorem is completely proved. O
Of course the non approximability result for the adaptive case follows by generalization.

The previous results motivate us to look for minimal schemes for some classes of graph which
are widely used in distributed and parallel systems.
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5 Bounds for fixed topologies

In this section, we consider only the case where R = V x V and we provide some bounds both
on rg and on rg when G is a butterfly, a torus, a grid, an hypercube, all of them being classical
interconnection networks.

Before starting the analysis for fixed topologies, we need some preliminary steps.

Recall that a coloring of a graph G is a function Cg : V' — |V|, such that for each pair of nodes
u,v, u # v, if (u,v) € E then Cg(u) # Cq(v). The size of Cg is maz{Cq(u) | u € V'} and the color
of u is Cg(u). A coloring of size d simply partitions the set of nodes into d independent subsets
Sty..,9q.

Given a coloring of a graph G, any path pin G can be expressed as the concatenation p;o...opp
of h directed paths py, ..., pn such that, for each odd 7, edges in p; are “positive” (that is, they are
traversed from a node having color 4 to a node having color j > i), while, for each even 4, edges in
p; are “negative”. We define the depth of p as the minimum A such that p = p; o... 0o pp.

Notice that the depth of p merely corresponds to the number of alternances between positive
and negative edges in p, starting with an eventually empty succession of positive edges. Given a
set of paths P, the depth D(Cg,P) of a coloring Cg w.r.t P is the maximum depth of a path in P.

There is an important relation between the depth of a coloring and the rank of an acyclic
orientation, as stated in the following theorem.

Theorem 5.1 Given a graph G and a set of paths P, there ezists aa acyclic orientation a for P
—
with (P, G) = k if and only if there exists a coloring Cg such that D(Cg, P) = k.

— — —
Proof. Assume first that an acyclic orientation @ such that 7(P,G) = k exists. Since G is

—
acyclic, we can construct a topological order ord of the nodes in G satisfying the property according

to which if there is a directed path in 6 from w to v then ord(u) < ord(v). Consider the coloring
Cq such that Cg(u) = ord(u). It is easy to see that h changes of orientations are sufficient for any
path p € P if and only if D(Cg,P) < h, thus D(Cg,P) = k.

Assume now that a coloring Cg with D(Cg,P) = k exists. Let 5 be the acyclic orientation of
G obtained by orienting all the edges (u,v) € E from u to v if and only if Cg(u) < Cg(v). Given
p € P of depth h, let py,...,p, the directed subpaths (induced by positive or negative edges in

Cg) such that p = p; o...opp. Clearly if 7 is odd (even) then edges in p; belong to a (its reversal)

BN
and the acyclic orientation of size h obtained by alternating G and its reversal covers p. The claim
follows by observing that this holds for any p € P. m|

Thus, given a graph G and a set of paths P, the problem of finding a minimum rank acyclic
orientation for P can be reduced to the problem of finding a coloring C¢ having minimum D(Cg, P).
Finally, let us remark one of the key properties of orientations related to the traversability of

a cycle. Let C be a 4-cycle consisting of the arcs eg,e1,e2,e3. As any orientation a is acyclic, in
the subgraph induced by the cycle C there is at least one sink and one source. So, if we consider
any four dipaths of length 2: Fy, P1, P», P3, where P; contains arcs e; and €(;y1)mod4, at least two
of them have one change of orientation in the cycle.

5.1 Butterfly

Consider a butterfly By of dimension d, with V. = {v;, | 1 < i < d+1,a € {0,1}¢}, and
E = {(vi,a,Vit1,0) | 1 £ i < d} U{(Vi,0,Vig1,00:)) | 1 £ @ < d}, where a(i) is the string differing
from a only on the ¢-th bit.

Since By contains at least a cycle of length 4, from theorem 3.5 it results rp, > 3. The following
theorem provides an upper bound.

13
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Figure 5: Coloring of a butterfly

Theorem 5.2 rp, < 4.

Proof. It follows directly from theorem 5.1 by observing that the coloring Cp, (vi o) = ¢ has
depth D(Cg,) = 4.
As an example, a coloring matching the lower bound for 2-dimensional butterflies can be seen
in figure 5.
O

5.2 Torus

We now consider torus networks. The vertices of T, x, will be denoted as (¢,5) with ¢ € Z,,, j € Z,.
Vertex (4, j) is joined to vertices (i + 1, j) and (i — 1, j) by horizontal arcs and to vertices (¢, + 1)
and (i,j — 1) by vertical arcs.

Let’s start the analysis with oblivious routing. By theorem 3.6, forn >5 rg > 3. Such a
bound is tight, as proved in the next theorem.

Theorem 5.3 rf, ~<3.

Proof. By theorem ??, given a ring R, of n nodes, with V. = {v; | ¢ = 1,...,n} and
E = {vi,Y(i4+1) modn | © = 1,...,n}, it results rj < rg, = 3, thus there exists an acyclic
orientation R,,) such that r°(R,,) = 3.

Consider now the acyclic orientation —(> T, xn) obtained by orienting all rows and columns of
Ty xn according to —(> R,) (the subgraph induced by all nodes in a same row or in a same column
is a ring of n nodes), i.e. such that (v;j,v; ((j+1) modn)) el Trxn) iff (U5, 0((j+1) modn)) el R,)
and (Vi j, V((i+1) modn),j) el Trxn) iff (03, V(i41) modn) el R,).

To prove the claim it suffices to show that the r"(—(> Thxn)) = 3. In fact, for each pair of nodes
v;,; and vy j in Tpyp, there always exists a shortest path from v; ; to vy j» obtained by following

first some directed edges of —(> Tyxn) along the i-th row until a certain node v; j» and then some
directed edges of 4 Trxn) along the j”-th column until a certain node v;» j», and then doing the

same for the reversal orientation, and again the same for —(> Thnxn), since by theorem ?? three
changes of orientations are sufficient to reach the right row and the right column. O

14



Concerning the fully adaptive case, the lower and the upper bounds differ only for a constant
additive, as shown in the following two theorems.

Theorem 5.4 Letp > g, thenrr,,, > [$] +2.

Proof. Let p' = |£], ¢ = [2] and N = pq (the number of vertices).

Consider first the case p’ = ¢'. Let P, be the subset of the set of all shortest dipaths P
constituted by the following 8 N “staircase dipaths”: for each vertex (i,j) we associate 8 shortest
dipaths of length the diameter D = p' 4+ ¢’ = 2¢' where arcs alternate in directions. Such dipaths
are of the form (eq, f1, €2, fa,-- ., ey, fyr) where the e;’s are all horizontal (resp. vertical) arcs and

all the f;’s vertical (resp. horizontal). These dipaths join vertex (4, ) to vertices (i + p',j + ¢').

Notice that if a dipath from (i, 7) to (i',j') belongs to P, then the opposite dipath from (i', j')
to (4, 4) also belongs to P;.

Due to the symmetry of the torus, each of the 8 dipaths of length 2 of any 4-cycle belongs to
the same number 2(2¢' — 1) of dipaths in P;. So, for any acyclic orientation ?,,xq, the N cycles of
length 4 yield globally a total of 4N (2¢' — 1) changes of orientation over the 8 N dipaths in P;.

Therefore, either one dipath of P, has at least ¢’ + 1 changes or 4N dipaths in P, have exactly
q' changes of orientation and the remaining 4N dipaths of P, have ¢' — 1 changes. If there is a
dipath P with ¢' 4+ 1 changes, then by definition of rank rz,, (P) > (P, ?pxq) > ¢ +2 and we
have proven the lower bound, so let us suppose that the second condition holds.

In this case assume by contradiction that rr,,,(P) < ¢' 4+ 1. Since there are as many dipaths

— —
in P, starting with an arc in T'px, than with an arc not in T4, this means that all the dipaths
—
starting with an arc not in T',x, have ¢’ — 1 changes of orientation (otherwise they would have
—
rank ¢’ 4+ 2) and all the dipaths starting with an arc in T',x, have ¢’ changes.
—
In this case, all the dipaths in P; should have the last (vertical arc) in Tpxq if ¢’ is even and
—
not in Tpxq if ¢’ is odd, but this is impossible since for for any ¢ and j there are dipaths in P
ending with arc ((4,7), (i,j + 1)) and dipaths ending with arc ((¢,j + 1), (¢, J))-
Suppose now p' > ¢'. We use a similar technique, but now we take the set of dipaths P, as

the 4N shortest dipaths of length 2¢' + 1 (< D) starting at any vertex with a horizontal arc and
where arcs alternate (so the last one is horizontal). These dipaths join vertex (,j) to vertices

(i + (¢ +1)",j + ¢'). The total number of changes yielded by the N 4-cycles is now 2N (2¢') for
the 4N dipaths of P,. Therefore, either one dipath in P has at least ¢’ + 1 changes of orientation,
or all dipaths of Ps; have ¢' changes. If there is a dipath with ¢’ + 1 changes we have proven the

=
lower bound, otherwise all dipaths in P starting with an arc not in T',x, (one half of the total)
have rank at least ¢’ + 2. O

Theorem 5.5 Let p > q, then rr

PXq S [%—l + 4

Proof(sketch). It suffices to consider the acyclic orientation such that all vertical arcs are
oriented from (%, j) to (4,5 + 1) for 0 < j < n — 2 and from (%,0) to (i,n — 1). Horizontal arcs are
oriented if j is even from (%,5) to (i +1,5) for 0 <4 < mn — 2 and from (0, j) to (n — 1, ), while if
j is odd from (i + 1,j) to (i,5) for 0 < ¢ <n —2 and from (n — 1,j) to (0, j).

For this acyclic orientation we can check that any shortest dipath has rank at most [£]+44. O

5.3 Grid

Consider an n x n grid Gpxp, Wwith V ={v;; | 1 <i<n,1 <j <n},and E = {(vi;,Vit+1,;) | 1 <
Z.Sn—].,].SjSH}U{(UZ'J,’U,',J'_H)|1Si§n,1§j§n—1}.
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Concerning the oblivious routing case, the following theorem holds.
Theorem 5.6 rg = =2.

Proof. By theorem 3.2 rg, =~ > 2.

Consider now the set P of all shortest paths constituted by a succession of moves along a row of
the grid, followed by a succession of moves along a column. By construction P contains one shortest
path between every pair of nodes. Consider now the coloring Cg,, .. such that Cq,,.,, (vi;) =i +73.
Clearly is such a coloring two adjacent nodes in G, x, cannot share the same color. The claim
follows by theorem 5.1 by observing that D(Cg,, .., P) = 2. O

Good bounds can be determined also for the fully adaptive routing case. Let’s start with the
lower bound.

Theorem 5.7 Letp > g, thenrg,,, > [(2—v2)q] — 1.

Proof. Consider only the g x ¢ subgrid Gyx, of Gpx, induced by nodes (i,j) such that
0<i<g—1land 0 < j <qg-—1. Let a be a fixed number such that q;—l <a<q-—1. The
sets of shortest dipaths considered will consist of two disjoint sets P; and P,. P; contains the 2«
dipaths from (0,0) to (¢ — 1, ¢ — 1) constituted by a sequence of horizontal (resp. vertical) arcs till
a given vertex (4,0) (resp. (0,7)), where 1 < j < a, then followed by arcs alternating in direction
starting with a vertical (resp. horizontal) arc, then by a vertical (resp. horizontal) dipath from
(g—1,g—1—7) (resp. (¢g—1—j,q—1)) to (¢g—1,¢g—1). We will call such dipaths “almost staircase”.
P, consists of the 2a “almost staircase” shortest dipaths from (0, — 1) to (¢ — 1,0) constituted
by an horizontal (resp. vertical) dipath till (j,¢ — 1) (resp. (0,¢g—1—j)) with 1 < j < @, then a
staircase dipath and finally a vertical (resp. horlzontal) one.

Any 4-cycle will be said to be “inner” if it consists of the four vertices (4, 5), (¢, +1), (i+1,5+1)
and (i +1,j) whereg—a—1<i+j<g+a—-3,i—j<a—1,j—i<a—1. Hence, the total
number of inner cycles is ¢ = (¢ — 1) — 2(¢ — a — 1)(¢ — a).

Notice that, for each inner cycle there are exactly 2 dipaths of P; using respectively the arcs
(i,/)G + 1,5)( + 1,5 + 1), (4,7)(6,5 + 1)(i + 1,5 + 1) and 2 dipaths of P, using the arcs (i, j +
1)(7,5)(i+1,5) and (4, j+1)(¢+1,j+1)(+1, 5). By the remark on the acyclicity of the orientations,
at least two of these dipaths must change orientation inside the cycle. Hence, the ¢ inner cycles
yield globally a total of at least 2¢ changes of orientation over all the dipaths of P; U Pa.

Since [Py UP:| = 4a, one dipath P € Py UP; has at least o= = 5L (—(¢—1)?+2(2¢—1)a—2a?)
changes of orientation.

21

A simple derivation shows that % is the maximum for o = y/%5—. For this value of «,
2a 2

it gives 55 = 2(¢ — 1) — 1/2(¢*> — 1). Since we are considering only integers one can show that
< > (2 —1/2)q — 2. So the dipath P has rank at least [(2 — v/2)q] — 1. O

We conjecture that this lower bound is asymptotically the right order for the value rg,, . Till
now we have been able to design a simple construction giving 23—‘1 + o(q) orientations and a slightly
more complicated one of order 3q + o(q), and the method should work for ¢ large enough for any

fraction % such that a/b> 2 — \/5

Is this the right theorem?

Theorem 5.8 rg, ., <min([Z-(m+1)],[2-(n+1)])+1.

mXn

Proof(sketch). We partition the grid into nine subgrids, as shown in figure 6. Arcs in each
subgrid are then oriented in G; as described in the following (see also the figure):
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Figure 6: Partitioning of a grid into nine subgrids and orientations of each subgrid.

Subgrid ABFE: columns are oriented from top to bottom, rows from left to right;
Subgrid CDLH: columns are oriented from top to bottom, rows from right to left;
Subgrid PQUT: columns are oriented from bottom to top, rows from right to left;
Subgrid MNSR: columns are oriented from bottom to top, rows from left to right;

All the others subgrids: columns are oriented from top to bottom, odd rows from left to right,
even rows from right to left.

It can be seen that the dipaths requiring the largest number of orientations to be covered
include one of the following subpath: (E, B), (L,C), (S, M), (T,Q), (M, F,C), (B,H,Q), (L, P,S),
(T,N,E). The assert follows by noticing that each of the previous dipaths can be covered by at
most min([2 - (m +1)],[2 - (n + 1)]) orientations (G1,~G1) and that the remaining of a dipath
including one of them as a subpath can be covered by a single orientation. O

5.4 Hypercubes

Consider an hypercube Hy of dimension d, with V = {vs | a € {0,1}%}, and E = {(vq, vas)) | 1 <
i < d}, where «(i) is the string differing from « only on the i-th bit.
In the oblivious routing case, the following theorem holds.

Theorem 5.9 T‘%[d = 2.

Proof. By theorem 3.2 r§; > 2.

In order to prove that also 7§, < 2 holds, observe that given any two nodes v, and vg in Hg,
there always exists a shortest path from v, to vg that goes from v, to the node voup (where aU S
is the string obtained by the bit-to-bit or operation of a and 3), and from v,ug to vg. Let P be the
set of shortest paths between all pairs source-destination satisfying the above property. Consider
now the coloring Cu, such that Cg,(vy) is the number of bits equal to 1 in a. Clearly, in such
a definition two adjacent nodes in Hy cannot share the same color (thus satisfying the definition
of coloring), and D(Cg,,P) = 2. But P contains at least one shortest path between every pair of
nodes, and the result follows directly from theorem 5.1. O

Concerning the fully adaptive case, it is possible to prove the following lower bound.
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Theorem 5.10 ry, > [£H].

rroof. Please, check this proof

Given the set P of all shortest paths between every pair source-destination, consider P’ C P
constituted by all shortest paths of length d (i.e. restricted to pairs of opposite nodes at distance
din Hd)

Clearly, since P' C P, rg, > ru,(P').

Given any cycle C in Hy of four nodes vo,v1,v2 and v3, consider the set S = {(ei, €(i+1) mod4) |
0<i<3,e = (V(-1) moda,> Vi) and €(iy1)ymods = (Vi,V(i+1)moas)} Of adjacent edges along C. In

every orientation 5 Hy), any pair (€i,€(i+1)moq4) € S is such that e; and e(;11) moq4 e€ither have
the same sense (with respect to v;) or opposite sense. If p € P’ contains e; and e(j11) moq4, and e;
and e(;}1) moq4 have the same sense, then p has to change orientation, that is p = p' o py o p 0 p",
where p; ends with e; and ps starts with €(;11) moa4 Or p1 ends with e(;11) moas and po starts with
e;, so that p; and ps cannot belong to the same acyclic orientation.

Since the orientations are acyclic, at least two of the four pairs in S must be formed by two
edges having the same sense (in the cycle there must be at least one source and one sink), and the
ratio between changing pairs and the total number of pairs is at least %

By symmetry, every pair of edges in S belongs to the same number of directed paths p € P’,
thus if we denote by load(C) the cardinality of the subset of paths in P’ stepping through two
edges of the cycle C, then at least w paths in P’ have to change orientation along C.

If we denote by ¢ the number of cycles of length four in the hypercube, since by symmetry
every cycle C has the same load | = load(C), by summing up over all the cycles it results that the
paths in P’ have to change orientation in total at least %l times. Hence at least one p € P’ has to

change <L orientations, so that p is covered by at least =< + 1 different orientations.

2:[P7] 2:[P7]
The theorem follows by observing that | = W=V P 1 fact, every path p € P’ increases by

one the load of each one of the d — 1 cycles it shareg two edges with, thus the sum of the loads of

all cycles is (d — 1) - |P'|, and since by symmetry every node has the same load, | = (d%)-\’]ﬂ‘
Therefore,
c-l d—1 d+1
41> =T
2T T2 T T T

O

Notice that, in the fully adaptive case every acyclic orientation has size at least equal to half
of the diameter, while concerning upper bounds the following theorem holds.

Theorem 5.11 rg, < d+ 1.

Proof. By theorem ?7?, every coloring Cg, has depth D(Cx,) < d + 1, and the result follows
directly from theorem 5.1. O

Thus, the lower and the upper bounds differ by a multiplicative factor equal to 1/2. Moreover,
it is possible to show that for every acyclic orientation —(> H,) satisfying the property that all edges

in the same dimension are oriented in the same sense r(—(> Hy)=d+1.

6 Conclusions and open problems

In this paper we have investigated the problem of finding acyclic orientations for communication
networks in order to prevent deadlock configurations.
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In particular, new results have been presented both from a theoretical computational complexity
point of view and from a practical one by providing concrete bounds on deadlock free routing
schemes for specific topologies.

One of the main questions left open in this paper is whether or not the problem of minimizing
the number of buffers yielded by the acyclic orientations can be approximated in polynomial time
when all shortest dipaths between each communication request must be represented.

Concerning the topology dependent results, while tight bounds have been determined for tori,
it would be worthwhile to establish the exact order for ¢ x ¢ grids (we conjecture a value of order
(2 — v/2)q) and hypercubes of dimension d (we conjecture order d). As the shown results for tori,
grids and hypercubes suggest, even for particular cases the task of determining tight bounds is not
trivial. Anyway, in all the above cases there exist acyclic orientations of rank at most twice the
optimal one.

Finally, it would be worth to extend the known results to more general classes of networks.
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