Using templates

Size information

Accessing inports and
outports

C S-Function Techniques

You can find the complete documentation of the various S-function
techniques in Writing S-Functions by The MathWorks. This PDF
contains an excerpt of aspects that are especially important when
using S-functions in a dSPACE environment.

The following standard S-function techniques are described here:

Since all S-functions use the same set of individual routines (C S-
function callback methods), it is recommended that you start your
programming with an S-function template. Refer to How to Use an
S-Function Template on page 4.

Each S-function must specify its size information. Refer to Size
Information on page 5.

Usually you want to connect the S-Function blocks of your model to
other blocks, which means that you need to access the inports and
outports of the S-Function blocks within the S-function’s source code.
Refer to Accessing the Inports and Outports of an S-Function Block on
page 7.

FAQ 202 C S-Functions Techniques ~ March 2003

- v C S-Function Techniques

Accessing inports in
mdlOutputs()

Using persistent
memory

Multirate S-functions

Enabled subsystems

Generating the MEX file

Placing the S-Function
block

Using the S-Function
Builder block

Outports of your S-function might depend directly on one or more
inports of the S-function, which is called a direct feedthrough. Refer to
Accessing Inport Signals in mdlOutputs() on page 9.

It might be necessary to use the results from one calculation step in
the next one or the results of one S-function method in another. Refer
to How to Use Persistent Memory in S-Functions on page 10.

You can create multirate S-functions, where parts of the code are
executed less often than others. Or you might want to avoid the

mdl Qut put s() method being called multiple times in each simulation
step when using higher-order integration algorithms for the model.
Refer to How to Use Sample Times in an S-Function on page 12.

Enabled subsystems can hold or reset states when they are enabled,
which also affects the behavior of S-functions. Refer to S-Functions
Within Enabled Subsystems on page 14.

For each S-function you must generate the corresponding MEX DLL
file (MATLAB executable). See How to Generate the Corresponding
MEX DLL File on page 15.

To use an S-function in your model, you have to add and configure an
S-Function block to the model. Refer to How to Use S-Functions in a
Simulink Model on page 17.

Related Topics

As an alternative to a handcoded S-function, you can also use the
S-Function Builder block to implement simple C coded S-functions.
This is a Simulink block that builds an S-function from specifications
and C code that you supply. The block also serves as a wrapper for the
generated S-function. The block is available from the User-Defined
Functions library and is shown below.

D

> system

S-Function Builder

FAQ 202 C S-Functions Techniques ~ March 2003

v C S-Function Techniques s

For details on implementing S-functions via this block, refer to Writing
S-Functions by The MathWorks.

FAQ 202 C S-Functions Techniques ~ March 2003 3

- v C S-Function Techniques

How to Use an S-Function
Template

Since all S-functions use the same set of individual routines (C S-
function callback methods), it is recommended that you start your
programming with an S-function template.

® If you want to create a new S-function (such as in the level control
example), take the S-function template sf unt npl _basi c. ¢ file
from the <MATLAB_ROOT>\ si nul i nk\src\ folder.

m [f you want to modify an RTI-specific S-function, take the desired
original S-function C file from the
YDSPACE_ROOT% MATLAB\ RTI <XXXX>\ SFcn\ folder.

v The original S-functions are restored and updated during any

o new installation. So before you modify any template, you
should copy it to the working folder that holds your model and
rename the template. It is then available for all models located
in that folder.

To get an S-function template
1 Copy the desired S-function template to the working folder that
holds your Simulink model.

2 Choose a name for the S-function and rename the file accordingly.
Enter the S-function name (without . ¢ extension) at the macro
definition S_FUNCTI ON_NAME in the C file.

When you configure the S-Function block for the Simulink model,
make sure to enter the S-function name (without . ¢ extension) in the
Block Parameters dialog.

4 FAQ 202 C S-Functions Techniques ~ March 2003

v C S-Function Techniques s

Size Information

The size information is a very vital piece of information for an
S-function, since it defines the number of inputs, outputs, states, and
sample times. Simulink and Real-Time Workshop require this
information to check whether the S-Function block has the correct
number of ports, which sample time is used, etc. Therefore, you have
to specify this information in the mdl I nitial i zeSi zes() and

mdl I nitializeSanpl eTi nes() source code methods.

The following code excerpt shows the size information for an
S-function that reads one Boolean input in the mdlOutputs() method.
It has no parameters, no states, no outputs. It has only one sample
time and is not executed in the minor time steps of higher-order
integration algorithms.

[* Function: mdlInitializeSizes *|
static void mdlInitializeSizes(SinBtruct *S)
{

[* This S-function has no paraneters. */

ssSet NunSFcnParans(S, 0); /* No. of expected parameters */

if (ssGetNumSFcnParanms(S) != ssCet SFcnParansCount (S)) {
return;

}

/* Set the nunmber of states to zero. */

ssSet NunCont States(S, 0);

ssSet NunDi scStates(S, 0);

/* Set one input port. */

if (!ssSetNum nputPorts(S, 1)) return;

[* Set width of input port to one. */

ssSet I nputPortWdth(S, 0, 1);

/* I'nput is accessed in ndl Qutputs() routine,
therefore set direct feedthrough flag. */

ssSet | nput Port Di rect FeedThr ough(S, 0, 1);

/* Set the input port data type to boolean. */

ssSet | nput Port Dat aType(S, 0, SS_BOOLEAN);

/* W have no output ports, therefore we nust not
call ssSetCQutputPortWdth()! */

if (!ssSetNumlutputPorts(S, 0)) return;

/* This S-function has one sanple time. */

ssSet NunBanpl eTi nes(S, 1);

/* No work vectors and other special features are used. */

ssSet NunRWork(S, 0);

FAQ 202 C S-Functions Techniques ~ March 2003 5

- v C S-Function Techniques

}

[* Function: milInitializeSanpleTines

ssSet Num Work(S, 0);

ssSet NunPWrk(s, 0);

ssSet Numvbdes(S, 0);

ssSet NumNonsanpl edZCs(S, 0);

/* No additional options are used. */
ssSet Options(S, 0);

static void mdlInitializeSanpleTines(SinBtruct *S)

{

[* Use inherited sanple time. */

ssSet Sanpl eTi me(S, 0, | NHERI TED_SAMPLE_TI ME);

/* Ensure that this S-function will not execute in
intermediate integration steps. */

ssSet OffsetTime(S, 0, FIXED IN M NOR STEP_OFFSET);

6 FAQ 202 C S-Functions Techniques ~ March 2003

*]

v C S-Function Techniques s

Accessing the Inports and
Outports of an S-Function Block

An S-Function block can have several inports and outports, each of
which can be scalar or vectorized and have a different data type.

The following topics provide a detailed description of how you can
access inports. The technique for accessing outports is very similar
(using ssGet Qut put Port Real Si gnal and ssGet Qut put Port Si gnal).

The following code excerpt shows how to access all the inports and
their individual signals using the ssGet I nput Por t Real Si gnal Ptrs
access macro. For example, you could use this code fragment in the
mdl Qut put s() S-function method. This example assumes that all
inports have the double data type.

int_T idxPort,idxSignal;

int_T nlnputPorts = ssGet Num nput Ports(S);

for (idxPort = 0; idxPort < nlnputPorts; idxPort++)
{

real _T input;
I nput Real Pt rsType uPtrs = ssGetlnputPortReal Signal Ptrs(S,idxPort);
int_T nPortWdth = ssGet|nputPortWdth(S,idxPort);
for (idxSignal = 0; idxSignal < nPortWdth; idxSignal ++)
{
input = *uPtrs[idxSignal];
SonmeFuncti onToUsel nput Si gnal El enent (i nput);
}
}

The pointer for each inport must be fetched separately via the

ssGet | nput Por t Real Si gnal Ptrs(S,i) macro. This macro is only valid
for real-typed input signals. If you want to process a signal of another
type, you have to use ssGet | nput Port Si gnal Ptrs.

If the port is vectorized, the retrieved pointer points to the first
element of the vector. To reach the subsequent signals, you can simply
increment the pointer as done with *uPtrs[i dxSi gnal] in the
example.

FAQ 202 C S-Functions Techniques ~ March 2003 7

- v C S-Function Techniques

As you can see from the following illustration, the input variables of
the individual inports are not located one after another in memory.
Therefore you cannot reach the signals of different ports by just
incrementing the pointer to the first inport.

Inport T—>1 S _function

Block

Inport 2—»

To Access Inport 1:
InputRealPtrsType uPtrsO =
ssGetlnputPortRealSignalPtrs(S.0)

uPtrs0 —» > :
. _

To Access Inport 2: I
InputRealPtrsType uPtrs1 =
ssGetlnputPortRealSignalPtrs(S.1)

uPtrs1 ——|

See also Accessing Signals Using Pointers in Writing S-Functions by The
Mathworks.

Yy

A4

8 FAQ 202 C S-Functions Techniques ~ March 2003

v C S-Function Techniques s

Accessing Inport Signals in
mdIlOutputs()

If your S-function has inports and outports, you typically calculate the
output signals within the ndl Qut put s() method using at least one of
the input signals. In terms of S-functions, such an inport has a direct
feedthrough, which must be specified via the following entry in the
mdl I nitializeSizes() method:

voi d ssSet | nputPortDirectFeedThrough(SinStruct *S, int_T port,int_T dirFeed)

If the direct feedthrough flag is incorrectly set for an inport, the result
of the calculation is unpredictable and you can encounter runtime
errors that are very hard to find.

Suppose you want to set the direct feedthrough flag for inport 2:
ssSet | nput Port Di rect FeedThrough(S, 2, 1)

FAQ 202 C S-Functions Techniques ~ March 2003 9

- v C S-Function Techniques

How to Use Persistent Memory
in S-Functions

Suppose you want to use the results from one calculation step in the
next one, which means that you need to retain the values of variables
between the successive calls of the S-function methods. If you want to
use several copies (instances) of the same S-function in your model,
you must ensure that the S-function is reentrant, so that the execution
of one instance does not influence the execution of another. In this
case, you can use work vectors for data storage. Work vectors provide
the necessary instance-specific storage for block variables and
therefore grant reentrancy for the S-function.

Work vectors must be initialized in mdl I ni tial i zeCondi tions() or
mdl Start (), they are updated in mil Updat e() (discrete states), and
used in mdl Qut put s() .

To use work vectors in an S-function

1 Define the size and data types of the required work vectors in the
ndl I nitializeSizes() S-function method via the macros:
ssSet NunRWOrk(S, <NUM RWORK>); /* doubl es typed*/

ssSet Num Work(S, <NUM IWORK>); /* integer typed*/
ssSet NumPWrk(S, <NUM PWORK>); /* pointer typed*/

2 Use the following macros to access the pointers that reference the
work vectors:
ssCGet RWrk(S); /* doubl es typed*/
ssGetIWrk(S); /* integer typed*/
ssGet PWrk(S); /* pointer typed*/

@ To observe the work vectors, for example, via ControlDesk, they must

[be available in the system description file. The easiest solution is to
create additional outports in your S-function because outports are
automatically generated into the system description file.

10 FAQ 202 C S-Functions Techniques ~ March 2003

v C S-Function Techniques s

You should not use global or static variables to store S-function data
because global variables are used by all instances of an S-function and
therefore such S-functions are not reentrant.

Suppose your model contains two instances (a and b) of an S-function
that uses a set of global variables. If instance (a) writes data to the
global variables and then (b) is called and writes data, (a) gets the
wrong data the next time it is called.

See also Writing S-Functions by The MathWorks.

FAQ 202 C S-Functions Techniques ~ March 2003 11

- v C S-Function Techniques

How to Use Sample Times in an
S-Function

If desired, you can specify different sample times for the internal
processes of the S-Function block.

Port based You can define individual sample times for the inports
and outports of the S-Function block. For information, refer to the
documentation of The MathWorks.

Block based If no sample times are specified for inports and
outports, they are updated with the fastest sample rate of the
S-function. This is most commonly used.

To assign a specific sample rate to a code block
1 Include the following lines in the ndl I ni tial i zeSanpl eTi nes()
S-function method for each sample time you want to use:

ssSet Sanpl eTi me(S, <SAVPLE_TI ME_I DX>, <SAWPLE TI ME>);

ssSet Of fset Ti me(S, <SAVPLE TI ME_I DX>, <SAWPLE TI ME_CFFSET>);
2 Identify the code block you want to assign to a specific sample rate

and enclose it in ani f statement using ssl sSanpl eHit (.., for

example:

i f(sslsSampleHt(S, sanple_tinme_index, tid))

/* code block assigned to the sanple tine with
sanpl e_tine_index */

12 FAQ 202 C S-Functions Techniques ~ March 2003

v C S-Function Techniques s

Higher-order integration If you select a higher-order, fixed-step numerical integration algorithm
for your model, i.e. ode2 ... ode5, the mdl Qut put s() method is called
not only for the major time steps but also for the minor time steps to
improve the precision of the simulation results. This is shown in the
following diagram.

Major time steps (Timer interrupt)
A / \“ \ A

Minor time steps

\T T

Ts (Sample time)

\/

When you use an S-function to control hardware, you might need to
suppress the calls to mdl Qut put s() at the minor time steps because
certain hardware has a limited maximum sample rate. For example, an
A/D converter needs some time for each conversion process.

To exclude code blocks from the minor time steps

[0 Setthe FI XED_I N_M NOR_STEP_OFFSET flag in the ssSet Of f set Ti ne
method, for example:
ssSet Offset Time(S, 1, FIXED IN_M NCR STEP_OFFSET);
As a result, the code blocks assigned to the sample time with ID
“1" are excluded from the minor time steps.

FAQ 202 C S-Functions Techniques ~ March 2003 13

- v C S-Function Techniques

14

S-Functions Within Enabled
Subsystems

Enabled subsystems provide two options for the States when
enabling setting, which you can select via the Block Parameters dialog
of the Enable block:

Hold The states of blocks within the subsystem remain constant
when the subsystem is disabled. When the subsystem is reenabled, the
held states are used for simulation.

Any contained S-function is initialized once at simulation start

(mdl Start () and mdl I'nitializeConditions() are executed).

Reset The states of blocks within the subsystem are reset to their
initial values. When the subsystem is reenabled, the simulation
continues with the initial values.

Any contained S-function is initialized at simulation start (mdl Start ()
and ndl I nitializeConditions() are executed) and each time the
subsystem becomes enabled (ndl I ni tial i zeConditions() is
executed).

Make sure to place the initializations in the correct S-function method:

mdIStart() Use this method for initializations that need to be
carried out only once, for example, when initializing I/O devices.

mdlinitializeCondition() Use this method for initializations that
must be carried out each time the subsystem becomes enabled, for
example, initializing variables.

If an I/O device is initialized more than once, for example, if you place
the initialization in mdl I ni tial i zeCondi tions() by mistake, the
behavior of the device can become unpredictable. Therefore, use

mdl Start () for initializations that must occur only during simulation
start.

FAQ 202 C S-Functions Techniques ~ March 2003

v C S-Function Techniques s

How to Generate the
Corresponding MEX DLL File

In addition to the source C file of an S-function, Simulink and
Real-Time Workshop require a compiled version of the S-function: the
MEX DLL file. If you perform a Simulink simulation of your model,
Simulink uses the MEX DLL file to calculate the S-function. If you
generate real-time code, Real-Time Workshop needs the MEX DLL file
to read the size information of the S-function.

You can generate the MEX DLL file for an S-function via MATLAB's nex
command. However, MATLAB needs to be set up properly before you
can use the mex command.

To set up MATLAB's MEX command

1 Install an appropriate C compiler if this has not already been done.
For example, you can use the LCC compiler, which is part of the
MATLAB installation.

For further information on valid C compilers, refer to External
Interfaces/API by The MathWorks.

2 Change to the MATLAB prompt and type the mex -setup
command. Then follow the instructions on the screen.

When MATLAB is ready to compile MEX DLL files, you can generate
the MEX DLL file for an S-function as follows:

To generate the corresponding MEX DLL file

[Type mex <source>.c -v at the MATLAB prompt. Replace <sour ce>
with the file name of your C source file.

The -v option makes the MEX compiler display the options used,
and issue any warnings.

m If you created a new S-function, you always have to generate a
MEX DLL file. However, if you modified an existing S-function, you
might not need to recompile the MEX DLL file. You can reuse the
old MEX DLL file if you want to use the S-function only for
real-time simulation and you did not change its size information or
sample time.

FAQ 202 C S-Functions Techniques ~ March 2003 15

- v C S-Function Techniques

16

m [f you want to hold your MEX DLL files in a separate folder, you
have to add the folder to the MATLAB path (via the addpat h
command or the path tool) and RTl's make search path (via the
<nodel >_usr. nk file).

Refer to Calling C and Fortran Programs from MATLAB (api ext . pdf) by
The MathWorks for information on the available options for the mex
command.

FAQ 202 C S-Functions Techniques ~ March 2003

v C S-Function Techniques s

How to Use S-Functions in a
Simulink Model

Since the S-Function block has no function on its own you have to
handcode the desired functionality in C.

To include S-functions in a Simulink model

1 Place the S-Function block from the Simulink library in your model
and open its Block Parameters dialog.

}

S-Function

If you want to include an S-function that was generated from a
Simulink model, you have to use the RTW S-Function block. After
you have built a model using the RTW S-Function, Real-Time
Workshop opens a new model and inserts a correctly configured
RTW S-Function block.

RTW S-Function

The Texas Instruments compiler Ver. 4.70 cannot compile a model
that contains S-functions generated by Real-Time Workshop. If you
want to use them, you need to use Ver. 5.11.

2 In the S-function name edit field, enter the name (without the . ¢
file name extension) you want to assign to the desired S-function.

The underlying C file needs to have the same name. If the
S-function requires any parameters, you can specify them in this
dialog as well.

Once the MEX DLL file is available for the S-function, the S-Function
block automatically adapts the correct number of ports.

FAQ 202 C S-Functions Techniques ~ March 2003 17

- v C S-Function Techniques

18 FAQ 202 C S-Functions Techniques ~ March 2003

	C S�Function Techniques
	How to Use an S�Function Template
	Size Information
	Accessing the Inports and Outports of an S�Function Block
	Accessing Inport Signals in mdlOutputs()
	How to Use Persistent Memory in S�Functions
	How to Use Sample Times in an S�Function
	S-Functions Within Enabled Subsystems
	How to Generate the Corresponding MEX DLL File
	How to Use S�Functions in a Simulink Model

