
4 Multistep Methods And Numerical Stability

Read sections 9.3.2 – 9.3.4, 9.3.8, 9.4.
Review questions 9.14 – 9.16, 9.19, 9.22, 9.27, 9.29, 9.30, 9.33, 9.34, 9.37 9.38, 9.42.

4.1 Adams Methods

Let us return to our initial value problem

y
���

f
�
t � y ��� y

�
t0 � � y0 �

All methods which we introduced earlier use only information at tk (that is, yk, h, and f) in order
to compute yk � 1. One could expect that the inclusion of information from several previous steps
tk � tk 	 1 � �
�
� could make the approximation of y

�
tk � 1 � even more efficient. Such methods are called

multistep methods.
A large class of methods can be obtained by applying polynomial interpolation. The differ-

ential equation near tk is rewritten as an equivalent integral equation,

y
�
tk � 1 ��� y

�
tk � �

tk 1�
tk

y
� �

t � dt
� tk 1�

tk

f
�
t � y � t �
� dt �

We replace the integrand f
�
t � y � t �
� by a polynomial p

�
t � :

y
�
tk � 1 ��� y

�
tk ���

tk 1�
tk

p
�
t � dt �

It remains to choose the interpolation nodes. We assume that yk � yk 	 1 � �
�
� � yk � 1 	 m are already
computed (and approximate y

�
tk � 1 	 i � well). Let the grid be equidistant, tk � 1 	 i � tk 	 i � h. Then,

we may choose the interpolation data�
ti � fi ��� i

�
k � �
�
� � k � 1 � m �

such that
fi
�

f
�
ti � yi � ��� f

�
ti � y � ti �
��� �

Since we have m interpolation points, p is a polynomial of degree m � 1. This polynomial can
be represented in such a way that the integral � tk 1

tk p
�
t � dt is easily computable. One uses either

Lagrange or Newton interpolation. This leads to different representations of the same numerical
method. While in practical realizations of the resulting multistep methods the representation by
Newton interpolation is preferable, we will present the result of the Lagrange ansatz:

yk � 1 � yk
�

h
�
β1 fk � β2 fk 	 1 ���
�
��� βm fk � 1 	 m ��

h
m

∑
i � 1

βi fk � 1 	 i �

1

Note that the coefficients depend on m even if this is not denoted explicitly. The methods con-
structed are known as Adams-Bashforth methods. They were first published in 1883 although
they were developed by J.C. Adams in 1855. The coefficients βi are precomputed and can be
found in special tables. Table 1 below contains some coefficients. Note that, for m

�
1, the

resulting Adams-Bashforth method is exactly Euler’s method. So Euler’s method can be consid-
ered as the simplest multistep method as well as the simplest Runge-Kutta method.

m β1 β2 β3 β4

1 1
2 3

2 � 1
2

3 23
12 � 4

3
5

12
4 55

24 � 59
24

37
24 � 3

8

Table 1: Some coefficients for Adams-Bashforth methods

When applying multistep methods one needs approximations y 	 1 � y 	 2 � �
�
� at k
�

0 which
are neither available nor even defined. In order to start the computation, two alternatives are
available:�

One computes y1 � �
�
� � ym 	 1 with the aid of a one-step method, e.g., a Runge-Kutta method.�
One computes y1 using a one-step method, then one uses a two-step method for computing
y2, and so on. Finally, one can apply the m-step method which one is interested in.

Another class of multistep methods can be constructed from other interpolation data. Instead
of only using informations from previous steps, namely

�
tk � fk ��� �
�
� � � tk � 1 	 m � fk � 1 	 m � , let us ad-

ditionally use the point
�
tk � 1 � fk � 1 � . Since we have now m � 1 interpolation points, the resulting

polynomial has degree m. Carrying out the integration as above we obtain, by using the Lagrange
ansatz,

yk � 1 � yk
�

h
�
β̄0 fk � 1 � m

∑
i � 1

β̄i fk � 1 	 i � �
The second term on the right-hand side is exactly as before, but there is one additional term,

hβ̄0 fk � 1
�

hβ̄0 f
�
tk � 1 � yk � 1 � �

This gives rise to a problem, because the new value yk � 1 to be computed appears on both sides of
the equation. This is why such a method is called an implicit one. In order to compute yk � 1, one
needs to solve a nonlinear (system of) equation(s). The methods constructed this way are known
as Adams-Moulton methods. They were invented by J.C. Adams in 1855 but published only in
1926 by the French mathematician F. Moulton.

Some coefficients of the Adams-Moulton methods are presented in Table 2. Note that, in
practice, a representation using the Newton ansatz is preferred. Because of its similarity to
Euler’s method, the first formula for m

�
0 is known as implicit Euler’s method. In order to

2

m β0 β1 β2 β3

0 1
1 1

2
1
2

2 5
12

2
3 � 12

12
3 3

8
19
24 � 5

24
1

24

Table 2: Some coefficients for Adams-Moulton methods

distinguish between these to methods, the former method carries usually the attribute “explicit”.
The second row describes another very important method which is called the trapezoidal rule.

In order to avoid the difficulties with an implicit method, one uses the following ideas for
handling Adams-Moulton methods:

(i) Compute y � p �
k � 1 by using the m-step (explicit) Adams-Bashforth method,

y � p �
k � 1

�
yk � h

m

∑
i � 1

βi fk � 1 	 i �

(ii) Compute a preliminary value for the derivative,

f � p �
k � 1

�
f
�
tk � 1 � y � p �

k � 1 � �
(iii) Replace fk � 1 by the predicted value f � p �

k � 1 in the m-step Adams-Moulton method,

yk � 1
�

yk � h
�
β̄0 f � p �

k � 1 �
m

∑
i � 1

β̄i fk � 1 	 i � �

The resulting method is completely explicit. It is called an Adams predictor-corrector method or
shorter an Adams PC method. There are very efficient implementations of this class of methods
available, among the MATLAB’s function ode113. Practically, it is not necessary that both
methods have the same number of steps. Very often, an m-step Adams-Bashforth method is
combined with an m � 1-step Adams-Moulton method. The reason for this pairing will become
clear when the accuracy of the different methods is investigated.

4.2 Consistency, Convergence, Stability

The main question for a finite difference method is the behavior of the global error

ek
�

yk � y
�
tk � �

More precisely, we are interested in knowing how fast this error goes to zero if the step size h
goes to zero. Even more basic is the question if it goes to zero at all. As we have seen in the

3

case of one-step methods, the global error is not available immediately. The same holds true for
multistep methods. In contrast, it is relatively easy to obtain an estimate of the local error,

lk � 1
�

yk � 1 � y
�
tk � 1 ���

which appears when computing yk � 1 if the previous values are assumed to be exact values on the
solution curve, i.e., yk

�
y
�
tk � ,. . . , yk � 1 	 m

�
y
�
tk � 1 	 m � .

We write down a multistep method a little bit more general than before:

yk � 1
� m

∑
i � 1

αiyk � 1 	 i � h
m

∑
i � 0

βi fk � 1 	 i �
For all Adams methods, we have for example α1

�
1 and α2

� �
�
� � αm
�

0. Moreover, an
explicit method has β0

�
0. Then we define

lk � 1
�

yk � 1 � y
�
tk � 1 �� m

∑
i � 1

αiy
�
tk � 1 	 i � � h

m

∑
i � 0

βi f
�
tk � 1 	 i � y � tk � 1 	 i �
��� y

�
tk � 1 � �

A multistep method has the order of accuracy (or order of consistency, or simply order) p if

lk
�

O
�
hp � 1 � �

Example 4.1. We compute the order of the two-step Adams-Bashforth method

yk � 1
�

yk � h
2

�
3 fk � fk 	 1 � �

The definition of the local error yields

lk � 1
�

y
�
tk � � h

2

�
3 f

�
tk � y � tk �
��� f

�
tk 	 1 � y � tk 	 1 �
����� y

�
tk � 1 �

�
y
�
tk � � h

2

�
3y
� �

tk ��� y
� �

tk 	 1 ����� y
�
tk � 1 � �

Using h
�

tk � 1 � tk
�

tk � tk 	 1 we may write down the following Taylor expansions:

y
�
tk � 1 � � y

�
tk � � hy

� �
tk � � h2

2
y
� � �

tk � � O
�
h3 ���

y
� �

tk 	 1 � � y
� �

tk ��� hy
� � �

tk � � O
�
h2 � �

Introduce these Taylor expansions into the representation of the local error:

lk � 1
�

y
�
tk � � h

2
� 3y

� �
tk ��� y

� �
tk � � hy

� � �
tk � � O

�
h2 ��� � y

�
tk ��� hy

� �
tk ��� h2

2
y
� � �

tk � � O
�
h3 ��

O
�
h3 � �

This means that this method has order 2.

4

As we have seen earlier, Euler’s method is equivalent to the Adams-Bashforth method with
m
�

1. Moreover, Euler’s method has the order one. More generally, one can show that�
the m-step Adams-Bashforth method has order p

�
m;�

the m-step Adams-Moulton method has order p
�

m � 1.

In the case of Runge-Kutta methods, that the global error has the estimate ek
�

O
�
hp � for a

pth order method. Our wish is to have a similar estimate for multistep methods. Unfortunately,
this is not true in general.

Example 4.2. This example is a very famous one provided by G. Dahlquist. Let us consider two-
step methods, m

�
2. We know already that a high order method can save a lot of computation

time. Therefore, we try to construct a method which has the highest order among all explicit
two-step methods. By using Taylor expansions as above one obtains the following method with
the highest possible order:

yk � 1
� � 4yk � 5yk 	 1 � h

�
4 fk � 2 fk 	 1 � �

The order of this method is 3. We apply this method for solving the initial value problem

y
� � � y � y

�
0 � � 1 �

The exact solution is y
�
t � � e 	 t . In order to avoid the problems concerned with the start compu-

tations we apply the exact initial values

y0
�

1 � y1
�

e 	 h �
where h denotes the step size. We compute 100 steps with a step size of h

�
0 � 01. The resulting

MATLAB code is as follows:

clear
h = 0.01;
n = 101;
y = zeros(n,1);
y(1) = 1;
y(2) = exp(-h);
for j = 3:n

y(j) = -4*y(j-1)+5*y(j-2)-h*(4*y(j-1)+2*y(j-2));
end
t = (0:n-1)’*h;
format short e
[(0:n-1)’,y]

The following table contains extracts from the results.

5

k yk

0 1.0000e+00
1 9.9005e-01
2 9.8020e-01
3 9.7045e-01
4 9.6079e-01
5 9.5123e-01

...
...

96 -1.0235e+57
97 5.1485e+57
98 -2.5897e+58
99 1.3026e+59

100 -6.5524e+59

Since t100
�

1, the exact solution is y
�
1 � � 1 � e � 0 � 367879. The numerical solution explodes. It

has nothing to do with the analytical solution.

What we have seen in the previous example is a typical stability problem for a numerical
algorithm: Small perturbations (in our case the local error) lead to huge errors in the final result.
How can one decide if a multistep method is numerically stable? The answer was given by
G. Dahlquist.

To every multistep method, we assign a polynomial which will be derived from its coeffi-
cients. More precisely, let

yk � 1
� m

∑
i � 1

αiyk � 1 	 i � h
m

∑
i � 0

βi fk � 1 	 i

be the given multistep method. Then, let

ρ
�
ζ � � ξm � α1ζm 	 1 � α2ζm 	 2 � ���
� � αm �

ρ is a polynomial of ζ. The multistep method is called stable if all solutions to ρ
�
ζ � � 0 lie

within the unit circle � ζ ��� 1, and those with � ζ � � 1 are simple.
The final result is: If a method is stable and if it has the order of accuracy p, then the global

error can be estimated by
ek

�
O
�
hp �

provided the step size is sufficiently small.

Example 4.3. One-step methods Here, it holds m
�

1 and α1
�

1. This gives the polynomial
ρ
�
ζ � � ζ � 1. The only root is ζ1

�
1. Hence, one-step methods are stable.

Adams methods For an m-step Adams method, we have α1
�

1, α2
� �
�
� � αm

�
0. Therefore,

the polynomial is ρ
�
ζ � � ζm � ζm 	 1. The roots are ζ1

�
1 and ζ2

� �
�
� � ζm
�

0. Hence,
all Adams methods are stable.

6

Our considerations so far are valid under the assumption that the step size is “sufficiently
small”. Strictly speaking, they are only valid asymptotically if h � 0. Therefore, this stability
concept is often called 0-stability because it is only valid if h � 0. In reality one is interested in
using step sizes as large as possible in order to reduce the computational costs. So it is dubious
to rely too much on 0-stability. It is even possible that large step sizes lead to instabilities.

Example 4.4. Consider the differential equation

y
� �

λy � y
�
0 � � 1 �

where λ � 0. Apply Euler’s method which is 0-stable according to our previous derivations. One
obtains

yk � 1
�

yk � hλyk
� �

1 � hλ � yk� �
1 � hλ � 2yk 	 1

� �
�
�� �
1 � hλ � k � 1y0 �

The analytical solution of the differential equation is y
�
t � � eλt which fulfills y

�
t ��� 0 (t � 0).

On the other hand, if h is so large that � 1 � hλ ��� 1 (equivalently, h � � 2 � λ), then

� yk � ��� ∞
�
k ��� ∞ � �

Hence, the method is numerically unstable.

4.3 Stiff Differential Equations

The instability which we have seen just before needs some contemplation. Our intention with
choosing the step size has been to approximate the differential equation as accurate as desired.
The example indicates that the step size can even have an influence on the stability properties.
This is something that the step size is not intended for. Does this give rise to practical conse-
quences?

Example 4.5. Let us consider the problem

y
��� � 100y � 100 � y

�
0 � � y0 �

The exact solution is given by
y
�
t � � �

y0 � 1 � e 	 100t � 1 �
Assume that we perturb the initial value a little bit. Instead of y0 we will use the initial value
y0 � ε. The solution is now

yε
�
t � � �

y0 � ε � 1 � e 	 100t � 1�
y
�
t � � εe 	 100t �

7

Because of � εe 	 100t � � ε for all t � 0, the problem is well-conditioned with respect to perturba-
tions of the initial values:

� yε
�
t ��� y

�
t � � � ε � t � 0 �

In the present context, this type of well-conditioning is called Lyapunov stability or simpler
stability. Note that this is a property of the continuous problem. It has nothing to do with any
numerical method.

As above, consider now Euler’s method. This gives

yk � 1
�

yk � h
� � 100yk � 100 � � �

1 � 100h � yk � 100h �
This recursion can be solved explicitly. We obtain

yk
� �

y0 � 1 � � 1 � 100h � k � 1 �
Choose for simplicity a special initial value, say y0

�
2. This gives

y
�
t � � e 	 100t � 1 �
yk

� �
1 � 100h � k � 1 �

The function y
�
t � converges very fast toward its limit 1. At t

�
0 � 1, it holds already y

�
0 � 1 � �

1 � 5 � 10 	 5. What should we expect of a good method?�
In the beginning around t

�
0, we will expect very small steps in order to be able to

reproduce the fast changes in the analytical solution.�
If tk has become a little bit larger, say t � 0 � 1, it should be possible to use large step sizes
and still approximate the solution sufficiently accurately, because the solution is an almost
constant function.

Unfortunately, Euler’s method does not behave in this way. As we have seen before, the method
is only stable if � 1 � 100h � � 1 (the last example with λ

� � 100). This implies a step size of
h � 0 � 02 even if the local error is very small.

A problem where the step size is determined by the stability but not by the accuracy when
applying Euler’s method, is called stiff. This type of problems is frequently met in practice.

Even if the definition of stiffness depends explicitly on Euler’s method, the qualitative be-
havior can be seen with any explicit method. This includes even predictor-corrector methods
because they are explicit in nature.

Example 4.6. A chemical reaction between three species can be described by a system of three
differential equations

y
�
1

� � k1y1 � k2y2y3 �
y
�
2

�
k1y1 � k2y2y3 � k3y2

2 �
y
�
3

�
k3y2

2 �
t ��� 0 � 1000 � �

8

subject to the initial conditions
y
�
0 � � �

1 � 0 � 0 � T �
The variable yi

�
t � describes the concentration of species i at time t. The constants in the system

are given by
k1

�
0 � 04 � k2

�
104 � k3

�
3 � 107 �

The problem was introduced by Robertson. This is a three-dimensional example of a Lotka-
Volterra system. We want to solve the system with the aid of MATLAB. In order to play around
with different solvers we use the following function:

function res = robbytest(method,Tend)
kparm = [0.04;1e4;3e7];
options = odeset(’Stats’,’on’,’Refine’,1,’Reltol’,1e-6);
res = feval(meth,@robertson,[0,Tend],[1;0;0],options,kparm);

%

function yp = robertson(t,y,kparm)

yp = zeros(3,1);
yp(1) = -kparm(1)*y(1)+kparm(2)*y(2)*y(3);
yp(2) = kparm(1)*y(1)-kparm(2)*y(2)*y(3)-kparm(3)*y(2)ˆ2;
yp(3) = kparm(3)*y(2)ˆ2;

We start with ode45 and call the function

res = robbytest(@ode45,1000) �
The function ode45 returns only meaningless values (NaN)! Therefore, we try ode23. The
computer works with full power but we do not see any result. We will continue our experiments
a little bit more cautiously. Instead of using the complete interval we try to run the codes with
t � � 0 � Tend � where Tend

�
1 � 2 � 3 � 4 � 10. The number of steps in every attempt is reported

below:

code
�
Tend 1 2 3 4 10

ode45 679 1359 2049 2753 crash
ode23 868 1739 2623 3524 9316
ode113 1419 2802 4198 5631 14849

It is also interesting to have a look at the average step size h
�
Tend � � number of steps � :

code
�
Tend 1 2 3 4 10

ode45 1 � 5 � 10 	 3 1 � 5 � 10 	 3 1 � 5 � 10 	 3 1 � 5 � 10 	 3 crash
ode23 1 � 2 � 10 	 3 1 � 2 � 10 	 3 1 � 1 � 10 	 3 1 � 1 � 10 	 3 1 � 1 � 10 	 3

ode113 7 � 0 � 10 	 4 7 � 1 � 10 	 4 7 � 1 � 10 	 4 7 � 1 � 10 	 4 6 � 7 � 10 	 4

9

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Solution of Robertson’s problem

So, the step size is very small all the time. If ones plots the solution obtained in this way (see
Figure 1), it looks very friendly and smooth. This is a clear indication of stiffness. MATLAB

contains also special methods for stiff systems: ode15s, ode23s, ode23t, and ode23tb.
We apply those methods to the example above. The corresponding table looks much better now!
All these methods are orders of magnitude faster.

code
�
Tend 1 2 3 4 10 1000

ode15s 30 34 38 40 52 135
ode23s 16 18 19 20 23 61
ode23t 27 37 46 53 80 266
ode23tb 18 29 33 39 64 222

Note that, from a practical point of view, it is not the number of steps which is decisive
for the computing time. The number of function evaluations per step is very different between
the different classes of methods, and the evaluation of the right-hand side is where most of the
computation time is spent. A much better measure for the efficiency of a code is, therefore, the
number of function evaluations of the right-hand side. The codes included in MATLAB provide
these numbers, too.

In order to solve stiff equations one must apply implicit methods. Let us take the simplest
example. The Adams-Moulton method with m

�
0 is

yk � 1
�

yk � h fk � 1 �
This is Euler’s implicit method. In our example we obtain

yk � 1
�

yk � h
� � 100yk � 1 � 100 ���

10

or, more explicitly,

yk � 1
� �

1 � 100h � 	 1 � yk � 100h � �
This recursion has the exact solution

yk
� �

y0 � 1 � � 1 � 100h � 	 k � 1 �
For our initial value y0

�
2, this yields

yk
� 1�

1 � 100h � k � 1 �
Since ��

1
1 � 100h �� � 1 for all h � 0, this method is stable independent of the chosen step size h.

Even the second order Adams-Moulton method (m
�

1) has the same property for our exam-
ple. This method (the trapezoidal rule) is the basis for MATLAB’s ode23t solver. In contrast to
that, higher order Adams-Moulton methods are not appropriate for stiff problems.

A special class of multistep methods has been constructed which is very well-suited for stiff
problems. This class consists of the so-called BDF (backward differentiation formulas) methods.
They are used in MATLAB’s ode15s. The construction of these methods goes as follows. Let
us write down the differential equation at t

�
tk � 1,

y
� �

tk � 1 � � f
�
tk � 1 � y � tk � 1 � �

As usual, we assume that the previous approximations yk � ���
� � yk � 1 	 m are already computed. In
order to find an approximation yk � 1 for y

�
tk � 1 � we form the interpolation polynomial for y

�
t �

(and not for f
�
t � y � t �
� as in the case of Adams methods) based on the data

�
tk � 1 � yk � 1 ��� � tk � yk ��� �
�
� � � tk � 1 	 m � yk � 1 	 m � �

Let this polynomial be p
�
t � . Then we use the approximation

p
� �

tk � 1 � � fk � 1 �
Obviously, the resulting method is implicit. Representations of these methods can be derived by
using Lagrange or Newton interpolation. The result of Lagrange interpolation is a method

m

∑
i � 0

αiyk � 1 	 i
�

h fk � 1 �
The coefficients for the methods for m � 6 are given in Table 3. For m � 6, the BDF methods are
no longer 0-stable, so they cannot be used. Usually, one does not even apply the BDF method
with m

�
6 because it has other unfavorable stability properties. Having a look at the table, we

see that, for m
�

1, Euler’s implicit method is derived once again. The order of accuracy of the
m-step BDF method is m.

11

m α0 α1 α2 α3 α4 α5 α6

1 1 � 1
2 3

2 � 2 1
2

3 11
6 � 3 3

2 � 1
3

4 25
12 � 4 3 � 4

3
1
4

5 137
60 � 5 5 � 10

3
5
4 � 1

5
6 49

20 � 6 15
12 � 20

3
15
4 � 6

5
1
6

Table 3: Coefficients for the BDF methods

4.4 Differential-Algebraic Equations

In the first labwork we applied a method for the computation of electrical circuits, namely the
MNA method. At that place, we were only interested in the stationary case. If we are interested
in the in-stationary (or, transient) behavior of a circuit, the MNA equations form a system which
consists of differential equations as well as equations which did not contain any derivatives of
the unknown functions. This is of fundamental difference to the problems which we considered
in the present section were all independent functions appear differentiated on the left-hand side.
In order to reduce the problem to the form we considered here, one could be tempted to eliminate
all variables which do not belong to differential equations. This is the way taken in the course
on Analog Electronics. Another idea could be to differentiate the algebraic equations such that
all variables appear differentiated finally. Both approaches are hard to realize in practice where
the number of unknowns may reach some millions. Therefore, one tries to construct numerical
methods which can be applied to solve these mixed systems which are often called differential-
algebraic equations. It turns out that the BDF methods are among the methods of choice even
for such systems. In MATLAB, ode15s is the first choice.

Example 4.7. Two typical examples illustrate the appearance of differential-algebraic equations.

MNA equations As we have seen before, the MNA equations can be written down as��
ACCA

�
C 0 0

0 L 0
0 0 0

��
d
dt

��
e
iL
iV

��
�
��

ARGA
�
R AL AV� A
�
L 0 0

A
�
V 0 0

�����
e
iL
iV

�� � �� � AII
0
V

��
�

It is obvious that there are no differential equations for iV .

Constrained mechanical systems Roughly speaking, Newton’s law leads to differential equa-
tions while holonomic constraints give rise to algebraic relations. As a simple example we
consider the mathematical planar pendulum in Cartesian coordinates. We assume that the
pendulum with length l is fixed at the origin x

�
y
�

0. The Lagrange formalism leads to

12

the following Euler-Lagrange equations:

mẍ
� � 2xλ �

mÿ
� � mg � 2yλ �

0
�

x2 � y2 � l2 �
Here, m is the mass and g is the gravity constant. The Lagrange parameter λ has a physical
interpretation: It describes the constraint forces in the string.

13

