
Parallel Discrete Event Simulation

Benno Overeinder Bob Hertzberger Peter Sloot

Department of Computer Systems
University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
e-mail: overeind@fwi.uva.nl

24 April 1991

Abstract

In simulating applications for execution on specific computing systems, the simulation perfor-
mance figures must be known in a short period of time. One basic approach to the problem of
reducing the required simulation time is the exploitation of parallelism. However, in parallelizing
the simulation new problems arise. Due to the distributed generation of events causality errors can
occur, as a result the sequence in which to process the events is essentially indeterminated.

In this paper we present a model to analyse the inherent parallelism of a simulation, together with
a survey of existing strategies to perform the simulation in parallel. Some extensions to this model
are discussed, resulting in reliable evaluation of the effectiveness of these strategies.

1 Introduction

In the Parallel Scientific Computing Working-group at the University of Amsterdam, we are interested
in the execution performance of classes of applications on classes of computing systems. We distinguish
the following levels that are involved in performance prediction: application, general abstract machine,
simulation language, and discrete event simulator. Each level is supported by the level underneath. In
this way the efficiency of a level is partially determined by the supporting level, thus imposing severe
constraints to the simulator. Especially if the performance figures are iteratively used to optimize the
application, the effectiveness of the simulator is of vital importance.

Large discrete event simulations are known to consume enormous amounts of time on sequential
machines. One basic approach to reduce the required simulation time is the exploitation of parallelism.
A major drawback however, is the inherent complexity of this type of simulation since the notion of
global time does not easily map on a parallel computer. Sophisticated clock synchronization algorithms
are required to ensure that cause-and-effect relationships are correct reproduced by the simulator.

The idea of parallel simulation—in literature also indicated by distributed simulation—was first
proposed by K.M. Chandy and independently by R.E. Bryant. Papers by Chandy and Misra [Cha79],
and Bryant [Bry77] contain basic ideas of parallel simulation, the problem of deadlock and schemes for
deadlock resolution, detection and recovery [Cha81]. Alternative schemes proposed by D.R. Jefferson
are based on the concepts of Virtual Time [Jef85].

This paper is structured in the following way. Section 2 gives an introduction to discrete event
simulation. In section 3 a parallel view to the sequential simulation is proposed, and various methods for
parallel simulation are described together with a discussion on their effectiveness. Finally, in section 4
an evaluation of these methods and some suggestions for further research are presented.

1



2 Concepts of Discrete Event Simulation

Modelling and simulation can be characterized as the complex of activities associated with constructing
models of real world systems and simulating them on a computer.

Essential to every model is the time base on which events occur. Accordingly, models can be classified
depending on their temporal behaviour [Zei76]. A model is a continuous time model when time flows
smoothly and continuously. A model is a discrete time model if time flows in jumps of some specified
time unit.

A second classification can be based on the range sets of a model’s descriptive variables. The model is
a continuous state model if the range of the descriptive variables can be represented by the real numbers.
The model is a discrete state model if its variables only assume discrete values.

Continuous time models can be further divided into differential equation and discrete event classes.
A differential equation model is a continuous time–continuous state model where changes in state occur
smoothly and continuously in time. In a discrete event model, even though time flows continuously, state
changes can occur only at countable points in time—i.e., time jumps from one event to the next, and
these events can occur arbitrarily separated from each other.

2.1 Discrete Event Simulation

The concept of a system and a model of a system were already used in the definition of the classes of
simulation. These concepts need to be specified in order to develop a framework for the design of a
discrete event model of a system. The major concepts are:

System A collection of entities that interact together over time to accomplish one or more goals.

Model An abstract representation of the system under consideration, usually containing logical and/or
mathematical relationships that describe the behaviour of the system.

System state A collection of variables that contain all the information necessary to describe the system
at any time.

Entity Any object or component in the system that requires explicit representation in the model.

Attributes The properties of a given entity.

Event An instantaneous occurrence that may change the state of the system.

Activity A duration of time of specified length during which entities engage some operation.

Process A sequence of events ordered in time. These events must be logically connected, involving the
same entity.

To illustrate these concepts, we consider a bank. In the dynamics of a bank, customers might be
one of the entities, the balance in their accounts might be an attribute, and making deposits might be
an activity. Possible state variables are the number of busy tellers, the number of customers waiting in
line or being served, and the arrival time of the next customer. The arrival of a customer as well as the
completion of service of a customer are possible events.

Every discrete event simulation contains a state variable called the simulation clock to model the flow
of time. Simulated time is advanced from the time of the current event to the time of the next scheduled
event; thus skipping periods of inactivity. Future events are stored in a calendar that contains the time
and the type of all scheduled events, usually in chronological order. The nature of the routine depends
on the world view used in the model. Let us therefore consider some different world views relevant to
discrete event simulation.

2



2.2 World Views

All simulations contain an executive routine for the management of the calendar and clock, i.e., the
sequencing of events and driving of the simulation. This executive routine fetches the next scheduled
event, advances the simulation clock and transfers control to the appropriate routine. The operation
routines depend on the world view, and may be events, activities, or processes.

A world view is the point of view from which the modeller sees the world or the system to be
modelled. Most of the discrete event simulations use one of the three following perspectives [Hoo86]:
event scheduling, activity scanning, or process interaction.

In event scheduling each type of event has a corresponding event routine. The executive routine
processes a time ordered calendar of event notices to select an event for execution. Event notices consist
of a time stamp and a reference to an event routine. Event execution can schedule new events by creating
an event notice and place it at the appropriate position in the calendar. The clock is always updated to
the time of the next event, the one at the top of the calendar.

In the activity scanning approach a simulation contains a list of activities, each of which is defined by
two events: the start event and the completion event. Each activity contains test conditions and actions.
The executive routine scans the activities for satisfied time and test conditions and executes the actions
of the first selectable activity. When execution of an activity completes, the scan begins again.

The process interaction world view focuses on the flow of entities through a model. This strategy
views systems as sets of concurrent, interacting processes. The behaviour of each class of entities during
its lifetime is described by a process class. Process classes can have multiple entries and exits at which a
process interacts with its environment. The executive routine uses a calendar to keep track of forthcoming
tasks. However, apart from recording activation time and process identity, the executive routine must
also remember the state in which the process was last suspended.

Evidently, large discrete event simulations, using one of these three world view strategies, put extreme
computational demands on sequential computers. Intuitively, the process interaction world view seems
to be attractive as a starting point in our effort to the parallelization of the simulation. The modeller
perceives the simulation already as a set of concurrent objects interacting with each other by well-defined
communication. Besides, parallel simulation is interesting because it represents a problem domain that
often contains substantial amounts of inherent parallelism (e.g., see [Liv85]).

In the following section a parallel view to a sequential execution will be presented in order to analyse
the inherent parallelism of the simulation. Next the problems involved in parallel execution and the
methodologies to circumvent these problems are described.

3 From Sequential to Parallel Discrete Event Simulation

3.1 The Average Parallelism Measure

If we have made the decision to do the simulation in parallel, there are some fundamental questions to
be answered. What is the parallelism inherent to the simulation? How much benefit do we expect from
doing things in parallel? And, once the job is done, how well did we perform this?

One very interesting characterization of the simulation that can be used to answer these questions is
the average parallelism. Average parallelism can be defined in two equivalent ways:

1. The ratio of the total service time required to process events, to the length of the critical path
through the execution of the simulation.

2. The speedup figures, if a hypothetical machine contains an unbounded number of available pro-
cessors and zero synchronization overhead.

3



As a consequence of the second definition, the average parallelism figure should be regarded as an
upper bound to the speedup that can be achieved.

To reveal the average parallelism inherent to a simulation, we have implemented a tool to analyse
a sequential simulation run and extract the average parallelism [Ove91]. A system model is defined
to express the parallelism explicitly and consists of a software component and a hardware component.
The software component is a graph representing the execution of a sequential simulation. The hardware
component of our system model reflects our focus on the parallelism inherent to a simulation, and makes
assumptions of ideal hardware. P1 P2 � � � Pi � � � PNm m m mm mEA m mEBm mEC m mm

???
??
?

?
??

???
����	 ��������)

Figure 1: A program activity graph.

The execution of a simulation is represented by an acyclic directed graph (see Fig. 1). Each vertex of
the graph corresponds to an event occurring in the simulation. Precedence constraints exist among the
events, modelling the chronological order of events. These precedence constraints are modelled by the
arcs of the graph: an arc from vertex EA to vertex EC means that event EC cannot occur (or be executed)
before event EA is processed. Two types of arcs are distinguished: intra-process arcs and inter-process
arcs. Intra-process arcs are precedence constraints between events that occur within the same process
(e.g., arc between vertex EA and EC in Fig. 1). The intra-process arc denotes an independent unit of
sequential work inside a process. We can consider inter-process arcs as precedence constraints between
events that occur in different processes (e.g., arc between vertex EB and EC). These inter-process arcs
represent synchronization requirements achieved by some communication primitive.

The hardware component of the system is modelled as an infinite number of identical processors,
each of unit speed. The synchronization between processors has zero overhead and the entire computer
is devoted to one single task.

A sequential run of the simulation generates an acyclic directed graph of events with their precedence
constraints. When every process in the simulation is assigned to a different processor (i.e., one process to
one exclusive processor), all intra-process dependent events occur at the same exclusive processor and
all inter-process dependent events occur at different processors. As a consequence, the intra-process arc
denotes an independent unit of sequential work on a processor, whereas the inter-process arc represents
synchronization requirements between processors. Furthermore, the execution times of the independent
units of work, measured during the sequential run, are assigned to the intra-process arcs and the zero
synchronization costs to the inter-process arcs. In this way the graph is reduced to a representation of the

4



execution of the simulation on a hypothetical machine. The total amount of time required to process the
events is equal to the sum of all the costs in the graph and the critical path through the execution of the
simulation is now represented by the longest path in the graph.

Eager et al. [Eag89] use the average parallelism measure to express lower bounds on speedup and
efficiency, and on the incremental benefit and cost of allocating additional processors. It is our opinion
that average parallelism can be applied as a measure in the evaluation of effectiveness of various methods
in parallel simulation. In other words, how much of the parallelism that is inherent to the simulation is
actually exploited?

3.2 The Fundamental Problem in Parallel Discrete Event Simulation

We are especially interested in parallelization of asynchronous system simulation, where events are not
synchronized by a global clock, but rather occur at irregular time intervals. In these simulations few
events occur at any single point in simulated time and therefore parallelization techniques based on
synchronous execution using a global simulation clock performs poorly. Concurrent execution of events
at different points in simulated time is required, but this introduces interesting synchronization problems.

These problems become clear if one examines the operation of a sequential discrete event simulator.
The sequential simulator typically uses three data structures: the state variables, an event list (the
calendar), and a global simulation clock. For the execution routine (see section 2.2) it is crucial that the
smallest time stamped event (Emin) from the event list is selected as the one to be processed next. If it
would depart from this rule and select an other event with a larger time stamp (Ex), it would be possible
for Ex to change the state variables used by Emin. This implies that one is simulating a system where
the future could affect the past. We call errors of this kind causality errors.

Let us next consider the parallelization of a simulation based on the above paradigm. Most parallel
discrete event simulation (PDES) strategies adhere to a process interaction world view that strictly forbids
processes to have direct access to shared state variables. To this methodology some extensions have been
made to support the parallel execution of the simulation [Cha79]. The system being modelled is viewed
as being composed of some number of physical processes that interact at various points in simulated
time. The simulation is constructed as a set of logical processes LP0, LP1,: : :, one per physical process.
All interactions between physical processes are modelled by time stamped event messages sent between
the corresponding logical processes. Each logical process contains a portion of the state corresponding
to the physical process it models, as well as a local clock that denotes the progress of the process.

One can assure that no causality error occurs if one adheres to the local causality constraint:

Local Causality Constraint: A discrete event simulation, consisting of logical processes
that interact exclusively by exchanging time stamped messages, obeys the local causality
constraint if and only if each logical process executes events in non decreasing time stamp
order.

Consider two events. E1 at logical process LP1 with time stamp 10, and E2 at LP2 with time stamp
20 (see Fig. 2). If E1 schedules a new event E3 for LP2 containing a time stamp less than 20, then E3
could affect E2, necessitating sequential execution of all three events. If one had no information what
events could be scheduled by other events, one would be enforced to process the only save event, the one
containing the smallest time stamp, resulting in a sequential execution.

During the simulation we must therefore decide whether E1 can be executed concurrently with E2.
But how do we know whether or not E1 affects E2 without actually performing the simulation for E1?
It is this question the parallel discrete event simulation strategies must address.

In this paper we classify parallel discrete event simulation strategies by two categories: conservative
and optimistic. Conservative approaches strictly avoid the possibility of any causality error ever occurring.

5



10

20

simulated
time

LP1 LP2E1 E2
(a)

10

20

simulated
time

LP1 LP2E1 E2E3����
(b)

Figure 2: Causality error.

These approaches rely on some strategy to determine when it is safe to process an event. The optimistic
approaches use a detection and recovery approach: whenever causality errors are detected a rollback
mechanism is invoked to recover. We will describe some of the concepts behind conservative and
optimistic simulation mechanisms.

3.3 Conservative Methods

The conservative approaches are the first distributed simulation mechanisms. The basic problem conser-
vative mechanisms must address is to determine which event is save to process. If a process contains
an event E1 with time stamp T1 and the process can determine that it is impossible to receive another
event with time stamp smaller than T1, then the process can safely process event E1 without a future
violation of the local causality constraint. Processes containing no safe events must block; this can lead
to deadlock situations if no appropriate precautions are taken.

Independently, Chandy and Misra [Cha79], and Bryant [Bry77] developed the parallel discrete
event simulation algorithms, where one statically specifies the links that indicate which process may
communicate with which other processes. In order to determine when it is safe to process a message, it
is required that messages from any process to any other process are transmitted in chronological order
according their time stamps. Each link has a clock associated with it that is equal to either the time stamp
of the message at the front of that link’s queue or, if the queue is empty, the time of the last received
message. The process repeatedly selects the link with the smallest clock and, if there is a message in
that link’s queue, updates its local clock to the link’s clock and process the message. The order of event
processing will be correct because all future messages received will have later time stamps than the local
clock, since they will arrive in chronological order along each link. If the selected queue is empty, the
process blocks. This is because the process may receive a message over this link with a time that is less
than all the other input time stamps. Thus to insure correct chronology, the process is forced to wait for
a message to update the clock on the link before the process can update its local clock. This protocol
guarantees that each process will only process events in nondecreasing time stamp order, and thereby
ensuring chronological integrity.

Deadlock occurs when there is a cycle of blocked processes and each process is blocked due to
another process in the cycle. For example consider the network of Fig. 3. Each process is waiting on
the incoming link containing the smallest clock value because the corresponding queue is empty. All
three processes are blocked, even though there are event messages in other queues that are waiting to be
processed.

6



�� ��
�� ���� ������	12 @@@@I8 -10-25

?18

?20

Figure 3: An example of deadlock. (The numbers indicate time stamps.)

Null messages are used to avoid deadlock. This scheme requires that there is a strictly positive lower
bound on the lookahead for at least one process in each cycle. Lookahead is defined to be the amount of
time that a process can look into the future. In other words, if the local clock of the process is any timeT and the process can predict all messages it will send with time stamps less than T + L, where L is
the lookahead. Thus, for a queueing network model, a strictly positive lower bound for the service time
for some stations would be required. Intuitively, processes keep the clocks of their output links ahead of
their local clocks by sending null messages. A null message with time stamp Tnull from process LPA
to LPB , tells LPB that there will be no more messages from process LPA with time stamp less thanTnull. Whenever a process finishes processing an event, it sends a null message on each of its output
ports indicating the lower bound on the time stamp of the next outgoing message. The receiver of the
null message can then compute new bounds on its outgoing links, send this information to its neighbours,
and so on.

Chandy and Misra [Cha81] also presented a two-phase scheme where the simulation proceeds until
deadlocked, then the deadlock is detected and resolved. The mechanism is similar to that described
above, except no null messages are created. Instead the computation is allowed to deadlock. The scheme
involves a controller process to monitor for deadlock and control deadlock recovery. Deadlock detection
mechanisms are described in [Gro89, Mis86]. The deadlock can be broken by the observation that the
message with the smallest time stamp is always save to process; or, with use of a distributed computation,
obtain a lower bound to enlarge the set of safe messages.

The mechanisms described above only attempt to detect and recover from global deadlocks. Prakash
and Ramamoorthy [Pra88] suggested a hierarchical decentralized algorithm that takes advantage of the
locality of these deadlocks. Another approach to detect and recover from local deadlocks can be found
in [Mis86].

The performance of conservative mechanisms is critically determined by the degree to which pro-
cesses can look ahead and predict future events; or more importantly, what will not happen in the
simulated future. A process with lookahead L can guarantee that no events, other than the ones that
it can predict, will be generated up to time Clock + L. This may enable processes to safely process
forthcoming messages that they have already received. Fujimoto describes lookahead quantitatively
using a parameter called the lookahead ratio and presents empirical data to demonstrate the importance
of exploiting lookahead to achieve good performance [Fuj89]. Other studies of the performance as a
function of lookahead can be found in [Lin89, Lou90, Su89].

7



3.4 Optimistic Methods

In optimistic approaches a process’s clock may run ahead of the clocks of its incoming links and if errors
are made in the chronology a procedure to recover is invoked. In contrast to conservative approaches,
optimistic strategies need not determine when it is safe to proceed. Advantages of this approach are
that it has a potentially larger speedup than conservative approaches and that the topology of possible
interactions between processes need not be known.

An optimistic approach to distributed simulation called Time Warp, based on the Virtual Time
paradigm, was proposed by Jefferson and Sowizral [Jef82, Jef85]. Here virtual time is the same as the
simulated time. The local clock, called the Local Virtual Time (LVT) of a process, is set to the minimum
receive time of all unprocessed messages. Processes can execute events and proceed in local simulated
time as long as they have any input at all. As a consequence, the local clock or LVT of a process may get
ahead of its predecessors’ LVTs, and it may receive an event message from a predecessor with time stamp
smaller than its LVT, i.e., in the past of the process. If this happens the process rolls back in simulated
time. The event causing the roll back is called a straggler. Recovery is accomplished by undoing the
effects of all events that have been processed prematurely by the process receiving the straggler.

The premature execution of an event results in two things that have to be rolled back: the state of
the logical process and the event messages to other processes. Rolling back the state is accomplished
by periodically saving the process state and restoring an old state vector on roll back. Unsending a
previously sent message is accomplished by sending a anti-message that annihilates the original when it
reaches its destination. Messages that are sent while the process is propagating forward in simulated time
are called positive messages. If a process receives an anti-message that corresponds to a positive message
that is still in the input queue, then the two will annihilate each other and the process will proceed. If an
anti-message arrives that correspond to a positive message that is already processed, then the process has
made an error and must also roll back. It sets its current state to the last state vector saved with simulated
time earlier than the time stamp of the message. A direct consequence of the roll back mechanism is that
more anti-messages may be sent to other processes recursively.

The Global Virtual Time (GVT) is the minimum of the LVTs for all the processes and the time stamps
of all messages sent but unprocessed. No event with time stamp smaller than GVT will ever be rolled
back, so storage used by such event (i.e., saved states) can be discarded.

The procedure just described is referred to as Time Warp with aggressive cancellation. An alternative
is lazy cancellation, where anti-messages are not sent immediately after roll back. Here, the process
resumes executing forward in simulated time from its new LVT, and when it procedures a message it
compares it with the messages in its output queue. If the same message is recreated, then there is no
need to cancel the message. An anti-message created at simulated time T is only sent after the process’s
clock sweeps past time T without regenerating the same message. Thus, under lazy cancellation a roll
back at the successor process may be avoided. On the other hand, if messages are not reproduced, then
roll backs at the successor processes will be required under both mechanisms, and they will occur sooner
with aggressive cancellation.

Depending on the application, lazy cancellation may either improve or degrade performance. States
may be saved less frequently at the expense of greater overhead for roll back. As a consequence, lazy
cancellation requires more memory than aggressive cancellation. Studies of the performance of optimistic
approaches can be found in [Lin90, Mad90].

4 Conclusion and Discussion

Performance evaluation is critical for the design, implementation, and improvement of complex appli-
cations executing on parallel computers. Analytical approaches to performance evaluation are usually

8



inadequate because they are based on unrealistic assumptions and require many approximations. There-
fore, simulation is a good alternative for obtaining accurate measures of performance. Currently, however,
detailed simulations are extremely slow. Parallel simulation seems to be a promising approach for speed-
ing up the simulations, although much more work needs to be done to increase the effectiveness of the
existing methods.

Conservative methods offer good potential for certain classes of problems. A major drawback,
however, is that they cannot fully exploit the parallelism available in the simulation application. If it
is possible that event EA might affect EB either directly or indirectly, conservative approaches must
execute EA and EB sequentially. If the simulation is such that EA seldom affect EB these events could
have been processed concurrently most of the time. As a consequence, conservative algorithms heavily
rely on lookahead to achieve good performance.

Optimistic methods offer the greatest potential as a general purpose simulation mechanism. A
critical question faced by optimistic approaches is whether the system will spent most of its time on
executing incorrect computations and rolling them back, at the expense of correct computations. An
intuitive explanation why the behaviour tends to be stable is that incorrect computations can only be
initiated by a premature execution of a correct event. This premature execution, and subsequent incorrect
computations, are by definition in the simulated time future of the correct, straggler computation. Also,
the further the incorrect computation spreads the further it moves into the simulated time future, thus
lowering its priority for execution. Preference is always given to computations containing smaller time
stamps. The incorrect computation will be slowed down, allowing the error detection and correction
mechanism to correct before too much damage has been done.

A more serious problem with the optimistic mechanisms is the need to periodically save the state of
each logical process. This limits the effectiveness of the optimistic mechanisms to applications where
the amount of computation, required to process an event, is significantly larger than the cost of saving
the state vector.

The type of application, or classes of applications, is important when determining an appropriate
approach to distributed simulation. For dynamic topology systems and systems with irregular interactions,
Time Warp methods are preferred over conservative methods, especially if state-saving overheads do not
dominate. On the other hand, if the application has good lookahead properties, conservative algorithms
can exploit the special structure within a fixed topology system. If the application has both poor
lookahead and large state-saving overheads all existing parallel discrete event simulation approaches
will have trouble obtaining good performance, even if the application has a considerable amount of
parallelism.

A challenging, yet not fully exploited, problem is the use of hierarchical methods in parallel discrete
event simulation (PDES). It is our contention that, if processes are forced to remember the values of all
private variables, an object-oriented methodology can be employed. Here a class must encapsulate all
relevant aspects of an entity: its attributes, actions, and life cycle. Communication between objects is
allowed only through well-defined interfaces, described by the types of messages an object is willing
to respond to. With the use of such object-oriented methodologies, the hierarchical decomposition
of the problem under investigation can also be made available in the simulation. In conservative
approaches there is some modest effort to use this hierarchical knowledge in the detection of local
deadlock and recovery [Pra88]. In optimistic approaches, hierarchical knowledge could be used by the
error detection and correction mechanism to quickly stop the spread of the erroneous computations.
Furthermore, the proposed model in section 3.1 has to be extended for the evaluation of the various
PDES strategies. Many performance evaluations of PDES strategies, found in the literature, compare
the parallelism available in the application with the measured speedup of the application on a specific
parallel computer. In consequence, there is interference with load balance and scheduling strategies that
obscure the effectiveness of the PDES strategy. The extended model should eliminate this interference,

9



and measure the exploited parallelism by a PDES strategy. In this way, the exploited parallelism can be
compared to the average parallelism to obtain the effectiveness of the strategy.

Acknowledgements

I would like to thank Sjaak Koot from our working-group for some valuable discussions.

References

[Bry77] Bryant, R.E., “Simulation of Packet Communications Architecture Computer Systems,” MIT-
LCS-TR-188, Massachusetts Institute of Technology, 1977.

[Cha79] Chandy, K.M., and J. Misra, “Distributed Simulation: A Case Study in Design and Verification
of Distributed Programs,” IEEE Transactions on Software Engineering, vol. SE-5, no. 5, pp.
440–452, September 1979.

[Cha81] Chandy, K.M., and J. Misra, “Asynchronous Distributed Simulation via a Sequence of Parallel
Computations,” Communications of the ACM, vol. 24, no. 11, pp. 198–205, November 1981.

[Eag89] Eager, D.L., J. Zahorjan, and E.D. Lazowska, “Speedup Versus Efficiency in Parallel Systems,”
IEEE Transactions on Computers, vol. 38, no. 3, pp. 408–423, March 1989.

[Fuj89] Fujimoto, R.M., “Performance Measurements of Distributed Simulation Strategies,” Trans-
actions of the Society for Computer Simulation, vol. 6, no. 2, pp. 89–132, April 1989.

[Gro89] Groselj, B., and C. Tropper, “A Deadlock Resolution Scheme for Distributed Simulation,”
Proceedings of the SCS Multiconference on Distributed Simulation, pp. 108–112, March 1989.

[Hoo86] Hooper, J.W., “Strategy Related Characteristics of Discrete Event Languages and Models,”
Simulation, vol. 46, no. 4, pp. 153–159, April 1986.

[Jef82] Jefferson, D.R., and H. Sowizral, “Fast Concurrent Simulation using the Time Warp Mech-
anism, Part I: Local Control,” Technical Report N-1906-AF, RAND Corporation, December
1982.

[Jef85] Jefferson, D.R., “Virtual Time,” ACM Transactions on Programming Languages and Systems,
vol. 7, no. 3, pp. 404–425, July 1985.

[Lin89] Lin, Y-B., and E. Lazowska, “Exploiting Lookahead in Parallel Simulation,” Technical Report
89-10-06, Department of Computer Science, University of Washington, Seattle (WA), 1989.

[Lin90] Lin, Y-B., and E. Lazowska, “Reducing the State Saving Overhead for Time Warp Parallel
Simulation,” Technical Report 90-02-03, Department of Computer Science, University of
Washington, Seattle (WA), 1990.

[Liv85] Livny, M., “A Study of Parallelism in Distributed Simulation,” Proceedings of the SCS
Multiconference on Distributed Simulation, pp. 94–98, San Diego (CA), January 1985.

[Lou90] Loucks, W.M., and B.R. Preiss, “The Role of Knowledge in Distributed Simulation,” Pro-
ceedings of the SCS Multiconference on Distributed Simulation, pp. 9–16, San Diego (CA),
January 1990.

10



[Mad90] Madisetti, V., J. Walrand, and D. Messerschmitt, “Synchronization in Message-Passing
Computers—Models, Algorithms, and Analysis,” Proceedings of the SCS Multiconference
on Distributed Simulation, pp. 35–48, San Diego (CA), January 1990.

[Mis86] Misra, J., “Distributed Discrete Event Simulation,” ACM Computing Surveys, vol. 18, no. 1,
pp. 39–65, March 1986.

[Ove91] Overeinder, B.J., and P.M.A. Sloot, “Parallelism in Architecture Simulation,” Technical Re-
port, Department of Computer Systems, University of Amsterdam, Amsterdam, The Nether-
lands, under preparation.

[Pra88] Prakash, A., and C.V. Ramamoorthy, “Hierarchical Distributed Simulations,” Proceedings of
the 8th International Conference on Distributed Computing Systems, pp. 341–347, San Jose
(CA), June 1988.

[Su89] Su, W.K., and C.L. Seitz, “Variants of the Chandy-Misra-Bryant Distributed Discrete-Event
Simulation Algorithm,” Proceedings of the SCS Multiconference on Distributed Simulation,
pp. 38–43, March 1989.

[Zei76] Zeigler, B.P., Theory of Modelling and Simulation, John Wiley & Sons, New York, 1976.

11


