Genetic Programming

Evolutionary Computation - Lecture 15

- 1

22/11/2002

Thorsten Schnier School of Computer Science University of Birmingham

Previous Lecture

Constraint Handling

Penalty Approach Penalize fitness for infeasible solutions, depending on distance from feasible region

Balanace between under- and over-penalization Static, dynamic, and adaptive

Repair Approach Use feasible reference individuals to move infeasible points

- 2 -

- 4

Other approaches

Genetic Programming (GP)

Two different view of what GP means:

Content view: Automatic Programming Creation of programs by artificial evolution **Different representations**

Representation view: anything using tree representation May be programs, may be other things

Representing Programs in EC

Tree representation LISP-like expression Local data storage **Tree Genotypes** Tree genetic operators

Linear representation Series of instructions Registers for data storage

Graph representation

Nodes contain instructions Edges control program flow Stack for data storage

Example Problem: Symbolic Regression

Example Problem: Symbolic Regression

Given: a set of function points Problem: find a function that fits the points as closely as possible Common problem in stats, process engineering, ...

Tree Representation for Symbolic Regression

Terminal Set and Function Set

The Terminal Set

Anything with arity 0 and one output Arity: number of inputs (unary, binary, ...)

Inputs Sensors

Function variables

Constants

Numbers

Do we need to supply all possible constants ?

- 7 -

The Function Set

n-ary functions

E.g. mathematical functions +, -, *, /, log, sum, ... E.g. boolean functions and, or, not, xor, ... E.g. memory functions store, read E.g. control structures if..then..else, for, ... E.g. side-effect functions move, pen up, turn, ...

Sufficiency

need a set of functions sufficiently complex for the task but not too rich

Coverage

Functions need to be defined over all inputs E.g. division needs to be defined for input 0

Crossover

Branch Swap

Pick random branch at both parents Swap branches

Matched One-point Tree Crossover

Matching

From root follow branches

As long as nodes have same arity

Same crossover point for both parents, within matched branches n-point crossover possible, too

Advantages and Disadvantages

- Does not change tree depth
- Less disruptive
- Population more likely to converge

Mutation

Branch replacement

Pick random branch from parent Delete branch Replace with random new branch (New branch created as in initial population creation)

Creation of Initial Population

Full Method

with fixed tree depth treeDepth:

- do
 add random function nodes
- until all branches have (treeDepth -1) depth
- 2. add random terminal nodes to all branches

Growth Method

with fixed maximum tree depth maxDepth:

1. do

- add random function or terminal nodes until all branches have terminals or are (maxDepth -1) depth
- 2. add random terminal nodes to all branches without terminals

Ramped half-and-half method

Bloat

Program size grows As a result of uneven crossover Unused code

Slows down runs

More space, cpu time required Mutation, crossover of unused code - offspring behaviour is identical

Countermeasures

Incorporate program size into fitness Use special crossover (e.g. matched one-point crossover)

. 12

Linear Representation Genetic Programming

Register Machine

Van-Neuman Architecture String of instructions and data Functions get arguments from registers

String Representation

Usually variable-length Crossover: variable-length versions of one-pint, two-point Mutation: 'usual' random gene replacement, but also add, delete operations

Graph Representation Genetic Programming

Nodes define operations

Operands come from stack Result will be put onto the stack

Edges define control flow

Control mechanism controls which edge to follow E.g. depends on value written to stack $\{<0, =0, >0\}$ Loops and recursion common

Specialized Crossover and Mutation operators

<u>Genetic Programming ==</u> <u>Automatic Programming ?</u>

Does it start from a high level specification ?

Does it produce an executable program ?

Does it automatically deteremine the number of steps a program should take ?

Does it produce results that are competitive with human programmers, engineers, mathematicians and designers ?

- 15 -

- 13

Genetic Programming Applications

Regression

Chemistry,Engineering Statistics

Classification etc. Data Mining Intrusion Detection Image classification

Control

Plants Robots Spacecraft altitude maneuvres Animation

Design

Neural Networks Electronic Circuits

Sumary

Automatic Generation of Programs within limits...

Tree Representation Tree crossover Branch replacement mutation

Other Representations Linear

Graph

- 17 -

References

Basic Reading:

Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone *Genetic Programming: An Introduction* Morgan Kaufmann Publishers (In the Library): Chapter 5

Advanced Reading

Other chapters in Banzhaf et. al

John R. Koza: Genetic Programming: On the Programming of Computers by Means of Natural Selection (In the library - don't be put off by the volume of the book, you can skim over a lot of the material quickly, just pick interesting applications.)

Websites

http://www.geneticprogramming.com/

- 18 -

- 16