
Genetic Programming

Evolutionary Computation - Lecture 15

22/11/2002

Thorsten Schnier

School of Computer Science

University of Birmingham
- 1 -

Previous Lecture

Constraint Handling

Penalty Approach
Penalize fitness for infeasible solutions, depending on distance
from feasible region

Balanace between under- and over-penalization

Static, dynamic, and adaptive

Repair Approach
Use feasible reference individuals to move infeasible points

Other approaches
- 2 -

Genetic Programming (GP)

Two different view of what GP means:

Content view: Automatic Programming
Creation of programs by artificial evolution

Different representations

Representation view: anything using tree
representation
May be programs, may be other things

- 3 -

Representing Programs in EC

Tree representation
LISP-like expression

Local data storage

Tree Genotypes

Tree genetic operators

Linear representation
Series of instructions

Registers for data storage

Graph representation
Nodes contain instructions

Edges control program flow

Stack for data storage

- 4 -

Example Problem: Symbolic
Regression

Example Problem: Symbolic Regression
Given: a set of function points

Problem: find a function that fits the points as closely as possible

Common problem in stats, process engineering, ...

- 5 -

Tree Representation for Symbolic
Regression

Terminal Set and Function Set
- 6 -

The Terminal Set

Anything with arity 0 and one output
Arity: number of inputs (unary, binary, ...)

Inputs
Sensors

Function variables

Constants
Numbers

Do we need to supply all possible
constants ?

- 7 -

The Function Set

n-ary functions
E.g. mathematical functions +, -, *, /, log, sum, ...

E.g. boolean functions and, or, not, xor, ...

E.g. memory functions store, read

E.g. control structures if..then..else, for, ...

E.g. side-effect functions move, pen up, turn, ...

Sufficiency
need a set of functions sufficiently complex for the task

but not too rich

Coverage
Functions need to be defined over all inputs

E.g. division needs to be defined for input 0

- 8 -

Crossover

Branch Swap
Pick random branch at both parents

Swap branches

- 9 -

Matched One-point Tree
Crossover

Matching
From root follow branches

As long as nodes have same arity

Same crossover point for both parents, within matched branches

n-point crossover possible, too

Advantages and Disadvantages
Does not change tree depth

Less disruptive

Population more likely to converge

- 9 -

Mutation

Branch replacement
Pick random branch from parent

Delete branch

Replace with random new branch

(New branch created as in initial population creation)

- 10 -

Creation of Initial Population

Full Method

 with fixed tree depth treeDepth:

 1. do

 add random function nodes

 until all branches have (treeDepth -1) depth

 2. add random terminal nodes to all branches

Growth Method

 with fixed maximum tree depth maxDepth:

 1. do

 add random function or terminal nodes

 until all branches have terminals or are (maxDepth -1) depth

 2. add random terminal nodes to all branches without terminals

Ramped half-and-half method

 with fixed maximum tree depth maxDepth and population size popSize:

 1. for n=2..maxDepth create:

 (popSize/2*(maxDepth -1)) individuals using growth with maxDepth=n

 (popSize/2*(maxDepth -1)) individuals using full with treeDepth=n

- 11 -

Bloat

Program size grows
As a result of uneven crossover

Unused code

Slows down runs
More space, cpu time required

Mutation, crossover of unused code - offspring behaviour is
identical

Countermeasures
Incorporate program size into fitness

Use special crossover (e.g. matched one-point crossover)

- 12 -

Linear Representation Genetic
Programming

Register Machine
Van-Neuman Architecture

String of instructions and data

Functions get arguments from registers

String Representation
Usually variable-length

Crossover: variable-length versions of one-pint, two-point

Mutation: ’usual’ random gene replacement, but also add, delete
operations

- 13 -

Graph Representation Genetic
Programming

Nodes define operations
Operands come from stack

Result will be put onto the stack

Edges define control flow
Control mechanism controls which edge to follow

E.g. depends on value written to stack {<0, =0, >0}

Loops and recursion common

Specialized Crossover and Mutation operators

- 14 -

Genetic Programming ==
Automatic Programming ?

Does it start from a high level specification ?

Does it produce an executable program ?

Does it automatically deteremine the number of
steps a program should take ?

Does it produce results that are competitive with
human programmers, engineers, mathematicians
and designers ?

- 15 -

Genetic Programming
Applications

Regression
Chemistry,Engineering

Statistics

Classification etc.
Data Mining

Intrusion Detection

Image classification

Control
Plants

Robots

Spacecraft altitude maneuvres

Animation

Design
Neural Networks

Electronic Circuits

- 16 -

Sumary

Automatic Generation of Programs
within limits...

Tree Representation
Tree crossover

Branch replacement mutation

Other Representations
Linear

Graph

- 17 -

References

Basic Reading:
Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D.
Francone Genetic Programming: An Introduction Morgan
Kaufmann Publishers (In the Library): Chapter 5

Advanced Reading
Other chapters in Banzhaf et. al

John R. Koza: Genetic Programming: On the Programming of
Computers by Means of Natural Selection (In the library - don’t be
put off by the volume of the book, you can skim over a lot of the
material quickly, just pick interesting applications.)

Websites
http://www.geneticprogramming.com/

- 18 -

