ПЕРСПЕКТИВЫ ТЕРМОАНЕМОМЕТРИЧЕСКИХ МЕТОДОВ ИЗМЕРЕНИЯ РАСХОДА ГАЗА ИЛИ ЖИДКОСТИ

Ураксеев М.А., Романченко А.Ф.(romanchenko@rambler.ru), Абдрашитова Д.Р., Шилов С.А.

Уфимский технологический институт сервиса

Совершенствование методов термоанемометрических измерений при организации нестационарного энергетического режима в измерительной системе решает [1] проблемы расширения диапазона изменений контролируемых расходов газа или жидкости, снижения динамических погрешностей при измерениях, компенсации температурных погрешностей.

Источники зарубежной патентной информации [2-9] свидетельствуют о возросшей активности разработчиков тепловых расходомеров движущихся сред с частотно-временными выходными характеристиками, связанной с совершенствованием систем обработки информации на базе микропроцессорной техники.

Новые возможности термоанемометрических методов измерения расходов, как частного случая тепловых методов, проявляются при функционировании термочувствительных элементов (ТЭ) в нестационарном режиме разогрева [1,10], с последующей регистрацией тех характеристик разогрева, которые связаны с условиями теплообмена, а следовательно, и с расходом газа или жидкости.

Нестационарный энергетический режим функционирования ТЭ в технических устройствах осуществляется (см.рис. 1)

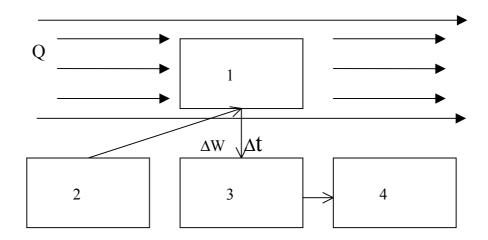


Рис.1. Принципиальная схема технической реализации теплового метода при нестационарном режиме функционирования ТЭ

путем импульсного воздействия на $T\mathfrak{I}$ 1 подаваемой электрической мощностью ΔW от импульсного источника питания 2. Временная характеристика Δt нестационарного процесса разогрева $T\mathfrak{I}$, либо его остывания выделяется блоком 3 и воспринимается системой 4 контроля, либо управления. Однозначная связь расхода Q потока газа или жидкости с временной характеристикой Δt нестационарного теплового процесса на $T\mathfrak{I}$ обеспечивает процесс измерения.

Массовые расходомеры, содержащие малоинерционные ТЭ, например, в виде металлических нитей, используют нестационарный режим ТЭ с последующей регистрацией длительности переходного процесса остывания ТЭ после импульсного энергетического воздействия [7].

Для этого на ТЭ подают последовательность импульсов (см.рис. 2) электрической мощности ΔW с фиксированной длительностью t_1 и интервалом следования t_2 – const.

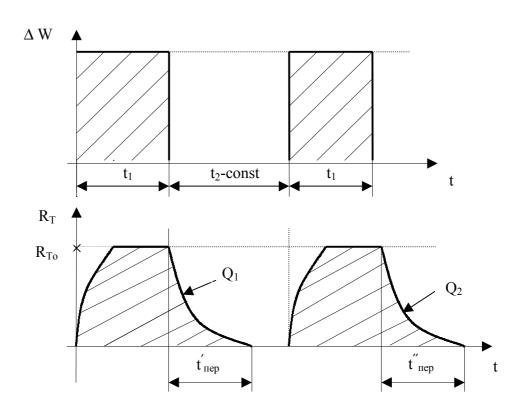


Рис.2. Изменение электрического сопротивления ТЭ при подаче и снятии электрического воздействия

Длительность действия импульсов энергетического воздействия ΔW должна обеспечивать разогрев ТЭ до установившегося значения

температуры, которому соответствует значение электрического сопротивления R_{To} .

Время остывания $t_{\text{пер}}$ ТЭ в виде металлической нити однозначно связано с тепловой постоянной времени τ нити

$$t_{\text{nep}} \approx 3\tau$$
,

а следовательно, и с расходом \mathbf{Q} потока газа или жидкости, и не зависит от вариаций температуры газа или жидкости, расход которых измеряется.

Метод обеспечивает повышение точности измерений расхода газа или жидкости в условиях существенных вариаций температуры контролируемого потока газа или жидкости.

В устройствах измерения расхода воздуха для систем управления получили распространение термоанемометрические методы , основанные на измерении времени разогрева ТЭ до его характеристического значения температуры $T_{\rm O}$ (электрического сопротивления $R_{\rm To}$) [8,9].

В этом случае на ТЭ подается (см. рис.3) импульсное энергетическое воздействие ΔW в виде изменения выделяющейся на ТЭ электрической мощности. Действие энергетического воздействия на ТЭ прекращается в тот момент, когда температура ТЭ, а следовательно, и его электрическое сопротивление, достигает характеристического значения $T_O(R_{To})$.

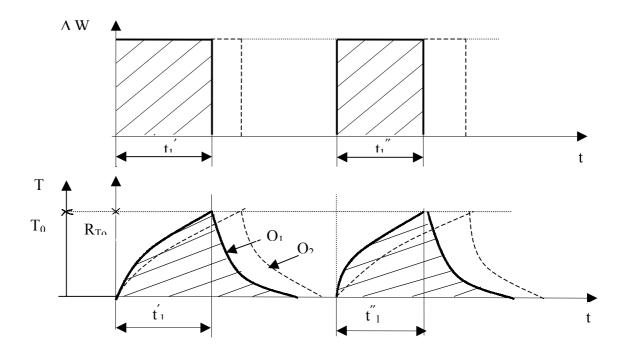


Рис. 3. Зависимость температуры (электрического сопротивления) ТЭ при действии энергетического воздействия ΔW

Длительность t_1 нагрева ТЭ до характеристического значения T_O (R_{To}) определяется условиями теплообмена ТЭ с контролируемым потоком, а следовательно, связана со значением расхода ${\bf Q}$ газа или жидкости.

Определяющим достоинством данного метода является быстрота измерения расхода, которая может быть всегда задана требуемой, за счет установки характеристического значения ТЭ по температуре нагрева (электрического сопротивления). Ограничения в этом случае могут быть связаны с объектом управления, который определяет частоту генерации импульсов энергетического воздействия.

При измерении быстроменяющихся расходов газа или жидкости в системах различного технического назначения используют термоанемометрические методы с коммутацией энергетического состояния TЭ между заданными характеристическими значениями электрического сопротивления R_T TЭ при его нагреве и остывании [10].

За счет энергетического воздействия ΔW ТЭ разогревается, достигая температуры нагрева, соответствующей электрическому сопротивлению $R_{T}^{'}$ (см.рис. 4).

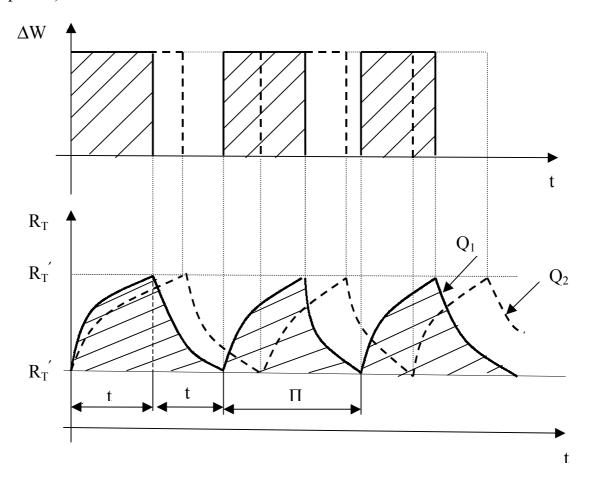


Рис.4. Изменение электрического сопротивления ТЭ при коммутации энергетического состояния

В этот момент подача энергетического воздействия (электрической мощности) прекращается, и ТЭ остывает до тех пор, пока его электрическое сопротивление R_T не примет значение $R_T^{''}$. Достижение температуры ТЧЭ характеристического значения, соответствующего электрическому сопротивлению $R_T^{''}$, приводит к возобновлению энергетического воздействия ΔW на ТЭ. Это вызывает его повторный нагрев с достижением значения электрического сопротивления $R_T^{'}$

Интенсивность разогрева и остывания TЭ между фиксированными температурными уровнями однозначно связана с условиями теплообмена TЧЭ, а следовательно, с расходом $\mathbf Q$ контролируемой среды.

Следует иметь в виду, что при комплексной обработке характеристик импульсного выходного сигнала возможно [10] выделение за цикл измерения одновременно и сигнала по изменению температуры контролируемого потока газа или жидкости. Это позволяет повысить точность измерения расхода за счет устранения температурных погрешностей. Расширение диапазона измерений не связано с достижением температурных режимов разрушения ТЭ в условиях коммутации энергетического состояния при измерениях расхода газа или жидкости.

Для проволочного ТЭ с массой «m»:

- выполненного из материала с удельной теплоемкостью «с» и удельным коэффициентом электрического сопротивления α;
- имеющего электрическое сопротивление при температуре окружающей среды T_C равное R_{To} ;
- через который пропускают ток I_1 , в режиме разогрева от температуры T_1 до T_2 , и ток I_2 , в режиме остывания от температуры T_2 до T_1 ;
- имеющего коэффициент рассеяния H, соответствующий величине расхода Q газа или жидкости,

будут справедливы соотношения

$$t_{1} = \int_{T_{1}}^{T_{2}} \frac{mcdT}{I_{1}^{2} R_{T_{0}} [1 + \alpha (T - T_{c})] - H(T - T_{c})};$$

$$t_{2} = \int_{T_{2}}^{T_{1}} \frac{mcdT}{I_{2}^{2} R_{T_{0}} [1 + \alpha (T - T_{c})] - H(T - T_{c})}.$$

Время разогрева t_1 (время изменения электрического сопротивления от значения $R_T^{''}$ до $R_T^{'}$), время остывания t_2 (время изменения электрического сопротивления от значения $R_T^{'}$ до $R_T^{''}$), а также частота f следования импульсов энергетического воздействия

$$f = \frac{1}{\Pi} = \frac{1}{t_1 + t_2}$$

являются функциями условий теплообмена ТЭ с окружающей средой, а следовательно, и расхода Q.

Характер зависимостей $f = F_1(Q)$; $t_1 = F_2(Q)$; $t_2 = F(Q)$, представленный на рис.5, свидетельствует о наличии оптимальных режимов функционирования ТЭ в режиме коммутации энергетического состояния.

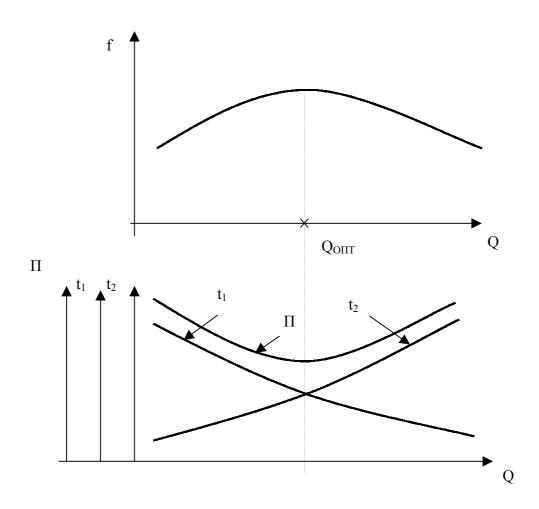


Рис. 5. Выходные характеристики расходомеров при коммутации энергетического состояния ТЭ

К достоинствам термоанемометрического метода измерения расхода газа или жидкости с коммутацией энергетического состояния ТЭ следует отнести:

- высокие динамические свойства, не связанные с объектом контроля;
- широкий диапазон изменений контролируемых значений расхода;
- частотный выходной сигнал;
- возможность компенсации температурных погрешностей при комплексной обработке выходного сигнала.

Все вышеприведенные термоанемометрические методы измерения расхода газа или жидкости, наряду с обеспечением метрологических характеристик, реализуют выходной сигнал в частотно-временной форме, позволяющий централизованно обрабатывать информацию на микропроцессорной технике.

СПИСОК ЛИТЕРАТУРЫ

- 1. Романченко А.Ф. Совершенствование методов контроля технологических параметров на предприятиях службы быта. Уфа,1990, 40 С.
- 2. Патент США 5218866. Способ и устройство для измерения скорости потока среды // Реферативный журнал «Изобретения стран мира». 1995, № 3.
- 3. Патент Японии 6054252. Тепловой датчик расхода воздуха с импульсным управлением // Реферативный журнал «Изобретения стран мира», 1997, №14.
- 4. Патент США 5383357. Датчик массового расхода воздуха // Реферативный журнал «Изобретения стран мира». 1996, №5.
- 5. Патент Японии 6043906. Измеритель скорости потока газа // Реферативный журнал «Изобретения стран мира». 1997, №9.
- 6. Патент Германии 4342235. Анемометр с питающим напряжением // Реферативный журнал «Изобретения стран мира». 1997, № 3.
- 7. Патент Франции 2728071. Массовый расходомер с нитью накала // Реферативный журнал «Изобретения стран мира». 1997, № 20.
- 8. Патент Японии 6046164. Устройство измерения расхода воздуха для системы управления двигателем внутреннего сгорания // Реферативный журнал «Изобретения стран мира». 1997, № 10.
- 9. Патент Японии 6046165. Устройство измерения расхода воздуха для системы управления двигателем // Реферативный журнал «Изобретения стран мира». 1997, № 10.
- 10.Романченко А.Ф. Информационно-измерительные системы нестационарного энергетического состояния. Уфа, 2000, 173 С.