В библиотеку

Нейронные сети, основанные на методе обратного функционирования.

Источник: http://exit.molodechno.by/modules/incontent/index.php?op=aff&option=0&url=Technics/kr_4CONTENS.htm

 

    Рассматривается модель нейронной сети с обратным распространением. Приводится детальное описание метода обратного распространения – способа обучения многослойных НС, проведена современная оценка этого метода.

1.  Модель нейронной сети с обратным распространением

Способом обратного распространения (back propogation) называется способ обучения многослойных НС. В таких НС связи между собой имеют только соседние слои, при этом каждый нейрон предыдущего слоя связан со всеми нейронами последующего слоя. Нейроны обычно имеют сигмоидальную функцию возбуждения. Первый слой нейронов называется входным и содержит число нейронов соответствующее распознаваемому образу. Последний слой нейронов называется выходным и содержит столько нейронов, сколько классов образов распознается. Между входным и выходным слоями располагается один или более скрытых (теневых) слоев. Определение числа скрытых слоев и числа нейронов в каждом слое для конкретной задачи является неформальной задачей.

Принцип обучения такой нейронной сети базируется на вычислении отклонений значений сигналов на выходных процессорных элементах от эталонных и обратном "прогоне" этих отклонений до породивших их элементов с целью коррекции ошибки. Еще в 1974 году Поль Дж. Вербос изобрел значительно более эффективную процедуру для вычисления величины, называемой производной ошибки по весу, когда работал над своей докторской диссертацией в Гарвардском университете. Процедура, известная теперь как алгоритм обратного распространения, стала одним из наиболее важных инструментов в обучении нейронных сетей. Однако этому алгоритму свойственны и недостатки, главный из которых – отсутствие сколько-нибудь приемлемых оценок времени обучения. Понимание, что сеть в конце концов обучится, мало утешает, если на это могут уйти годы. Тем не менее, алгоритм обратного распространения имеет широчайшее применение. Например, успех фирмы NEC в распознавании букв, был достигнут именно благодаря алгоритму обратного распространения.

2. Описание НС и алгоритма обратного распространения

Чтобы обучить нейронную сеть решению какой-либо задачи, мы должны подправлять веса каждого элемента таким образом, чтобы уменьшалась ошибка – расхождение между действительным и желаемым выходом. Для этого нужно, чтобы нейронная сеть вычисляла производную от ошибки по весам (EW). Другими словами, она должна вычислять, как изменяется ошибка при небольшом увеличении или уменьшении каждого веса. Чаще всего для вычисления EW применяется алгоритм обратного распространением.

Чтобы реализовать этот алгоритм, мы сначала должны дать математическое описание нейронной сети. Предположим, что элемент j – типичный элемент выходного слоя, а элемент i – типичный элемент слоя, который предшествует выходному. Активность элемента выходного слоя определяется двухшаговой процедурой. Сначала вычисляется суммарный взвешенный вход Xj с помощью формулы

Xj = Si (Yi * Wij),   (1)

где Yi – уровень активности i-го элемента в предшествующем слое и Wij – вес связи между i-м и j-м элементами.

Далее, элемент вычисляет активность Yj с помощью некоторой функции от суммарного взвешенного входа. Обычно применяется сигма-функция:

Yj = 1 / (1 + e^(-Xj)).     (2)

После того как активности всех выходных элементов определены, сеть вычисляет ошибку , которая определяется выражением

E = 1/2 * S (Yj – Dj)^2,     (3)

где Yj – уровень активности j-го элемента в верхнем слое, а Dj – желаемый выход j-го элемента.

Алгоритм обратного распространения состоит из четырех шагов.

1) Вычислить, насколько быстро меняется ошибка при изменении выходного элемента. Эта производная ошибки (EA) есть разность между действительной и ожидаемой активностью.

2) Вычислить, насколько быстро изменяется ошибка по мере изменения суммарного входа, получаемого выходным элементом. Эта величина (EI) есть результат шага 1, умноженный на скорость изменения выходного элемента с изменением его суммарного входа.

3) Вычислить, как быстро изменяется ошибка по мере изменения веса на входной связи выходного элемента. Эта величина (EW) есть результат шага 2, умноженный на уровень активности элемента, из которого исходит связь.

4) Вычислить, как быстро изменяется ошибка с изменением активности элемента из предыдущего слоя. Этот ключевой шаг позволяет применять обратное распространение к многослойным сетям. Когда активность элемента из предыдущего слоя изменяется, это влияет на активности всех выходных элементов, с которыми он связан. Поэтому, чтобы подсчитать суммарное воздействие на ошибку, мы складываем все эти воздействия на выходные элементы. Но эти воздействия нетрудно подсчитать. Этот результат шага 2, умноженный на вес связи к соответствующему выходному элементу.

Пользуясь шагами 2 и 4, мы можем преобразовать величины EA одного слоя элементов в EA предыдущего слоя. Эту процедуру можно повторять, чтобы вычислять EA стольких предыдущих слоев, сколько их есть. Зная EA для элемента, мы можем воспользоваться шагами 2 и 3, чтобы вычислить EW на его выходных связях.

3. Современная оценка алгоритма обратного распространения

На протяжении нескольких лет после его изобретения алгоритм обратного распространением оставался почти незамеченным, вероятно, потому, что не был в должной мере оценен специалистами. В начале 80-х годов Д. Румельхарт, работавший в то время в Калифорнийском университете в Сан-Диего, и Д. Паркер из Станфордского университете независимо друг от друга вновь открыли алгоритм. В 1986 году Румельхарт, Р. Уильямс, также из Калифорнийского университета в Сан-Диего, и Джеффери Е. Хинтон [5] продемонстрировали способность алгоритма обучить скрытые элементы вырабатывать интересные представления для сложных паттернов на входе и тем самым сделали его известным.

Алгоритм обратного распространения оказался на удивление эффективным в обучении сетей со многими слоями решению широкого класса задач. Но более всего он эффективен в ситуациях, когда отношения между входом и выходом нелинейны, а количество обучающих данных велико. Применяя алгоритм, исследователи создали нейронные сети, способные распознавать рукописные цифры, предсказывать изменения валютного курса и оптимизировать химические процессы. Они даже воспользовались алгоритмом для обучения сетей, которые идентифицируют переродившиеся предраковые клетки в анализируемых образцах ткани и регулируют положение зеркал в телескопах, чтобы исключить атмосферные искажения.

Р. Андерсен из Массачусетского технологического института и Д. Зипсер из Калифорнийского университета в Сан-Диего показали, что алгоритм обратного распространения представляет собой весьма эффективный инструмент для понимания функций некоторых нейронов в коре головного мозга. Они научили нейронную сеть реагировать на зрительные стимулы, применив алгоритм обратного распространения. Затем они обнаружили, что реакция скрытых элементов удивительно схожа с реакцией реальных нейронов, выполняющих преобразование зрительной информации, поступающей от сетчатки, в форму, необходимую для более глубоких областей мозга, перерабатывающих зрительную информацию.

Выводы

Метод обратного распространения достаточно хорош при создании представлений о распознаваемом образе в скрытых элементах сети. Алгоритм обратного распространения показал эффективность процедур обучения НС, в которых веса постепенно изменяются, чтобы уменьшить ошибки. Раньше многие ученые полагали, что подобные методы окажутся безнадежными, поскольку должны неизбежно приводить к локально оптимальным, но в более широком масштабе ужасным решениям. Например, сеть для распознавания цифр может устойчиво сходиться к набору весов, при котором она будет путать единицы с семерками, хотя существует набор весов, позволяющий различать эти цифры наряду с другими. Из-за опасений подобного рода распространилось убеждение, что процедура обучения представляет интерес только в том случае, если она гарантирует сходимость к глобально оптимальному решению. Метод обратного распространения показал, что для многих задач глобальная сходимость не является необходимым условием для того, чтобы достичь хороших результатов.

С другой стороны, с биологической точки зрения, как подобие работы головного мозга, метод обратного распространения выглядит не очень убедительным. Наиболее очевидная трудность заключается в том, что информация должна проходить по тем же самым связям в обратном направлении, от каждого последующего уровня к предыдущему. Ясно, что этого не происходит в реальных нейронах. Однако этот довод на самом деле является довольно поверхностным. В мозге существует множество путей, ведущих от следующих слоев нервных клеток к предыдущим, и эти пути могут использоваться многообразными способами для передачи информации, необходимой для обучения.

Более серьезную проблему представляет собой быстродействие алгоритма обратного распространения. Здесь центральным является вопрос о том, как быстро растет время, необходимое для обучения, по мере возрастания размеров сети. Время, требующееся для вычисления производных от ошибки по весам на заданном тренировочном примере, пропорционально размерам сети, поскольку объем вычислений пропорционален количеству весов. Однако более крупные сети требуют большего количества тренировочных примеров, и им приходится модифицировать веса большее число раз. Следовательно, время обучения растет значительно быстрее, чем размеры сети.

Самая серьезная проблема метода обратного распространения заключается в том, что такая НС требует учителя, предоставляющего желаемый выход для каждого тренировочного примера. В отличие от этого человек обучается большинству вещей без помощи учителя. Никто не дает нам детального описания внутренних представлений мира, которые мы должны научиться извлекать из нашего сенсорного входа. Мы учимся понимать речь или зрительные сцены без каких-либо прямых инструкций.

Если сеть сталкивается с большим набором сочетаний сигналов, но не имеет никакой информации о том, что с ними следует делать, то, очевидно, перед ней нет четко поставленной задачи. Тем не менее, исследователи разработали несколько универсальных, неконтролируемых процедур, которые могут правильно регулировать весовые параметры сети. Все эти процедуры имеют два общих качества: они оперируют, явно или неявно, с некоторым понятием качества представления и работают, изменяя веса, чтобы повысить качество представления, вырабатываемого скрытыми элементами. Не смотря на отмеченные недостатки применение метода обратного распространения в целях прогнозирования требований оправданно, так как при прогнозировании не возникает ситуации неопределенности действий, которые необходимо проделать с информацией поступающей на вход НС.

В начало