Alternative Routing Networks

Mr. H. Leijon, ITU

Example:
A small network.
4 terminal exchanges.
1 tandem.

Consider the traffic case $\mathrm{B} \rightarrow \mathrm{C}$!

Tasks:

1) Optimise $\quad N_{B C}$
2) Dimension $N_{B T}$ and N_{TC}

$\mathrm{B} \rightarrow \mathrm{D}$
and

	B	C	D	E	T
B		X	X	X	X
C					
D					
E					
T					

$\mathrm{B} \rightarrow \mathrm{E}$!

And N_{TC}
carries also
overflow traffic
(background traffic)
from traffic
cases
$\mathrm{D} \rightarrow \mathrm{C}$
and
$\mathrm{E} \rightarrow \mathrm{C}$

	B	C	D	E	T
B		X			
C					
D		X			
E		X			
T		X			

DIM. \quad| T |
| :---: |
| T |

DIM.

DIM.

$\mathrm{N}_{1}=$? $\quad \mathrm{N}_{2}=$?

OPT.

$$
\begin{aligned}
& \mathrm{N}+\Delta \mathrm{N} \Rightarrow \mathrm{C}_{\mathrm{TOT}}+\Delta \mathrm{C}_{\mathrm{TOT}} \\
& \Delta \mathrm{C}_{\mathrm{TOT}}=\mathrm{C} \cdot \Delta \mathrm{~N}-\mathrm{C}_{1} \cdot \Delta \mathrm{~N}_{1}-\mathrm{C}_{2} \cdot \Delta \mathrm{~N}_{2} \\
& \Delta \mathrm{C}_{\mathrm{TOT}}=0 \text { when }: \\
& \mathrm{C} \cdot \Delta \mathrm{~N}=\mathrm{C}_{1} \cdot \Delta \mathrm{~N}_{1}+\mathrm{C}_{2} \cdot \Delta \mathrm{~N}_{2}
\end{aligned}
$$

Divide by $\Delta \mathrm{M}$:

$$
\mathrm{C} \cdot \frac{\Delta \mathrm{~N}}{\Delta \mathrm{M}}=\mathrm{C}_{1} \cdot \frac{\Delta \mathrm{~N}_{1}}{\Delta \mathrm{M}}+\mathrm{C}_{2} \cdot \frac{\Delta \mathrm{~N}_{2}}{\Delta \mathrm{M}}
$$

or:

$$
\frac{\Delta \mathrm{M}}{\Delta \mathrm{~N}}=\frac{\mathrm{C}}{\mathrm{C}_{1} \cdot \frac{\Delta \mathrm{~N}_{1}}{\Delta \mathrm{M}}+\mathrm{C}_{2} \cdot \frac{\Delta \mathrm{~N}_{2}}{\Delta \mathrm{M}}}
$$

$$
\frac{\Delta \mathrm{M}}{\Delta \mathrm{~N}}=\frac{\mathrm{C}}{\mathrm{C}_{1} \cdot \frac{\Delta \mathrm{~N}_{1}}{\Delta \mathrm{M}}+\mathrm{C}_{2} \cdot \frac{\Delta \mathrm{~N}_{2}}{\Delta \mathrm{M}}}
$$

If $\Delta N=1$ then :

$$
\frac{\Delta \mathrm{M}}{\Delta \mathrm{~N}}=\mathrm{F}=\text { The Improvement Factor }
$$

F is calculated as

$$
\mathrm{F}=\mathrm{A} \cdot\left[\mathrm{~B}_{\mathrm{N}}(\mathrm{~A})-\mathrm{B}_{\mathrm{N}+1}(\mathrm{~A})\right]
$$

where $B_{N}(A)$ is a general expression for the congestion in a trunk group with N trunks and A erl. offered.

Diagram for F :

$$
\frac{\Delta \mathrm{M}}{\Delta \mathrm{~N}}=\mathrm{F}=\frac{\mathrm{C}}{\mathrm{C}_{1} \cdot \frac{\Delta \mathrm{~N}_{1}}{\Delta \mathrm{M}}+\mathrm{C}_{2} \cdot \frac{\Delta \mathrm{~N}_{2}}{\Delta \mathrm{M}}}
$$

Rapp's Approximation:

$$
\begin{aligned}
& \mathrm{F}=\varepsilon \cdot\left[0.7+0.3 \cdot \varepsilon^{2}\right] \\
& \text { where } \\
& \varepsilon=\frac{\mathrm{C}}{\mathrm{C}_{1}+\mathrm{C}_{2}}
\end{aligned}
$$

Optimisation Procedure:

1) Calculate F e.g. using Rapp's approximation.
2) Using the calculated F-value and the total traffic A, enter the appropriate F-diagram and read:
$\mathrm{N}=$ optimal number of trunks in the high-usage route.

Wilkinson's Method:

We sum up:

Solution: find fictitious traffic A*, offered to a fictitious trunk group N*, so that the mean and the variance of the rejected traffic is exactly equal to M resp. V

Erlang's formula is now valid:

$$
\mathrm{m}_{\mathrm{T}}=\mathrm{A}^{*} \cdot \mathrm{E}_{\mathrm{N}^{*}+\mathrm{N}_{\mathrm{T}}}\left(\mathrm{~A}^{*}\right)
$$

Blocking Probabilities:

1. $\bar{B}_{H}=\frac{m_{C}+m_{D}+m_{E}}{A_{C}+A_{D}+A_{E}}=\frac{A_{C} \cdot E_{N_{C}}\left(A_{C}\right)+A_{D} \cdot E_{N_{D}}\left(A_{D}\right)+A_{E} \cdot E_{N_{E}}\left(A_{E}\right)}{A_{C}+A_{D}+A_{E}}=\frac{M}{A}$
2. $\overline{\mathrm{B}}_{\mathrm{T}}=\frac{\mathrm{m}_{\mathrm{TC}}+\mathrm{m}_{\mathrm{TD}}+\mathrm{m}_{\mathrm{TE}}}{\mathrm{m}_{\mathrm{C}}+\mathrm{m}_{\mathrm{D}}+\mathrm{M}_{\mathrm{E}}}=\frac{\mathrm{m}_{\mathrm{T}}}{\mathrm{M}}=\frac{\mathrm{A}^{*} \cdot \mathrm{E}_{\mathrm{N}^{*}+\mathrm{N}_{\mathrm{T}}}\left(\mathrm{A}^{*}\right)}{\mathrm{M}}=\frac{\mathrm{E}_{\mathrm{N}^{*}+\mathrm{N}_{\mathrm{T}}}\left(\mathrm{A}^{*}\right)}{\mathrm{E}_{\mathrm{N} *}\left(\mathrm{~A}^{*}\right)}$
3. $\overline{\mathrm{B}}_{\mathrm{TOT}}=\frac{\mathrm{m}_{\mathrm{T}}}{\mathrm{A}_{\mathrm{C}}+\mathrm{A}_{\mathrm{D}}+\mathrm{A}_{\mathrm{E}}}=\frac{\mathrm{A}^{*} \cdot \mathrm{E}_{\mathrm{N} *+\mathrm{N}_{\mathrm{T}}}\left(\mathrm{A}^{*}\right)}{\mathrm{A}}$

4. $\mathrm{B}_{\mathrm{HC}}=\frac{\mathrm{m}_{\mathrm{C}}}{\mathrm{A}_{\mathrm{C}}}=\mathrm{E}_{\mathrm{N}_{\mathrm{C}}}\left(\mathrm{A}_{\mathrm{C}}\right)$
5. $\mathrm{B}_{\mathrm{TC}}=\overline{\mathrm{B}}_{\mathrm{T}}=\frac{\mathrm{E}_{\mathrm{N}^{*}+\mathrm{N}_{\mathrm{T}}}\left(\mathrm{A}^{*}\right)}{\mathrm{E}_{\mathrm{N} *}\left(\mathrm{~A}^{*}\right)}$
6. $\mathrm{B}_{\mathrm{TOTC}}=\frac{\mathrm{m}_{\mathrm{TC}}}{\mathrm{A}_{\mathrm{C}}}=\frac{\mathrm{m}_{\mathrm{C}} \cdot \overline{\mathrm{B}}_{\mathrm{T}}}{\mathrm{A}_{\mathrm{C}}}=\frac{\mathrm{E}_{\mathrm{N}_{\mathrm{C}}}\left(\mathrm{A}_{\mathrm{C}}\right) \cdot \mathrm{E}_{\mathrm{N}^{*}+\mathrm{N}_{\mathrm{T}}}\left(\mathrm{A}^{*}\right)}{\mathrm{E}_{\mathrm{N} *}\left(\mathrm{~A}^{*}\right)}$
7. $\mathrm{B}_{\mathrm{TC}}^{\prime}=\frac{\mathrm{v}_{\mathrm{C}} \cdot \mathrm{M}^{\mathrm{V}} \cdot \overline{\mathrm{m}}_{\mathrm{C}}}{\mathrm{B}}$
8. $\mathrm{B}_{\mathrm{TOTC}}^{\prime}=\frac{\mathrm{m}_{\mathrm{TE}}^{\prime}}{\mathrm{A}_{\mathrm{C}}}=\frac{\mathrm{m}_{\mathrm{C}} \cdot \mathrm{B}_{\mathrm{TC}}^{\prime}}{\mathrm{A}_{\mathrm{C}}}=\frac{\mathrm{v}_{\mathrm{C}} \cdot \mathrm{M}^{2}}{\mathrm{~V} \cdot \mathrm{~m}_{\mathrm{C}}} \cdot \mathrm{B}_{\mathrm{TOTC}}=$

$$
=\frac{\mathrm{v}_{\mathrm{C}} \cdot \mathrm{M}}{\mathrm{~V} \cdot \mathrm{~m}_{\mathrm{C}}} \cdot \frac{\mathrm{E}_{\mathrm{N}_{\mathrm{C}}}\left(\mathrm{~A}_{\mathrm{C}}\right) \cdot \mathrm{E}_{\mathrm{N}^{*}+\mathrm{N}_{\mathrm{T}}}\left(\mathrm{~A}^{*}\right)}{\mathrm{E}_{\mathrm{N} *}\left(\mathrm{~A}^{*}\right)}
$$

1. (Approx.) n_{v} from

$$
\left\{\begin{array}{l}
\mathrm{F}\left(\mathrm{n}_{\mathrm{v}}, \mathrm{~A}_{v}\right) \approx \varepsilon \cdot\left[1-0.3 \cdot\left(1-\varepsilon^{2}\right)\right] \\
\varepsilon=\mathrm{C}_{\mathrm{ij}} /\left(\mathrm{C}_{\mathrm{it}}+\mathrm{C}_{\mathrm{Tj}}\right) \\
\mathrm{F}(\mathrm{n}, \mathrm{~A})=\mathrm{A} \cdot[\mathrm{E}(\mathrm{n}, \mathrm{~A})-\mathrm{E}(\mathrm{n}+1, \mathrm{~A})] \quad \text { (exact) }
\end{array}\right.
$$

2. (Exact)

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{v}}=A_{v} \cdot \mathrm{E}_{\mathrm{n}_{v}}\left(A_{v}\right) \\
& \mathrm{v}_{v}=\mathrm{m}_{v} \cdot\left(1-\mathrm{m}_{v}+\frac{A_{v}}{1+\mathrm{n}_{v}+\mathrm{m}_{v}-A_{v}}\right)
\end{aligned}
$$

3. (Exact)

$$
\mathrm{M}=\sum_{v} \mathrm{~m}_{\mathrm{v}} \quad \mathrm{~V}=\sum_{\mathrm{v}} \mathrm{v}_{\mathrm{v}}
$$

4. (Exact)

$$
\begin{aligned}
& \mathrm{A}^{*} \text { and } \mathrm{n}^{*} \text { from } \\
& \left\{\begin{array}{l}
\mathrm{M}=\mathrm{A}^{*} \cdot \mathrm{E}_{\mathrm{n}}^{*}\left(\mathrm{~A}^{*}\right) \\
\mathrm{V}=\mathrm{M} \cdot\left(1-\mathrm{M}+\frac{\mathrm{A}^{*}}{1+\mathrm{n}^{*}+\mathrm{M}-\mathrm{A}^{*}}\right)
\end{array}\right.
\end{aligned}
$$

4. (Approx.)

$$
\begin{aligned}
& A^{*} \approx V+3 \cdot \frac{V}{M} \cdot\left(\frac{V}{M}-1\right) \\
& \mathrm{n}^{*} \approx \frac{A^{*}}{1-\frac{1}{M+\frac{V}{M}}}-\mathrm{M}-1
\end{aligned}
$$

There are diagrams for calculation of m and v from high-usage trunk groups...

$$
\xrightarrow{\mathrm{A}} \bigcirc \bigcirc \cdots \cdots \xrightarrow{\mathrm{~N}} \bigcirc
$$

and other diagrams for calculation of fictitious traffic and fictitious trunk group:

If the tandem route is to be dimensioned for a fixed, standard congestion value, these diagrams may be used (instead of calculations) :

(In that case, A^{*} and N^{*} are not needed!)

