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Part IV: State and Parameter Simultaneous Identification in Induction 
Motor Field Oriented Drives 

 
IV.2. General Solutions for State and Parameter Simultaneous Identification 
 
 This part deals with simultaneous identification of rotor flux and some of the 
parameters in flux equations. In this way an adaptive observer is obtained, and, if the 
parameters are also used for changing controller coefficients, we have an adaptive control. 
The solutions of state and parameter simultaneous identification problem are: 
• solutions based on an adaptation mechanism. This compares the outputs of two models, 

outputs that are identical if the estimated parameters have right values. One of the models 
does not contain the estimated parameters and therefore it is called a reference model. The 
other, containing them is an adaptive (adjustable) model, because it is continuously 
corrected, according to the estimated parameters. These solutions are also called model 
reference adaptive systems. For our situations the two models can be rotor flux (or other 
quantities) observers, or the reference model is the motor itself and then the adaptive 
model is a stator current observer; 

• solution that considers the parameters to be identified as states, with two components: one 
that is constant and other stochastic. In this case the same Kalman Filter gives both the 
system  state and some of its parameters, considered, as we mentioned, to be states. It is 
called the Extended Kalman Filter  (EKF) method; 

• particular solutions, that, different to those presented above, are valid for a certain system 
and a specific parameter. They use for parameter identification relations deduced directly 
from system equations. 

 
IV.4. Solutions Based on an Adaptation Mechanism 
 
 The structure of an adaptive system of this type is presented in Fig. IV.1. The inputs in 
the two models may be not the same, but their outputs must be identical, if parameters are 
correctly estimated. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. IV.1. Structure of an adaptive system based on an adaptation mechanism, for state and parameter 
identification  

 
 Both models are linear, thus a state space equation can be written for each of them. 
Let’s suppose that only the A matrix in such an equation contains the parameters to be 
estimated. This is true for an induction motor, no matter if we want to identify the speed, the 
rotor resistance, or both of them.  
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 We will consider the situation in which the reference model is the induction motor, 
while the adaptive one is a linear state observer (Luenberger). This is, as we will se, more 
general than all the others. The models are: 
 
x Ax Bu
y Cx

= +
=





  
~x Ax Bu L y y

y Cx
= + + ( - )
=





 

 
 Matrices A, B and C are given by (I.1.), while the observer gain matrix, L is obtained 
as explained in II.1. For the adaptive model we denoted ~A  instead of A because it contains the 
estimated parameters. This is the most general situation of all the adaptive schemes based on 
an adaptive mechanism, because of the observer structure, which is the most complex. 
Denoting by e x xx -=  the error between real and estimated state, we obtain the error dynamic 
equation: 
 

~ ( )e Ax Ax L Cx Cxx = − + −  ( ) ( ~ )e A LC e A A xx x= + + −       
 
 It describes a linear system (A+LC, I, C) connected by feedback with a nonlinear one, 
given by a function φ (ey). This nonlinear system has the output error ey as input and gives 
( ~ )A A x−  at output. Considering the feedback to be a negative one, we have the situation 
shown in Fig. IV.2, where ρρρρ denotes - ( ~ )A A x− . This configuration is frequent in nonlinear 
system analyzes and control, being the configuration of Lur' e problem and of some of the 
problems considered by Popov [20]. Usually it is examined the situation of a single input, 
single output nonlinear system. 
   
 
 
 
 
 
 
 

Fig. IV.2. Structure of the system describing the error dynamic equation for an adaptive system  
based on an adaptation mechanism 

 
 Considering, according to Popov terminology [20] the nonlinear block described by 
φ(ey), the associated input-output integral index is: 
 

η( , ) Ret t (t) (t)dt0 1 = ∫ e y
T

t

t

0

1

ρρρρ ; where: [ ]e ey
T

y
T =  

not
0 0   

 A necessary condition for the hyperstabily of this block is: 
 

η( , ) ( )0 1
0

1

t t (t)dt - (0)= ≥∫ e y
T

t

ρρρρ γ 2  

for any input-output combination and a given positive constant γ(0). 
That means: 
 

_ 

ey ρρρρ 
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η( , ) ( ~ )0 1
0

1

t dt - (0)= − − ≥∫ e A A xy
T

t

γ 2  

 If the error A A− ~  is given by only one parameter, we can write: 
 
A A A− =~ ( ~p - p) er  
 
with p denoting that parameter (speed or rotor resistance), and Aer a constant matrix, 
depending on the position of  p among the coefficients of  A. 
 For any derivable function f (we will consider it positive) it’s easy to prove the 
inequality: 
 

K df
dt

f dt - K
2

f
0

t
2

1

∫ ≥ ( )0  

By writing: 
 

η( , ) ~0 1
0

1

t (p p)dt= − −∫ e A xy
T

er

t

 

it can be seen that we will have a similar inequality for the considered integral index, if: 
 

p p f− =~ ;  − =e A xy
T

er K df
dt

  

That means: 
 

-K d
dt

(p p)e A xy
T

er
~= −  

 
as K is an arbitrary constant. If the variation of parameter p is much more slower than that of 
the adaptive law, we obtain: 
 

~p = p K= ∫ e A xy
T

er dt  
(IV.1.) 

 This is the general relation for the adaptation mechanism in any model reference 
adaptive system. 
 When more than one parameter is to be identified, relation (IV.1.) is easily 
generalized. For example, in the case of two parameters, we have: 
 
A A A A− = + −~ ( ~ ( ~ )p - p ) p p1 1 2 2er er1 2  
 
and then two independent laws similar to IV.1. are obtained, one for each parameter.  
 The stability of the resulted adaptive observer can be proved either by Popov 
hyperstability theory or, by Liapunov theorem [8], [18]. We write the output error dynamic 
equation when only one parameter is estimated: 
 

( ) ( ~ )e A LC e C A A xy y= + + − ; ( ) ~e A LC e CA xy y er(p - p)= + +  
 

and we introduce the Liapunov function: 
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V = c (p - p)2e ey
T

y + ~  
 
with c a positive constant. As one can prove, it verifies all the conditions of Liapunov 
functions. Its derivative is: 
 

~ ~ ~ )V = c (p - p) d
dt

(p - p)= c (p - p)(-Ke e e e e e e e e A xy
T

y y
T

y y
T

y y
T

y y
T

er+ + + +2 2   

 
And, using the output error dynamic equation, it becomes: 
  

( ) ( ) ~ ) ~ )
~ )

V = (p - p)( (p - p) (

      c (p - p)(-K

T T T
er

T
y y

T
ere A LC e e A LC e CA x e e CA x

e A x
y y y y

y
T

er

+ + + + +

+ 2
 

Choosing c
K

= 1  we obtain: 

 
( ) ( )V = T T Te A LC e e A LC ey y y y+ + +  

 
 Since all the eigen values of A+LC have the real part strictly negative (because of the 
stability condition for this observer), the derivative of V will be also strictly negative, for any 
non-zero ey. This means, that according to Liapunov stability theorem the system described by 
the output error dynamic equation, and thus the adaptive observer, will be globally 
asymptotically stable. 
 When more parameters are identified, the demonstration is similar, with the Liapunov 
function: 
 
V = c  (p - p ) c  (p - p )1 1 1

2
i i i

2e ey
T

y + + +~ ... ~  
 
 Remarks:  
 - if the system described by the output error dynamic equation is stable, also the one 
given by the state error dynamic equation will be stable, and this can be easily proved 
considering the direct, linear relation existent between these two errors; 
 - the stability of these systems does not imply the fact that the state and the parameters 
will be correctly estimated. For this to be true a so-called persistent excitation condition must 
be respected [18]. Normally this is respected if only one parameter is identified, but problems 
may appear for more parameters. 
 
IV.6. Rotor Flux and Speed Simultaneous Identification. Sensorless Drives 
 
 Respecting the most utilized terminology, the solutions are given by: 
• methods based on an adaptation mechanism: 
 i) ELO - (Extended Luenberger Observer) - the reference model is the induction 
motor, while the adjustable one is a Luenberger state observer; 
 ii) MRAS - (Model Reference Adaptive System) - the reference model is a VI flux 
observer, while the adjustable one is an Iω flux observer; 
• EKF - (Extended Kalman Filter); 
• MEQ - methods computing the speed by solving motor equations. 
 The first two solutions are based on general methods, while the last is particular to this 
situation. 
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 We will present the structure of each of these sensorless DFOC systems. 
 
A. ELO Method 
 
 The adaptation mechanism is obtained from the general one (IV.1.), using the 
particular expression of each variable, that is: 
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That means (K >0 is an arbitrary constant): 
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(IV.2.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. IV.3. Structure of a sensorless DFOC, based on ELO speed estimation method.  
 
B. MRAS Method 
 
 Considering the particular structure of this scheme, we may write: 
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and the general adaptation mechanism becomes: 
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Fig. IV.4. Structure of a sensorless DFOC, based on MRAS speed estimation method. 
 
C. EKF Method 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. IV.5. Structure of a sensorless DFOC, based on EKF speed estimation method. 
 
D. MEQ Method 
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 Motor speed may be computed as the difference between the synchronous and the slip 
speed, both of these being expressed as functions of the estimated flux and stator current: 
 

ω ω ωr e s= −    ω λ λ λ λ
λ λe

qs ds ds qs
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 The structure of a sensorless DFOC based on this speed estimation method is similar 
to the previous one, but instead of EKF block there is a flux observer plus the speed 
computation scheme, based on the above relations.  


