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Abstract: This paper presents real power optimization with load flow using an adaptive Hopfield neural network.  In 
order to speed up the convergence of the Hopfield neural network system, the two adaptive methods, slope 
adjustment and bias adjustment, were used with adaptive learning rates. Algorithms of economic load dispatch for 
piecewise quadratic cost functions using the Hopfield neural network have been developed for the two approaches 
In stead of using the typical B-coefficient method, this paper uses actual load flow to compute the transmission 
loss accurately.  These methods for optimization has been tested in the IEEE 30-bus system to demonstrate its 
effectiveness. The performance of the proposed approaches is evaluated by comparing the results of the slope 
adjustment and the bias adjustment methods with those of the conventional Hopfield network, and an additional 
improvement was demonstrated by the use of momentum in the adaptive learning approaches.  
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1.  INTRODUCTION 
 
In power system, the operation cost at each time  needs 
to be minimized via economic load dispatch (ELD) [1]. 
Since the introduction by Hopfield [2,3] The Hopfield 
neural networks have been used in many different 
applications.  An important property of the Hopfield 
neural network is the decrease in energy by finite 
amount whenever there is any change in inputs [4].  
Thus, the Hopfield neural network can be used for 
optimization.  Tank and Hopfield [5] described how 
several optimization problem can be rapidly solved by 
highly interconnected networks of a simple analog 
processor, which is an implementation of the Hopfield 
neural network.  Park and others [6] presented the 
economic load dispatch for piecewise quadratic cost 
functions using the Hopfield neural network.  The 
results of this method compared very well with those of 
the numerical method in an hierarchical approach [7].  
King and others [8] applied the Hopfield neural network 
in the economic and environmental dispatching of 
electric power systems.   

These applications, however, involved a large 
number of iterations and often showed oscillations 
during transients. .  Recently, in order to speed up the 
convergence of the Hopfield neural networks, Lee and 
others [9] developed adaptive Hopfield neural network 
methods, slope adjustment and bias adjustment 
methods, with adaptive learning rates. In these studies, 

however, the transmission loss was either calculated by 
the traditional B-coefficient method or ignored all 
together. This paper incorporates both the adaptive 
Hopfield network for faster convergence and the load 
flow for accurate calculation of the transmission loss. 
 
 
2.  ECONOMIC LOAD DISPATCH 
 
The cost function of ELD problem is defined as 
follows: 
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where  
 Ci(Pi )           :  cost of the ith generator 
 Pi                  :  the power output of generator i 
 aik, bik, ci k  :  cost coefficients of the ith generator  

   for fuel type k. 
 
 

 In minimizing the total cost, the constraints of 
power balance and power limits should be satisfied: 
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a)  Power balance 
 The total generating power has to be equal to the 
sum of load demand and transmission-line loss: 
 

  +  D L P
i

i

− =∑ 0 ,           (3) 

where D is total load and L is transmission loss 
The transmission loss is obtained by load flow.  

Traditionally, the transmission loss was calculated by 
the B-coefficient method [1] and, for simplification, it 
was often assumed zero. 
 
b)  Maximum and minimum limits of power 
 The generation power of each generator has some 
limits and it can be expressed as 

 P  P Pi i i≤ ≤ ,          (4) 

where  P  and P  are respectively the minimum and 
maximum power generation limits.  
 
 
3.  HOPFIELD NETWORKS FOR ELD 
 
The energy function of the continues-time Hopfield 
network [3] is defined as 
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where Vi, Ii, and θi are respectively the output, external 
input and threshold bias of neuron i. 
 

The dynamics of the neurons is defined by 
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where Ui is the total input to neuron i and the sigmoidal 
function can be defined as 
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Stability is known to be guaranteed since the energy 
function is bounded and its increment is found to be 
nonpositive. The time evolution of the system is a 
motion in state-space that seeks out minima in E and 
comes to a stop at such points. 

In order to solve the ELD problem, the following  
energy function is defined by augmenting the objective  
function (1) with the constraint (2): 
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where aik, bik, cik are the cost coefficients as discrete 
functions of Pi   defined in (1). 
 

 By comparing (8) with (5) whose threshold is 
assumed to be zero, the weight parameters and external 
input of neuron i in the network [6] are given by 

T A Bcii i= − − , 
T Aij = − ,              (9) 
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From (6), the differential synchronous transition mode 
used in computation of the Hopfield neural network is  
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 The sigmoidal function (7) can be modified [6] to 
meet the power limit constraint as follows: 
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4.  ADAPTIVE HOPFIELD NETWORKS 
 
The traditional approach in solving the economic load 
dispatch (ELD) problem using the Hopfield neural 
network requires a large number of iterations and often 
oscillates during  the  transient  [6]  and  [9].     In  order  
to  speed  up convergence, two adaptive adjustment 
methods are developed in this paper: slope adjustment 
and bias adjustment methods [9]. 
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Figure 1.  Sigmoidal threshold function with different values of  the 
gain parameter. 
 
 
4.1  Slope Adjustment Method 
 
In transient state, the neuron input oscillates around the 
threshold value, zero in Fig. 1.  Some neuron inputs 
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oscillate away from the threshold value.  If the gain 
parameter is set too high, the oscillation will occur at 
the saturation region.  If the slope in this region is too 
low, the neurons can not go to the stable state and will 
cause instability.  
 

 Since energy is to be minimized and its convergence 
depends on the gain parameter U0, the gradient-descent 
method can be applied to adjust the gain parameter as 
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where ηs  is a learning rate. 
 

From (8) and (11), the gradient of energy with respect 
to the gain parameter can be computed as  
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 The update rule of (12) needs a suitable choice of 
the learning rate ηs. For speed and convergence, a 
method to compute adaptive learning rates is developed 
following the procedure in Ku and Lee [10].  It can be 
shown [9,10] that the optimal learning rate is  
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where g g k g k E k Us s s,max : max ( ) , ( ) ( ) /= = ∂ ∂ 0 . 

 
 
4.2  Bias Adjustment Method 
 
There is a limitation in the slope adjustment method in 
that slopes are small near the saturation region of the 
sigmoidal function, Fig 1.  If every input can use the 
same maximum possible slope, convergence will be 
much faster. This can be achieved by changing the bias 
to shift the input near  the center of the sigmoidal 
function.  The bias can be changed following the similar 
gradient-descent method used in the slope adjustment 
method: 
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where ηb  is a learning rate. 

The bias can be applied to every neuron as in (7), 
therefore, from (8) and (11), a derivative of energy with 
respect to a bias can be individually computed as 
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The adaptive learning rate is also developed following 
the similar procedure [10]. It can be shown that the 
optimal learning rate is 
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 Again, any other learning rate larger than ηb
∗  does 

not guarantee a faster convergence. 
 
 
4.3  Momentum 
 
The speed of convergence can be accelerated by adding 
momentum in the update processes.  The momentum 
can be applied when updating the input in (10), the gain 
parameter in (12), and the bias in (15): 
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where  α’s  are momentum factors. 
 
 
5.  SIMULATION RESULTS 
 
The results of slope adjustment and bias adjustment 
methods are compared at different load demands. Then 
the results of the slope and bias adjustment methods 
with adaptive learning rates and momentum applied are 
compared with each other. Three load levels are tested: 
220 MW, 283.4 MW and 380 MW. The 220 MW and 
380 MW load levels were used to force one or more 
units to hit lower and upper limits. The IEEE 30-bus, 6 
generator system is used for loadflow. The line data is 
given in [13]. All the graphs are based on the nominal 
load, 283.4 MW, to demonstrate the convergence. A 
Compaq 90 MHz Pentium computer was used for 
simulation. 
 For real power optimization with loadflow, first the 
load flow is run to obtain initial generator power and 
the system loss. Second, the adaptive Hopfield 
networks update the slope and bias parameters and 
generator power.  Then, with the new generator power, 
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load flow is run to obtain the new system loss and 
generator power. Then, if the system converges, the 
program will stop, otherwise the process will be 
repeated. This procedure is shown in Fig. 2. 
 
 

TABLE I 
COST COEFFICIENTS FOR PIECEWISE QUADRATIC COST 

FUNCTIONS 
 

U Min P1 P2 Max F a b c
F1 F2 F3

1 50 100 190 200 1 0.000 1.900 .00355
1 2 3 2 0.000 2.000 .00376

3 0.000 2.200 .00415
2 20 35 50 80 1 0.000 1.700 .01700

1 2 3 2 0.000 1.750 .01750
3 0.000 2.050 .02350

3 10 25 35 1 0.000 1.000 .06250
1 2 2 0.000 1.200 .0825

4 10 20 30 1 0.000 3.250 .00834
1 2 2 0.000 3.650 .01234

5 15 30 50 1 0.000 3.000 .02500
1 2 2 0.000 3.300 .03500

6 12 25 40 1 0.000 3.000 .02500
1 2 2 0.000 3.300 .03500

          GENERATIONS      COST    COEFFICIENTS

  
 
 Slope adjustment method with load flow was run for 
fixed and adaptive learning rates at three load demands. 
The results are shown in Table II for comparison. For 
283.4 MW, the generation cost was plotted for  fixed 
learning rate in Fig 3. In Fig 3, the effectiveness of the 
adaptive Hopfield neural networks is clearly shown.  
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Figure 2 : Flowchart for the optimization with using load flow. 
 
 
 Bias adjustment method with loadflow was run for 
fixed and adaptive learning rates at three load demands. 
The results are shown in Table II for comparison. For 
283.4 MW, the generation cost was plotted for  fixed 
,in Fig 3., and adaptive, in Fig 4, learning rates. 
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Fig.3:  Cost of the using Hopfield network (dashed-dotted line), slope 
adjustment method with fixed learning rate (solid line) and bias 
adjustment method with fixed learning rate (dashed line). 

 
 
 

TABLE II 
RESULTS FOR CONVENTIONAL HOPFIELD NETWORK (A), THE 
SLOPE ADJUSTMENT METHOD WITH FIXED LEARNING RATE 
η=1.0 (B) AND THE BIAS ADJUSTMENT METHOD WITH FIXED 
LEARNING RATE η=1.0 (C) 
 

U A B C A B C A B C
1 134.80 135.11 133.93 180.05 179.12 180.86 200 200 200
2 37.602 37.299 37.352 49.246 49.05 49.19 78.821 78.937 78.935
3 16.495 16.340 16.492 19.853 19.75 19.83 25.837 25.802 25.822
4 10.704 10.774 11.009 15.961 16.31 15.12 29.210 29.886 29.890
5 15.369 15.451 16.027 16.916 17.51 17.18 31.826 31.976 31.758
6 12.083 12.093 12.165 12.953 13.13 12.86 29.995 29.784 29.993

Tot. P. 227.05 227.06 226.97 294.99 294.88 295.45 396.39 396.385 396.39
Cost 589.63 589.73 590.06 810.06 810.08 810.24 1391 1390.89 1390.9
Lost 7.053 7.062 6.974 11.582 11.62 11.645 16.389 16.385 16.398
Iter. 48000 31000 25000 50000 30000 30000 49000 31700 31500
U0 100 100 100 100 100 100 100 100 100
Theta 0 0 50 0 0 50 0 0 50
Time NA 3m 45s 3m 4s NA 3m 37s 3m 37s NA 3m 51s 3m 53s
η 0 1 1 0 1.0 1.0 0 1 1

220 M 283.4 MW 380 MW
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Figure 4:  Cost of the using slope adjustment method with load flow for 
adaptive learning rate (solid line) and slope adjustment method with 
load flow for adaptive learning rate (dashed-dotted line). 
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 Momentum is applied to the input of each method 
and gain parameter for slope adjustment method to 
speed up the convergence of the system. When the 
momentum is applied to the system, the number of 
iterations is significantly decreased.  In Fig. 5 , the 
momentum factor of 0.9 and 0.97 is applied to input 
and gain parameter of slope adjustment methods, and 
the number of iterations is reduced to about 15 percent 
of that without momentum of slope adjustment method.  
The system bus information (after convergence) is 
shown in Table IV. 
 

As seen in Table III, for 220 MW load, Units 4,5,and 
6 have 10.606, 15.357, and 12.074 MW, respectively; 
which are all very close to lower limits. Also for 380 
MW load, Units 1,2, and 4 have 199.999, 79.024, and 
29.809 MW, respectively, which are close to 200, 80, 
and 30 MW upper limits , respectively. 
 
 
 

 TABLE III 
RESULTS FOR ADAPTIVE SLOPE ADJUSTMENT METHOD WITH 
MOMENTUM  0.9 APPLIED TO INPUT AND GAIN PARAMETER 
WITH LOAD FLOW AND ADAPTIVE BIAS ADJUSTMENT 
METHOD WITH MOMENTUM 0.9 APPLIED TO INPUT WITH LOAD 
FLOW. 
 
 

U Slope Bias Slope Bias Slope Bias
1 135.466 133.977 182.984 180.173 199.999 199.986
2 37.178 37.474 48.691 49.188 79.024 79.448
3 16.405 16.518 19.61 19.897 25.76 25.687
4 10.606 10.971 15.385 15.334 29.809 29.435
5 15.357 15.891 15.951 17.443 32.16 32.507
6 12.074 12.15 12.629 12.939 29.628 29.322

Total Power 227.086 226.981 295.252 294.974 396.324 389.385
Cost 589.647 589.965 810.278 810.203 1390.997 391.16
Lost 7.0861 9.981 11.852 11.574 16.324 9.385

Iterations 3200 2700 4000 3000 3000 2500
U0 100 100 100 100 100 100

Theta 0 50 0 50 0 50
Time 25s 21s 30s 23s 25s 20s

n 1.00E-04 1 1.00E-04 1 1.00E-04 1

220 MW 283.4 MW  380 MW

 
 
 
 In Fig. 6, momentum 0.9 is applied to input of bias 
adjustment method with adaptive learning rate using 
load flow. Reduction of the iteration number for the 
bias adjustment method is similar to the case for  slope 
adjustment method.   
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Figure 5:  Cost of the using slope adjustment method with load flow for 
adaptive learning rate without momentum (solid line)  and with 
momentum 0.9 applied at input and momentum 0.97 at gain parameter 
(dashed-dotted line). 
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Figure 6:  Cost of the using bias adjustment method with load flow for 
adaptive learning rate without momentum (solid line)  and with 
momentum 0.9 applied at input (dashed-dotted line). 

 
 
 

TABLE IV 
BUS INFORMATION OF 283.4 MW LOAD WITH ADAPTIVE SLOPE 

ADJUSTMENT METHOD WITH MOMENTUM 
 
 
Bus # V (p.u) P (MW) Q(MVAr) Bus # V (p.u) P (MW) Q(MVAr)

1 1 182.984 -41.067 16 0.934 -3.495 -2.414
2 1 27 24.362 17 0.919 -8.999 -5.899
3 1 -10.381 28.257 18 0.912 -3.199 -0.965
4 1 15.387 28.366 19 0.906 -9.499 -3.482
5 1 -78.241 39.272 20 0.909 -2.198 -0.59
6 1 12.63 30.189 21 0.907 -17.496 -11.741
7 0.984 -22.795 -12.687 22 0.908 0.007 0.705
8 0.989 -2.399 -0.825 23 0.908 -3.197 -1.798
9 0.942 0 2.139 24 0.892 -8.693 -7.841
10 0.922 -5.792 1.698 25 0.893 0.01 0.485
11 0.987 -7.603 -1.413 26 0.87 -3.494 -2.842
12 0.958 -11.176 -2.238 27 0.904 0.004 2.26
13 0.99 0.007 -0.586 28 0.984 0.005 -2.409
14 0.938 -6.193 -0.331 29 0.882 -2.399 -0.952
15 0.927 -8.174 -5.318 30 0.87 -10.599 -1.296
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For both figures (Fig 5. and Fig. 6), 283.4 MW load 

was used. The results of the cases for both methods are 
shown in Table 4. 

 
 

6.   CONCLUSIONS 
 
In this paper, the slope and bias adjustment are applied 
to the real power optimization with loadflow. For all 
three load levels, slope and bias adjustment methods 
gave very good responses. Especially with momentum 
applied, the iteration numbers are very low and the 
computation time is around 20-25 seconds. Around 
lower and upper limits of generator, the system 
converged very smoothly. 
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