ФОРМИРОВАНИЕ ОПТИМАЛЬНЫХ ПО ТЕПЛОВЫМ ПОТЕРЯМ ДИАГРАММ ПОЗИЦИОННОГО ЭЛЕКТРОПРИВОДА С ЗАДАННЫМ ЗНАЧЕНИЕМ РЫВКА

Полинский С.В., магистрант; Розкаряка П.И., аспирант; Толочко О.И., доц., д.т.н.
(Донечкий начиональный технический университет, г. Донеик, Украина)

С целью уменьшения ударов в кинематических передачах в системах управления электроприводами предусматривают ограничение не только скорости и ускорения, но и рывка.

Одним из способов ограничения рывка является установка на входе системы автоматического управления задающего устройства, формирующего эталонные сигналы задания на изменение основных координат электропривода. Для позиционных электроприводов такими координатами являются положение φ, скорость ω, ускорение ε и рывок ρ.

Рассмотрим методику формирования оптимальных по тепловым потерям диаграмм отработки заданного перемещения $\Delta \varphi_{3}$ за заданное время t_{0}, с учетом ограничений на скорость ω_{0}, ускорение ε_{0} и рывок ρ_{0}.

В зависимости от соотношения перечисленных выше параметров исследуемые диаграммы могут иметь одну из четырех форм, представленных на рис. 1: а) диаграмма с ограничением рывка, б) с ограничением рывка и скорости, в) с ограничением рывка и ускорения, г) с ограничением рывка, скорости и ускорения.

При реализации приведенных диаграмм достаточно сформировать сигнал задания на ускорение $\varepsilon(t)$, а оставшиеся координаты (скорость $\omega(t)$ и перемещение $\Delta \varphi(t)$) получить его последовательным интегрированием.

Приведем пример расчета характерных точек сигналов задания на ускорение. Для начала проанализируем самую простую диаграмму (рис. 1 а). Для определения времени t_{1} запишем выражение для перемещения $\Delta \varphi_{3}$ в виде суммы площадей, ограниченных кривой скорости $\omega(t)$ (см. рисунок):

$$
\Delta \varphi_{3}=2 \frac{\rho_{0} t_{1}^{3}}{6}+\frac{\rho_{0} t_{1}^{2}}{2}\left(t_{0}-2 t_{1}\right)+\frac{\rho_{0} t_{1}}{6}\left(t_{0}-2 t_{1}\right)^{2} .
$$

После математических преобразований получаем уравнение второй степени относительно t_{1} :

$$
t_{1}^{2}\left(-\frac{t_{0}}{6}\right)+t_{1} \frac{t_{0}^{2}}{6}-\frac{\Delta \varphi_{3}}{\rho_{0}}=0,
$$

откуда находим время работы привода с заданным значением рывка при разгоне и торможении:

$$
t_{1}=\frac{t_{0}}{2}-\sqrt{\frac{t_{0}^{2}}{4}-\frac{6 \varphi}{t_{0} \rho_{0}}}
$$

После этого достаточно легко определить максимальные значения ускорения $\varepsilon_{\max }$ и скорости $\omega_{\max }$:

$$
\varepsilon_{\max }=\rho_{0} t_{1} ; \quad \omega_{\max }=\frac{1}{4} \rho_{0} t_{1} t_{0}
$$

Рисунок 1 - Оптимальные по тепловым потерям диаграммы перемещения, сформированные с учетом ограничений на скорость, ускорение и рывок

Параметры остальньх диаграмм определены по той же методике и сведены в табл. 1.

При известных выражениях для расчета максимальных значений ускорения $\varepsilon_{\max }$ и скорости $\omega_{\max }$, можно составить алгоритм выбора необходимой диаграммы отработки заданного перемещения, обеспечивающей оптимальные тепловые потери двигателя и заданные значения рывка. В работе [1] представлена блок-схема алгоритма, который можно использовать для решения и данной задачи, но для этого необходимо предварительно заменить формулы для
$\varepsilon_{\max }$ и $\omega_{\max }$ соответствующими формулами, учитывающими ограничение на рывок, а также применить приведенные в табл. 1 формулы для расчета абсцисс точек излома графиков $\varepsilon(t)$.

Таблица 1 - Формулы для расчета оптимальных по тепловым потерям диаграмм с заданным значением рывка

Рис.	t	$\omega_{\text {max }}$	$\varepsilon_{\text {max }}$
1 a	$t_{1}=\frac{t_{0}}{2}-\sqrt{\frac{t_{0}^{2}}{4}-\frac{6 \varphi}{t_{0} \rho_{0}}}$	$\frac{1}{4} \rho_{0} t_{1} t_{0}$	$\rho_{0} t_{1}$
1σ	$\begin{gathered} t_{\mathrm{p}}=\frac{2 \omega_{0}}{\rho_{0} t_{1}} \\ t_{\mathrm{y}}=t_{0}-2 t_{\mathrm{p}} \\ t_{1}=\frac{3}{4}\left(\begin{array}{c} \omega_{0}-\frac{\varphi}{\omega_{0}}-\frac{\sqrt{\omega_{0}^{2} t_{0}^{2}-2 \omega_{0} t_{0} \varphi+\varphi^{2}-\frac{32 \omega_{0}^{3}}{9 \rho_{0}}}}{\omega_{0}} \end{array}\right) \end{gathered}$	ω_{0}	$\rho_{0} t_{1}$
1в	$\begin{gathered} t_{1}=\frac{\varepsilon_{0}}{\rho_{0}} \\ t_{2}=\frac{t_{0}}{2}-\frac{\sqrt{3 t_{0}^{2}-\frac{12 \varphi}{\varepsilon_{0}}-\frac{6 t_{0} \varepsilon_{0}}{\rho_{0}}+\frac{4 \varepsilon_{0}^{2}}{\rho_{0}^{2}}}}{2} \end{gathered}$	$\frac{\varepsilon_{0}}{2}\left(\frac{t_{0}}{2}+t_{2}-t_{1}\right)$	ε_{0}
1г	$\begin{gathered} t_{1}=\frac{\varepsilon_{0}}{\rho_{0}} \\ t_{2}=\sqrt{t_{1}^{2}+12\left(\frac{\omega_{0}}{\varepsilon_{0}}\left(t_{0}-\frac{\varepsilon_{0}}{\rho_{0}}-\frac{\omega_{0}}{\varepsilon_{0}}\right)-\frac{\varphi}{\varepsilon_{0}}\right)} \\ t_{\mathrm{p}}=\frac{\omega_{0}}{\varepsilon_{0}}+\frac{t_{1}}{2}+\frac{t_{2}}{2} \quad t_{\mathrm{y}}=t_{0}-2 t_{\mathrm{p}} \end{gathered}$	ω_{0}	ε_{0}

Перечень ссылок

1. Мазин А.Ю., Розкаряка П.И. Алгоритм формирования оптимальных по нагреву диаграмм с различными видами ограничений // Автоматизація технологічних об’єктів та процесів. Пошук молодих. Збірник наукових праць II Міжнародної науково-технічної конференції аспірантів та студентів в м. Донецьку 25-26 квітня 2002 р. - Донецьк: ДонНТУ. - 2002. - С. 168-170.
