ФОРМИРОВАНИЕ ОПТИМАЛЬНЫХ ПО ТЕПЛОВЫМ ПОТЕРЯМ ДИАГРАММ ПОЗИЦИОННОГО ЭЛЕКТРОПРИВОДА С ЗАДАННЫМ ЗНАЧЕНИЕМ РЫВКА

Полинский С.В., магистрант; Розкаряка П.И., аспирант; Толочко О.И., доц., д.т.н.

(Донецкий национальный технический университет, г. Донецк, Украина)

С целью уменьшения ударов в кинематических передачах в системах управления электроприводами предусматривают ограничение не только скорости и ускорения, но и рывка.

Одним из способов ограничения рывка является установка на входе системы автоматического управления задающего устройства, формирующего эталонные сигналы задания на изменение основных координат электропривода. Для позиционных электроприводов такими координатами являются положение ϕ , скорость ω , ускорение ε и рывок ρ .

Рассмотрим методику формирования оптимальных по тепловым потерям диаграмм отработки заданного перемещения $\Delta \varphi_3$ за заданное время t_0 , с учетом ограничений на скорость ω_0 , ускорение ε_0 и рывок ρ_0 .

В зависимости от соотношения перечисленных выше параметров исследуемые диаграммы могут иметь одну из четырех форм, представленных на рис. 1: а) диаграмма с ограничением рывка, б) с ограничением рывка и скорости, в) с ограничением рывка и ускорения, г) с ограничением рывка, скорости и ускорения.

При реализации приведенных диаграмм достаточно сформировать сигнал задания на ускорение $\varepsilon(t)$, а оставшиеся координаты (скорость $\omega(t)$ и перемещение $\Delta \varphi(t)$) получить его последовательным интегрированием.

Приведем пример расчета характерных точек сигналов задания на ускорение. Для начала проанализируем самую простую диаграмму (рис. 1 а). Для определения времени t_1 запишем выражение для перемещения $\Delta \phi_3$ в виде суммы площадей, ограниченных кривой скорости $\omega(t)$ (см. рисунок):

$$\Delta \varphi_3 = 2 \frac{\rho_0 t_1^3}{6} + \frac{\rho_0 t_1^2}{2} (t_0 - 2t_1) + \frac{\rho_0 t_1}{6} (t_0 - 2t_1)^2.$$

После математических преобразований получаем уравнение второй степени относительно t_1 :

$$t_1^2 \left(-\frac{t_0}{6}\right) + t_1 \frac{t_0^2}{6} - \frac{\Delta \varphi_3}{\rho_0} = 0,$$

откуда находим время работы привода с заданным значением рывка при разгоне и торможении:

$$t_1 = \frac{t_0}{2} - \sqrt{\frac{t_0^2}{4} - \frac{6\varphi}{t_0 \rho_0}} \,.$$

После этого достаточно легко определить максимальные значения ускорения ϵ_{max} и скорости ω_{max} :

$$\varepsilon_{\max} = \rho_0 t_1; \quad \omega_{\max} = \frac{1}{4} \rho_0 t_1 t_0.$$

Рисунок 1 – Оптимальные по тепловым потерям диаграммы перемещения, сформированные с учетом ограничений на скорость, ускорение и рывок

Параметры остальных диаграмм определены по той же методике и сведены в табл. 1.

При известных выражениях для расчета максимальных значений ускорения ε_{max} и скорости ω_{max} , можно составить алгоритм выбора необходимой диаграммы отработки заданного перемещения, обеспечивающей оптимальные тепловые потери двигателя и заданные значения рывка. В работе [1] представлена блок-схема алгоритма, который можно использовать для решения и данной задачи, но для этого необходимо предварительно заменить формулы для ε_{\max} и ω_{\max} соответствующими формулами, учитывающими ограничение на рывок, а также применить приведенные в табл. 1 формулы для расчета абсцисс точек излома графиков $\varepsilon(t)$.

Рис.	t	ω _{max}	ε _{max}
la	$t_1 = \frac{t_0}{2} - \sqrt{\frac{t_0^2}{4} - \frac{6\varphi}{t_0 \rho_0}}$	$\frac{1}{4}\rho_0 t_1 t_0$	$ ho_0 t_1$
16	$t_{\rm p} = \frac{2\omega_0}{\rho_0 t_1} \qquad t_{\rm y} = t_0 - 2t_{\rm p}$ $t_1 = \frac{3}{4} \left(t_0 - \frac{\varphi}{\omega_0} - \frac{\sqrt{\omega_0^2 t_0^2 - 2\omega_0 t_0 \varphi + \varphi^2 - \frac{32\omega_0^3}{9\rho_0}}}{\omega_0} \right)$	ω ₀	ρ ₀ t ₁
1в	$t_{1} = \frac{\varepsilon_{0}}{\rho_{0}}$ $t_{2} = \frac{t_{0}}{2} - \frac{\sqrt{3t_{0}^{2} - \frac{12\varphi}{\varepsilon_{0}} - \frac{6t_{0}\varepsilon_{0}}{\rho_{0}} + \frac{4\varepsilon_{0}^{2}}{\rho_{0}^{2}}}}{2}$	$\frac{\varepsilon_0}{2} \left(\frac{t_0}{2} + t_2 - t_1 \right)$	ε ₀
1r	$t_1 = \frac{\varepsilon_0}{\rho_0}$ $t_2 = \sqrt{t_1^2 + 12\left(\frac{\omega_0}{\varepsilon_0}\left(t_0 - \frac{\varepsilon_0}{\rho_0} - \frac{\omega_0}{\varepsilon_0}\right) - \frac{\phi}{\varepsilon_0}\right)}$ $t_p = \frac{\omega_0}{\varepsilon_0} + \frac{t_1}{2} + \frac{t_2}{2}$ $t_y = t_0 - 2t_p$	ω ₀	ε ₀

Таблица 1 – Формулы для расчета оптимальных по тепловым потерям диаграмм с заданным значением рывка

Перечень ссылок

1. Мазин А.Ю., Розкаряка П.И. Алгоритм формирования оптимальных по нагреву диаграмм с различными видами ограничений // Автоматизація технологічних об'єктів та процесів. Пошук молодих. Збірник наукових праць ІІ Міжнародної науково-технічної конференції аспірантів та студентів в м. Донецьку 25-26 квітня 2002 р. – Донецьк: ДонНТУ. – 2002. – С. 168-170.