Original source: http://en.wikipedia.org/wiki/Fan_(implement)

Types

There are three main types of fans used for moving air, axial, centrifugal (also called radial) and cross flow (also called tangential). The axial-flow fans have blades that force air to move parallel to the shaft about which the blades rotate. Axial fans blow air across the axis of the fan, linearly, hence their name. This is the most commonly used type of fan, and is used in a wide variety of applications, ranging from small cooling fans for electronics to the giant fans used in wind tunnels. The centrifugal fan has a moving component (called an impeller) that consists of a central shaft about which a set of blades form a spiral pattern. Centrifugal fans blow air at right angles to the intake of the fan, and spin (centrifugally) the air outwards to the outlet. An impeller rotates, causing air to enter the fan near the shaft and move perpendicularly from the shaft to the opening in the scroll-shaped fan casing. A centrifugal fan produces more pressure for a given air volume, and is used where this is desirable such as in leaf blowers, air mattress inflators, and various industrial purposes. They are typically more noisy than comparable axial fans. The cross flow fan has a squirrel cage rotor (a rotor with a hollow center and axial fan blades along the periphery). Tangential fans take in air along the periphery of the rotor, and expel it through the outlet in a similar fashion to the centrifugal fan. Cross flow fans give off an even airflow along the entire width of the fan, and are very quiet in operation. They are comparatively bulky, and the air pressure is low. Cross flow fans are often used for cooling in photocopiers. The action of a fan or blower causes pressures slightly above atmospheric, which are called plenums.

Fans usually use electric power. Electric fans generally consist of a set of rotating blades that are placec in a protective housing that permits air to flow through it. The blades are rotated by an electric motor, for big industrial fans, 3-phase asynchronous motors are commonly used. Smaller fans are often powered by shaded pole AC motors, or brushed or brushless DC motors. AC-powered fans usually use mains voltage, while DC-powered fans use low voltage, typically 24V, 12V or 5V. Cooling fans for computer equipment exclusively use brushless DC motors, which produce much less EMI. In machines which already have a motor, the fan is often connected to this rather than being powered independently. This is commonly seen in cars, large cooling systems and winnowing machines.

Table fan

Basic elements of a typical table fan include the fan blade, base, armature and lead wires, motor, blade guard, motor housing, oscillator gearbox, and oscillator shaft. The oscillator is a mechanism that motions the fan from side to side. The axle comes out on both ends of the motor, one end of the axle is attached to the blade and the other is attached to the oscillator gearbox. The motor case joins to the gearbox to contain the rotor and stator. The oscillator shaft combines to the weighted base and the gearbox. A motor housing covers the oscillator mechanism. The blade guard joins to the motor case for safety.

Electro-mechanical fans, among collectors, are rated according to their condition, size, age, and number of blades. Four-blade designs are the most common. Five-blade or six-blade designs are rare. The materials from which the components are made, such as brass, are important factors in fan desirability.

Solar powered fan

Electric fans used for ventilation may be powered by solar panels instead of mains current. This is an attractive option because once the capital costs of the solar panel have been covered, the resulting electricity is free. In addition, electricity is always available when the sun is shining and the fan needs to run.

Atypical example uses a detached 10 watt, 12x12 inch solar panel and is supplied with appropriate brackets, cables, and connectors. It can be used to ventilate up to 1250 square feet (100 m2) of area and can move air at up to 800 cubic feet per minute (400 L/s). Because of the wide availability of 12 V brushless DC electric motors and the convenience of wiring such a low voltage, such fans usually operate on 12 volts.

The detached solar panel is typically installed in the spot which gets most of the sun light and then connected to the fan mounted as far as 20 to 25 feet (6 to 7 m) away. Other permanently-mounted and small portable fans include an integrated (non-detachable) solar panel.