
Evaluating NoC communication backbones with simulation

Rikard Thid, Mikael Millberg, and Axel Jantsch
Royal Institute of Technology (KTH), Electrum 229, SE-164 40 Kista, Sweden

{thid,micke,axel}@imit.kth.se
�

Abstract

This paper describes a Network on Chip simulator
that was developed to evaluate our NoC architecture Nos-
trum. It is shown how SystemC’s features for communi-
cation refinement is used to make a highly flexible simu-
lator. The simulator is reconfigurable so that it is possi-
ble to try different NoC platforms and different mappings
of workloads. In addition to the modeling of our Nos-
trum architecture, a bus-based architecture is modeled as
well, and the performance for a simple workload model
is compared.

1. Introduction

In the SIA silicon roadmap[1], it is predicted that the
increase in chip capacity will continue for at least an-
other 8-10 years and it will be possible to integrate sys-
tems with billions of transistors on a single chip. Current
System-on-Chip (SoC) methodologies do not offer the re-
quired amount of reusability to enable system designers
to meet the ever increasing time-to-market constraints.
The desired future SoC methodology should enable, not
only, reuse of traditional IP-cores but also communica-
tion infrastructure. Current bus-based platforms suffer
from limited scalability and poor performance for large
systems. In order to overcome these problems several ap-
proaches for networks on chip [2, 3, 4, 5, 6, 7] have been
proposed. They allow reuse of the communication infras-
tructure among many products thus reducing the design
and test effort and the time to market. In order to enhance
reusability and to ease programmability, most NoC pro-
posals recommend standardized and layered communica-
tion protocols for communication among cores.

The performance of busses versus NoC is mathemat-
ically analysed in [8]. A problem that arise when simu-
lating NoC platforms is how to co-simulate the network
with the rest of the chip. Our solution is based on the
channel based communication model that is used in Sys-
temC. This paper provides an simulation based compari-
son of busses and Nostrum to demonstrate the possibili-
ties with the flexible NoC simulator.

The rest of this paper is organized as follows. Section
2 presents our NoC platform named Nostrum. In Sec-
�
This work is a part of the joint Finnish-Swedish EXSITE research

program. This work was sponsored by TEKES, VINNOVA, Nokia Oyj,
Ericsson Radio Systems AB, and Spirea AB Kista.

tion 3, the NoC simulator is presented. The modeling of
workload models is described in Section 4. Section 5 ex-
plains and analyses the experiments that we perform. The
last Section concludes the paper.

2. Nostrum

The overall purpose with a NoC platform is to act as
host for a system that performs one or several tasks with
hardware components. In the Nostrum architecture, the
system is mapped to a set of Resources. A Resource is in
this context a microprocessor, a memory, a FPGA, a digi-
tal signal processor, or an I/O - resource. An I/O-resource
is a device that is connected to the chip’s pins for the
purpose of external communication. The Resources are
physically organized in a two-dimensional mesh structure
as depicted in Figure 1.

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

Figure 1. A Nostrum NoC with 16 Resources
and switches.

All Resources are equipped with a Network Interface,
which connects to the network in order to provide ser-
vices for Resource-to-Resource communication.

The Switches route packets through the network us-
ing a hot-potato routing algorithm [9], which reduces the
need for buffers within the switches. This is an attractive
property for us since we want the area overhead to be as
small as possible. Because of the ever increasing wire de-
lays, it is desirable that information travels as short dis-
tances as possible. Therefore, Nostrum does not use a
centralized router/arbiter such as many bus-based archi-
tectures. Instead all the routing decisions are made lo-
cally in the switches.

The Nostrum architecture is designed in a layered
fashion: this allows us to partition functionality onto dif-



ferent layers, inspired by the OSI reference model. No-
tice that this does not necessarily mean that different lay-
ers are dealt with by different pieces of hardware or soft-
ware. Instead we can merge functionality from different
layers into the same piece of HW/SW. An Entity is the
unit that implements the functionality of a layer. An ex-
ample of an entity is a switch, which performs Network
layer functionality. The way that the entities are intercon-
nected is called topology.

A two dimensional mesh topology is used since it is
mappable to two dimensions. This is due to the physical
constraints of a chip, which does not allow more general
topologies such as high-dimensional hypercubes.

3. Simulation environment

3.1. SystemC

In order to evaluate our Nostrum architecture, we have
developed a SystemC based simulator. SystemC [10] is
a superset of C++ targeted at simulating whole systems
with both hardware and software components. In this pa-
per, we will only deal with SystemC’s properties as a sim-
ulation language.

Models in SystemC basically consist of modules
whose behaviour is defined in C++. Each module has any
number of ports that it uses to interact with other mod-
ules.

In order to cope with the increasing complexity of
communication, SystemC (from version 2.0 and forward)
has the ability to organize the communication into chan-
nels. Channels have interfaces that the modules use to
communicate through. An example of ordinary channel
is dedicated wires as depicted in Figure 2a. Hierarchi-
cal channels can connect to any number of modules and
implement several other, non-hierarchical channels. A hi-
erarchic channel could be for instance a bus (as in Figure
2b ) or a NoC infrastructure.

M1

M3

M2

(a)

M1

M2

M3

B
us

(b)

Figure 2. Three modules that are intercon-
nected by (a) several primitive channels or
(b) one hierarchical channel.

3.2. The simulator

The simulator is divided into an Application Domain
and a Communication Domain as depicted in Figure 3.

The system is distributed into Resources that are mod-
eled in SystemC by Resource models. The purpose of
them is to generate traffic so that the behaviour of the net-
work for a given workload can be studied. These models
interact by sending and receiving messages over the com-
munication platform. The placement of the Resources is
managed by the Resource mapper. A designer can eas-
ily change the mapping of Resources since all mapping
is done in the Resource mapper, and no other part of the
simulator is directly affected by the mapping.

The communication domain consists of models of en-
tities that implement various layers. Four layers are repre-
sented in the simulation environment, namely the Trans-
port(TL), Network(NL), Data link(LL), and the Physical
layer(PL).

A topology generator is used to instantiate and connect
entities with each other. The simulator has one topology
generator that creates Nostrum models of arbitrary size.
A small 2x2 example is depicted in Figure 4. There is
also a bus topology generator that uses the same TL, LL,
and PL entities as the Nostrum generator. However, while
the Nostrum NL entity models a hot-potato routing algo-
rithm, the bus NL entity uses a round-robin arbitration
scheme.

In order to interface with SystemC models of Re-
sources in a natural way, our simulator is a hierarchic
channel. Any SystemC modules that will use NoC for
communication does so using an interface. This inter-
face features, the opening of channels, blocking, and
non-blocking send and receive primitives. No knowledge
of the platform is necessary when writing the Resource
models, since all communication is handled through in-
terfaces. This enables a user to change the network model
but still use the same workload models.

T
op

ol
og

y 
ge

ne
ra

to
r

Resource mapper Resource models

PL

LL

NL

TL

A
pp

lic
at

io
n 

do
m

ai
n

C
om

m
un

ic
at

io
n 

do
m

ai
n

Figure 3. The main components of the sim-
ulation environment.

4. Workload models

In order to study our Nostrum architecture, we de-
signed a simple workload model using SystemC. As the
communication platform interface is very small, it is easy
to write and integrate a simple workload model to the



NL

LL

LL
PL

PL
LL

PL PL

NL

TL

LL

PLPL

LL LL

NLNL LL LL
PL

PL

TL TL

TL

Figure 4. Entity interconnection in a 2x2
mesh topology.

9 10 11

13 1214

15 16

1 2 3 4

8 7 6 5

(a)

1 2 3

5678

9 10 11 12

4

131415 16

(b)

Figure 5. Workload model and its mapping
on a 4x4 mesh.

simulator. Our model consists of 16 identical Resources
that are logically interconnected in three rings as depicted
in Figure 5a. The Resources were placed so that the num-
ber of hops needed to send packets is reasonably low (but
not optimal). The placement is depicted in Figure 5b.
The Resources repeatedly sends a packet, then wait a ran-
dom number 1 of clock cycles before sending again. This
kind of behaviour is what a pipelined signal processing
application could look like. In average each Resource
sends a message every ninth clock cycle. With a Re-
source clock frequency of 1 Ghz, approximately 111 mil-
lion messages/second will be sent through the network
interface. As the network interface need only one clock
cycle per message, it may be possible to run the com-
munication network on a lower clock frequency than the
Resources, possibly saving power. Thanks to the flexi-
ble SystemC simulation engine it is easy to scale the fre-
quency of the network.

5. Experiments

The purpose of the experiments is to determine how
efficiently our Nostrum architecture can perform given
the workload model previously discussed. It is also inter-
esting to see how the Nostrum architecture performs in
relation to a bus-based architecture. What are the differ-
ences in latency and what clock-frequency is the lowest
that can be used without data loss due to low throughput?

1Normal distribution, mean value 9, standard deviation 2.

5.1. Clock frequency scaling

In order to minimize the power consumption on chips,
the clock frequency is generally kept as low as possi-
ble. Most of the power in CMOS is consumed during
the switching of logic gates. This is called the dynamic
power consumption and it is expressed with the following
formula: �������
	���
��������� ������� (1)

The power consumption (
� �����

) depends on the ca-
pacitive load (

� 

), the supply voltage (

� ��� ), clock fre-
quency (

�
), and switching probability (

�
). Since an in-

crease in clock frequency requires the supply voltage to
be higher, we wish to run the clock as slow as possible.
In a network, we should not drop the frequency to low
since the performance will be lower and packets may be
dropped. The lowest possible clock frequencies for the
two discussed architectures for a specific workload are
investigated .

5.2. Method

The simulator was configured to run the Nostrum and
the bus-based architectures with the same workload mod-
els. The TL-entities, which are the highest entities in
the protocol stack and therefore experience the most la-
tency, measure the average and the maximum time be-
tween sending and receiving of data. The entities are
configured to report any loss of data that occurs when
more data is put into the system than it can handle. Multi-
ple simulations were run with different clock frequencies
for the respective communication infrastructures ranging
from 125 MHz to 4 GHz. The Resource models were al-
ways running at 1 GHz and therefore the same amount of
data was attempted to be sent. The average and the max-
imum latencies were recorded for each simulation. The
lowest possible frequency for each platform was noted.

The PL-entities, which represent the links between
wires measure how frequently data is transmitted over
them. This information represents

�
in Formula 1, and

together with the clock frequency the power can be cal-
culated.

5.3. Result

The results from the simulations are plotted in Figure 6
and 7. For the simulations with too low clock frequencies,
the latencies are very high and they are not included in the
plots.

For the bus architecture, a bus clock faster than 1.8
GHz is required, and the Nostrum only needs 200 MHz
to handle all data. It is natural that the latency decreases
with longer clock periods. However, as shown in the right
figures in both cases the latency is not fixed in terms of
clock cycles. In the bus-based architecture the decreased
efficiency is explained with that packets may have to wait
until they become routed since only one packet is routed
each clock cycle. In the Nostrum architecture it is possi-
ble to route four packets in each switch simultaneously.



0 1 2 3 4
0

2

4

6

8

10

12

14

16

18

20

Minimum f:200 MHz

Minimum f:1.8 GHz

Average latency

Frequency [GHz]

La
te

nc
y 

[n
s]

Mesh
Bus 

0 1 2 3 4
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
Average latency

Frequency [GHz]
La

te
nc

y 
[c

yc
le

s]

Mesh
Bus 

Figure 6. Average latency.

0 1 2 3 4
0

5

10

15

20

25

30

35

40
Maximum latency

Frequency [GHz]

La
te

nc
y 

[n
s]

Mesh
Bus 

0 1 2 3 4
0

5

10

15

20

25

30

35

40
Maximum latency

Frequency [GHz]

La
te

nc
y 

[c
yc

le
s]

Mesh
Bus 

Figure 7. Maximum latency.

The decrease in efficiency is explained by the conges-
tion that occurs when many wires are occupied. Figure
8 shows how occupied the links between switches are,
and how this affects the link power consumption. The
power figure is calculated with Formula 1, with

� ��� and� 

constant.

6. Conclusions

It was demonstrated that NoC simulation can be done
in a flexible manner thanks to the channel based com-
munication model in SystemC. Two different communi-
cation platforms were modeled with the same workload
model and it was shown that our Nostrum platform can

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Frequency [GHz]

Li
nk

 o
cc

up
an

cy
 [%

]

0 1 2 3 4

1

1.05

1.1

1.15

1.2

1.25

Frequency [GHz]

N
or

m
al

iz
ed

 p
ow

er

Figure 8. Link occupancy and power in Nos-
trum wires.

operate at a much lower clock frequency than a shared
bus platform. Topics that are interesting for future works
include to study the impact of more workload models and
comparison with other NoC platforms than Nostrum.

References

[1] “The international technology roadmap for semi-
conductors,” International SEMATECH:Austin,
TX., 2001.

[2] P. Guerrier and A. Greiner, “A generic architecture
for on-chip packet-switched interconnections,” in In
Proceedings of Design, Automatation and test in
Europe, pp. 250–256, 2000.

[3] G. D. M. Luca Benini, “Powering networks on
chips,” in Proceedings of the international sympo-
sium on Systems synthesis, pp. 33–37, 2001.

[4] L. Benini and G. D. Micheli, “Networks on chips:
A new SoC paradigm,” IEEE Computer, pp. 71–78,
January 2002.

[5] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell,
M. Millberg, J. Öberg, K. Tiensyrjä, and A. Hemani,
“A network on chip architecture and design method-
ology,” in Proceedings of IEEE Computer Society
Annual Symposium on VLSI, April 2002.

[6] K. Goossens, J. van Meerbergen, and P. Peeters,
A.and Wielage, “Networks on silicon: combining
best-effort and guaranteed services,” in Design, Au-
tomation and Test in Europe Conference and Exhi-
bition, Proceedings, 2002.

[7] W. J. Dally and B. Towels, “Route packets, not
wires: On-chip interconnection networks,” in 38th
Design and Automization Conference, 2001.

[8] C. a. Zeferino, M. E. Creutz, L. Carro, and
A. a: Susin, “A study on communication issues for
systems-on-chip,” in Proceedings of Integrated Cir-
cuits and Systems Design (SBCCI), 2002.

[9] U. Feige and P. Raghavan, “Exact analysis of hot-
potato routing,” in Foundations of Computer Sci-
ence, Proceedings, pp. 553 – 562, IEEE, 1992.

[10] T. Grötker, S. Liao, G. Martin, and S. Swan, System
Design with SystemC. Kluwer Academic Publish-
ers, 2002.


