POSSIBILITY MEASURES, RANDOM SETS AND NATURAL EXTENSION
GERT DE COOMAN AND DIRK AEYELS

ABSTRACT. We study the relationship between possibility and necessity measures defined on
arbitrary spaces, the theory of imprecise probabilities, and elementary random set theory. We
show how special random sets can be used to generate normal possibility and necessity mea-
sures, as well as their natural extensions. This leads to interesting alternative formulas for the
calculation of these natural extensions.

1. INTRODUCTION

Possibility measures were introduced by Zadeh [21] in 1978. In his view, these supremum
preserving set functions are a mathematical representation of the information conveyed by typical
affirmative statements in natural language. For recent discussions of this interpretation, we refer
to [7, 20].

Supremum preserving set functions can also be found in the literature under a number of
different guises. For instance, they appear in Shackle’s logic of surprise [16], and were studied in
a measure-theoretic context by Shilkret [18]. They also play the part of special limiting cases in
Shafer’s theory of belief functions [17]. In a forthcoming paper, we study in detail how possibility
measures fit into Walley’s behavioural theory of imprecise probabilities [19]. Preliminary results
in this field have been published in a conference paper [8]. Also relevant is the related work
by Dubois and Prade [12, 13]. In this paper, we discuss the relationship between possibility
measures in the context of imprecise probabilities on the one hand, and random sets on the
other hand.

We give a short overview of the relevant basic definitions. We work with a nonempty set
Q, called the universe of discourse. A possibility measure 11 on (£, p(2)) is a mapping from
the power class p(2) of © to the real unit interval [0, 1], which is supremum preserving in the
following sense: for any family (A; | j € J) of subsets of €,

(| 4;) = sup I1(A;).
jed 7€J
Such a possibility measure is completely determined by its distribution =: Q — [0, 1], defined
by m(w) = H({w}), w € Q. Indeed, for any A € (), I[(A) = sup,ey 7(w). Note that, by
definition, II(§) = 0. II is called normal iff II(Q2) = 1.

With II we may associate a dual necessity measure N: p(€2) — [0,1], defined by N(A) =
1 —1I(coA), A C Q, where coA denotes the set-theoretic complement of A (relative to ). N
is infimum preserving, and completely determined by its distribution v: @ — [0,1], defined by
v(w) = N(cofw}) =1 —7(w),w € Q. For any A € p(Q), N(A) = inf,eco4 v(w). By definition,
N(©) =1, and we call N normal iff 1L is, i.e. iff N(§)) = 0. For more details about the theory of
possibility measures, we refer to [4, 5, 6, 9, 11, 21].

As mentioned above, possibility and necessity measures can be incorporated into the behav-
ioural theory of imprecise probabilities. Let us briefly describe how this is done. We limit
ourselves here to definitions and results which are relevant in the context of this paper. For a
detailed account of the theory of imprecise probabilities, we refer to the book by Walley [19].

The universe of discourse €} can be interpreted as a possibility space, that is, the set of the

mutually exclusive possible outcomes of a specific experiment. A gamble X on £ is a bounded
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real-valued function on €2, and can be interpreted as an uncertain reward. The set of all gambles
on  is denoted by £(2). An event A in Q is a subset of Q. The set of all events in Q has
already been given the notation p(£). We identify events with their characteristic functions,
and interpret them as 0 — 1-valued gambles. We also denote a constant gamble on € by the
unique real value it assumes. The pointwise order on £(€) is denoted by <, i.e. X < Y iff

(Vw € Q)(X(w) <Y (w)).

An upper prevision P is a real-valued function on a set of gambles G C £(2). In order to
identify its domain and possibility space, it is often denoted as (,G, P). The corresponding
lower prevision (Q, —G, P) is defined on the domain —G = {-X | X € G} as P(X) = —P(—X),
X € —G. In the behavioural context, P(X) can be interpreted as an infimum price for selling
the gamble X, and P(X) as a supremum price for buying it. If G is in particular a class of
events, then P is called an upper probability. The corresponding lower probability P is then
defined on the set {coA | A € G} by P(A) =1— P(coA).

The set £() is a linear space when provided with the pointwise addition of gambles and
the pointwise scalar multiplication of gambles with real numbers. A linear functional P on
L(£2) which is positive (X > 0 = P(X) > 0) and has unit norm (P(1) = 1) is called a linear
prevision on L(€). Its restriction to p(€2) is called a (finitely) additive probability on p(£2). Note
that P(—X) = —P(X), X € L£(f), which means that as an upper prevision, P is equal to the
corresponding lower prevision. The set of linear previsions on £(2) is denoted by P(Q). If G is
a subset of £(2), a functional on G is called a linear prevision on G iff it is the restriction to G
of a linear prevision on £(£2). A similar definition is given for additive probabilities on arbitrary
classes of events.

Given an upper prevision (2,G, P), we define its set of dominated linear previsions M(P) as

M(P)={P eP(Q)| (VX € G)(P(X) < P(X))}.
We say that (Q,G, P) avoids sure loss ifft M(P) # (), and is coherent iff it avoids sure loss and
P(X)=sup{P(X)|Pc M(P)}, Xcg.

When (2,3, P) avoids sure loss, its natural extension (2, L(2), F) to L() is defined as
F(X)=sup{P(X)| P € M(P)}, X €L(Q).

It is the greatest coherent upper prevision that is dominated by P on its domain G. (Q,G, P)
is coherent ifl it coincides on its domain G with its natural extension. The natural extension
(Q, L(Q), E) of the corresponding lower prevision (Q, —G, P) is defined by E(X)= —F(-X) =
inf{P(X) | PeM(P)}, X € L(Q). Equivalent alternative definitions of avoiding sure loss,
coherence and natural extension, with a direct behavioural interpretation, can be found in [19].

It has been shown elsewhere [8, 20] that a possibility measure II on (€, p(€2)) is a coherent
upper probability iff I is normal. Its dual necessity measure is then the corresponding coherent
lower probability. It can be shown that their natural extensions to £(), respectively denoted
by II and N, are given by the following Riemann(-Stieltjes) integrals:

400 sup X
mx)= /_ 2dF x(2) =inf X + /fX sup{m(w) | X(w) > z}dz (1)
and
+oo . sup X
N(X) :/_ 2dFx(2) :ian—|—/fX inf{v(w) | X(w) < #)de. 2)

In these expressions, I’y and Fx are respectively the lower and upper distribution functions of
the gamble X w.r.t. the pair Il and N, defined by, for any y € R:

Fx(y)=N({we Q| X(w) <y})and Fx(y) = I({w € Q| X(w) < y}).
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In what follows, we show that any possibility measure and any necessity measure can be
constructed using a probability measure and a nested multivalued mapping. In particular, we
thereby retrieve and at the same time refine a result proven by Dubois and Prade [12] for the
special case 2 = R. The line of reasoning we follow here draws from the ideas that lie at the
basis of the Dempster-Shafer theory of evidence [10, 17] and elementary random set theory [15].

At the same time, we show that this construction allows us to extend possibility and necessity
measures in a straightforward way to upper and lower previsions which will turn out to be
precisely their natural extensions, discussed above. In this way, we arrive at alternative formulas
for the calculation of the natural extension of possibility and necessity measures.

2. MULTIVALUED MAPPINGS, GAMBLES AND EVENTS

Consider the real unit interval [0,1] and a mapping ¥ from [0,1] to p(f2), also called a
multivalued mapping from [0, 1] to Q. We assume that ¥ is antitone:

(V(z,y) € [0, 17)(z 2 y = ¥(z) C ¥(y)), (CD)

which implies that the sets in W([0,1]) are nested. We also want every element of € to be
contained in some ¥(z), « € [0, 1], which amounts to:

¥(0) = Q. (C2)

For reasons that will become clear at the end of section 3, we do not exclude the existence of
z in [0,1] for which ¥(2) = (. In order to deal with this, we define the set &y = {z € [0,1] |
U(z)=0}. By (Cl), &y is an up-set [3] of the chain ([0, 1], <). If we define ey = inf &y, then
Ey = ey, 1] or &g = [ey, 1].

With any gamble X on , we associate two gambles X* and X, on [0, 1], defined as follows:

X*(2) = sgpweq,(l,)X(w) , z €[0,1]\ &g
0 i v €&y

X.(2) = inf,ep() X(w) , z€10,1]\ &y
0. ;T E gq;,

where 6% and ¢, are real numbers to be determined shortly. For € &, sup,eg(,) = —o© and
inf,cy(y) = +0o. Since we want X* and X, to be gambles on [0,1], i.e., bounded [0,1] — R-
mappings, we try and remedy this by introducing 6* and 6., which we determine by imposing

extra conditions on X* and X,. First of all, we want that (=X )* = —X,., which is equivalent!
to 8* 4+ 0, = 0. Also, for any event A in , we find in particular that
o ;. zely
A ()=S0 ; 2z&&&and ¥(z)NA=0
I 3 a¢g&yand ¥(z)NA£D,

and similarly

0. ;X € gq;
Afz)=<0 ; a¢g&yand ¥(z)Z A
1 5 z¢&p and ¥(z) C A

We want A* and A, to correspond to events in [0, 1]. * and 6, may therefore only assume the
values 0 and 1. 8* 4+ 6, = 0 then implies that 8* = 8, = 0, whence, with obvious notations,

A" ={z€[0,1]| ¥(2)N A#0D} and A, = {2 €[0,1]| 0 # ¥(z) C A}.

I This holds if £y # 0. If £ = 0, the introduction of #* and 6. is not necessary.
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Note that A, C A*, A.N&y = 0 and A* N Ey = 0. Moreover, (cod)* = cofy \ A, and
(coA), = cofy \ A", where the complement ‘co’” on the left hand sides is relative to €, and on
the right hand sides relative to [0, 1]. In particular, 0, = 0* = § and Q. = Q* = cofy.

The interpretation of these notions is straightforward. The multivalued mapping ¥ can be
seen as a way to transmit information from [0, 1] to © [19]. For a gamble X on Q, X. is the
smallest gamble on [0, 1] compatible with X, and X the greatest. That X.(z) = X*(2) =0 if
U(2) = 0 assures that the gambles X, and X are (behaviourally) neutral in those elements of
[0,1] that do not connect to elements of .

We now investigate the Borel measurability of the events A* and A,, and the gambles X* and
X.. For any event A in ©, A" is a down-set [3] and A, U &y an up-set of the chain ([0, 1], <).
As a consequence, if we define the following elements of [0, 1] for any A C

J(A) = sup A™ = sup{e € [0,1] | W) N A £ 0} < ey
N(A) = inf A, = inf(A. U Eg) =inf{z €[0,1]] 0 # ¥(x) C A} < ey,
we find that
AT =[0,77(A) or A” =1[0,7"(A)]

A U &y = [n(A), 1] or A, U &y = n(A),1]. (3)

To prove (3), remark that, if @ < n*(A), the characterization of supremum on a chain tells us
that there exists a y in A* for which z < y and therefore z € A*. A similar proof may be
given for the second statement. Since we have seen above that &y = Jey, 1] or &y = [y, 1], this
implies that the sets A* and A, are subintervals of [0,1] and therefore Borel sets on [0,1]. It
should also be noted that A, = 0 implies (coA)* = cofy, and that A, # 0 implies A* = cofy.

In order to investigate the Borel measurability of the gambles X ™ and X, we must for instance
check whether, for every y in R, the sets Di(* ={z €[0,1]] X*(z) <y} and 5, = {x € [0,1]|
X.«(z) > y} are Borel sets on [0, 1]. Obviously,

X . X .
(D )«U&s 5 y2>0 (5 )«U& ;5 y<o,

where S = {w € Q| X(w) > y} and D = {w € Q] X(w) < y}. Since in these expressions &y,
(D;f )« and (5). are subintervals of [0,1], and therefore Borel measurable, we are led to the
following proposition.

Proposition 1. For any gamble X on Q, X* and X, are Borel measurable gambles on [0, 1].
For any subset A of Q, A* and A. are Borel measurable subsets of [0,1].

3. RanDpDoMm SETS, POSSIBILITY AND NECESSITY MEASURES

After these preliminary considerations, we are ready to proceed to the main topic of this
paper. Consider a probability measure P, on ([0, 1], B([0,1])), where B([0,1]) is the o-field of
the Borel sets on [0, 1]. In other words, P, is a positive, countably additive set function defined
on B([0,1]) for which P,([0,1]) = 1. Such a probability measure has a unique extension to a
linear prevision ([0, 1], K(B([0,1})), Ep,), where K(B([0,1])) is the set of the B([0, 1])-measurable
gambles on [0, 1], that is, the Borel measurable bounded [0, 1]—R-mappings [19]. As our notation
suggests, this Ep, is also the natural extension of the additive probability ([0, 1], B([0, 1]), P,) to
K(B([0,1])). Moreover, for any Borel measurable gamble Y on [0, 1]:

Ep(Y) = / YdP,
[0,1]

and the integral in this expression is the Lebesgue integral w.r.t. the measure P, [19]. Note that
the bounded mapping Y is always integrable on the compactum [0, 1]. We furthermore assume
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that the measure P, is absolutely continuous w.r.t. the Lebesgue measure on [0,1]. Why this
assumption is necessary, will become apparent in the proof of Lemma 3.

The introduction of the probability measure P, on the measurable space ([0, 1], B([0,1]))
allows us to formally interpret the multivalued mapping ¥ as a random variable, whose values
are subsets of Q. VU is therefore also called a random set [15], or a random subset of Q.

We want to use the linear prevision Fp, to construct a pair of coherent upper and lower
previsions on L£(), and consequently also a pair of coherent upper and lower probabilities on

©(Q2). We assume that
P,(co€y) > 0, or equivalently, P,(Ey) < 1. (C3)

In other words, we exclude that the random set ¥ is empty a.s. (P,). Proposition 1 then enables
us to define an upper prevision (Q, £(Q),1ly) as follows. For any X in £(Q):

Hy(X)=FEp,(X*)/P,(cofy) = X*dP,/P,(coy).
[0,1]

Since we have made sure that X, = —(—X)*, we find for the corresponding lower prevision

(Q, £(Q), Ny), with Ng(X) = —Iy(-X), that

Ny(X) = FEp,(X.)/P,(cofy) = X dP,/P,(coly).
[0,1]

In what follows, we intend to study these upper and lower previsions in more detail.
For a start, we find the following expressions for the corresponding upper and lower probability
of the event A in ():

Iy (A) = Po(A™)/ Po(cofy) = Fo({z € [0,1]| ¥(z) N A # 0})/ Po(coy)
Ny(A) = Po(As)/ Po(coly) = Po({z € [0,1] [ 0 # ¥(z) € A})/Po(coly) (5)
Ny(A)=1-Ily(coA).
These are instances of the more general formulas proposed by Dempster in his paper on upper
and lower probabilities induced by a multivalued mapping [10].
In particular, Iy (@) = Ny(0) = 0 and Hy(Q2) = Ng(2) = 1. Let us now show that the
upper probability (2, p(©2), Ily) is a normal possibility measure, and that the lower probability

(2, 9(Q2),Ny) is consequently a normal necessity measure. Consider any family (A; | j € J) of
subsets of Q, then for any z in [0, 1]:

V([ A) £ D& (3 € D) N A; £0),
jed
whence (U;cs 4;7)" = U,y AT and therefore also 57(U;c; 45) = sup;eyn™(4;). If we combine
this with (3), we find that

( U Aj)* = supn [ or U A 0,supn™(A4;)].
JeJ JeJ =
Using Lemma 3, we find the following important result.
Theorem 2. The restriction of lly to p(Q) is a normal possibility measure and the restriction

of Ny to () a normal necessity measure on (2, p(Q)). For their respective distributions my
and vy we find that, for any w in

Ty(w) = P({z €[0,1] |w € ¥(x)})/Py(coly) (6)
ve(w) = Po({a € [0,1] |w ¢ ¥(x) # 0})/ P(colu).

The upper probability (2, p(2),Ily) and the lower probability (2, p(Q), Ny ) are therefore coher-
ent.
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Lemma 3. Consider a family (x; | j € J) of elements of [0,1] and an element x of [0, 1].
1. P,([0,z[) = P,([0, z]).
2. PO([Ov SUp;eg $]]) = SUPjeg PO([Ov $]])

Proof. The proof of the first statement is trivial, since P, is by assumption absolutely continuous
w.r.t. the Lebesgue measure on [0,1]. Let us therefore prove the second statement. Since P,
is increasing, it need only be shown that sup;c; P,([0,2;]) > Po([0,sup;c;x;]). If sup;c;z;
belongs to the family (2; | j € J), the proof is immediate. Let us therefore assume that
(Vi € J)(x; < supjcy v ), which implies that there exists a strictly increasing sequence (2}, )nen
in the family (z; | j € J) which converges to sup,c; z;. As a consequence, the strictly increasing
sequence ([0, z7;])nen converges to | J, [0, 73] = [0,sup;c; 2;[, and therefore, taking into account
the well-known limit properties of a measure:

sup P[0, ;1) > sup Po([0,27)) = lim  Po([0,27]) = Po(|J [0, 27)) = Po([0, sup; ).
= neN neN JEJ

This proves the second statement, also taking into account the first. O

In what follows, we shall call the couple (P,, V) a random set representation of the possibility
measure Ily and the necessity measure Ny on (€2, p()).

We now proceed to show that every normal possibility and necessity measure on (£, p(£2))
can be obtained in this way, i.e., have a random set representation! Indeed, given any normal
possibility measure II on (£, p(2)), define the multivalued mapping ¥ as follows: for any z in
[0,1], ¥(z) = 5] = {w € Q| 7(w) > 2}, where 7 is the distribution of II. This ¥ clearly satisfies
conditions (C1) and (C2). Furthermore, for any w in Q, {w}* = [0, 7(w)]. If we therefore let P,
be the Lebesgue measure A on [0, 1], its is clear that P,({w}*) = m(w). Finally, since II is normal,
sup,ecq m(w) = 1, whence &y = 0 or &g = {1}, according to whether the supremum 1 of 7 is
reached or not. In any case, Py(cofy) = 1 and (C3) is satisfied. This proves our assertion. The
couple (A, ST) will be called the standard random set representation of the possibility measure
II and its dual necessity measure N.

We want to stress that that for this choice of ¥, £y is not necessarily empty! In the case
Ey = {1}, 7 does not reach its supremum in any of the points of its domain. The distribution
of 1T is then called nonmodal. Tt therefore turns out that we had to allow &g # 0 in order to
be able to incorporate into the random set model normal possibility measures with nonmodal
distributions.

4. RANDOM SETS AND NATURAL EXTENSION

Let us now use this information to derive a formula for the calculation of Ily(X ) and Ny (X ),
X € L£(R). We know that by definition, and also using a well-known result from probability
theory, since X* is Borel measurable:

Hy(X) = X*dP,/P,(coly) = / 1pd Fx«/P,(coy).
[0,1] R

In this expression, 1p is the identical permutation of the reals, and the integral on the right

hand side is the Lebesgue-Stieltjes integral associated with the probability distribution function

Fx+ of the gamble X*, i.e., for any y in R: Fx«(y) = P,({z €[0,1] | X*(2) < y}) = P.(D;).

Now, taking into account (4) and (C3), we find for any y in R,

Fx(y) ;o y<0

Po(g‘li)
—2 Ly >
EX(y)—I_ PO(CO((:\I}) ? y_()?

where F y is the lower distribution function of X associated with the pair of upper and lower
probabilities Iy and Ny. Note that Fy is nonconstant at most on a bounded real interval,

FX*(@/) = PO(CO&I;) .
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because the gamble X is by definition bounded. This essentially reduces the integration domain
R to a bounded interval. Since moreover 1g is continuous, the above-mentioned Lebesgue-
Stieltjes integral is equal to the corresponding Riemann-Stieltjes integral [14], whence, with
obvious notations, and taking into account well-known results from the theory of Riemann-
Stieltjes integration [1]:

+o0 oo
Hq;(X):/_ xdEX(x)—I—O-% :/_ edF x(z),

and consequently also

+oo _
Ny(X)= / zdFx(z),

— 00
where Fy is the upper distribution function of X associated with the pair Ily and Ng. In
other words, using the probability measure P, and the nested multivalued mapping ¥, we are
able to construct in a natural way not only possibility and necessity measures, but also their
natural extensions! As a corollary, we find that the upper and lower previsions (£, £(€), Ily)
and (2, £(€), Ny ) are coherent.

This result, together with the argument presented at the end of the previous section, also
allows us to give an alternative expression for the natural extensions of a possibility measure 11
and its dual necessity measure N on (€, p(€)). Let © be the distribution of II. For the standard
random set representation (FP,, ¥) = (A, S7) of Il and N, we know that P,(coy) = 1, whence,
if we also denote by Il the natural extension of I, II(X) = f[O,l] X*dA, where in particular for
z € [0,1[, X*(z) = sup{X(w) | 7(w) > x}. Since X* is decreasing on [0, 1], it is discontinuous
in at most a countable number of elements of [0, 1], and therefore the Lebesgue integral is equal
to the corresponding Riemann integral [2]:

mx)= /0 sup{ X (w) | 7(w) > a}da = /0 sup{X(w) | 7(w) > z}da.

The last equality holds because the two integrands may only differ in their points of discontinuity.
Similarly, if we also denote by N the natural extension of N:

N(X) = /0 inf{X(w)|r(w) > a}de = /0 inf{X(w) | r(w) > z}da
= /0 inf{X(w)|v(w) <a}lde = /0 inf{X(w)| v(w) < z}dz.

When we compare these expressions with (1) and (2), the symmetry (exchangeability) between
and v on the one hand, and X on the other hand, is more than striking. Note that an analogous
symmetry exists in the probabilistic case between X and the probability distribution (density).

5. CONCLUSION

We have shown that any possibility and necessity measure can be constructed using a prob-
ability measure and a multivalued mapping (a random set). At the same time, we have proven
that their natural extensions can be obtained in a similar way. This course of reasoning has
provided us with alternative formulas for the calculation of these natural extensions.
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