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Abstract

If the parameters of a model are unknown, results from simulation studies can

be misleading. Such a scenario can be avoided by estimating the parameters before

analysing the system e.g. with simulations. Almost all approaches for estimating

parameters in ordinary differential equations are either having a small convergence

region or having a immense computational cost. The method of multiple shooting

can be situated in between of these extremes. In spite of its good convergence and

stability properties, literature regarding the practical implementation and providing

some theoretical background is rarely available. This review attempts to supply all

necessary information for a successful implementation and discusses the basic facts

of the involved numerics. To show the performance of the method, two illustrative

examples are discussed after the approach has been presented.

1 Introduction

The problem of estimating parameters in ordinary differential equations (ODEs) from
partially observed noisy data appears in many areas of applied sciences and engineering.
Since most of the ODEs are nonlinear, all methods regarding parameter estimation are
showing an interplay between simulating the trajectory and optimisation. The simulation
of the trajectory is usually done by convenient ODE solvers. Whereas the optimisation
differs drastically and can be classified of being either a stochastic optimisation procedures
or a deterministic. Methods based on stochastic minimisation routines are e.g., random
search and adaptive stochastic methods [1, 47, 4, 43], clustering methods [37], evolutionary
computation [18] and simulated annealing. A detailed discussion of these methods with
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respect to parameter identification in ordinary differential equations can be found in [3].
The disadvantage of stochastic optimisers is mainly their immense computational cost
which is the price for the flexibility and stability of these methods.

On the other side, deterministic optimisation procedures such as sequential quadratic
programming (SQP), Newton methods, quasi-Newton methods, etc. are computationally
efficient but they tend to converge to local minima. In case of parameter identification in
ODEs the problem of convergence to local minima is predominant if the so called initial
value approach is considered. This approach utilises that the trajectory is uniquely deter-
mined by the parameters and initial values. Minimising a maximum-likelihood functional
with respect to parameters and initial values should therefore solve the inverse problem.

The situation stated above further suggests that there might be a trade-off between
computational efficiency and stability for estimating parameters in ODEs. Multiple shoot-
ing can be located in between these two extremes. In order to use more information of the
measurements, the inverse problem is embedded into a higher dimension and the possibil-
ity of having non-continuous trajectories is allowed during the optimisation process. This
offers the possibility that the trajectory can stay close to the measurements for the whole
runtime of the procedure, which increases the stability significantly. Hence, deterministic
optimisation approaches can be used to reduce the computational cost without totally
destabilising the method. Multiple shooting was introduced by J. Stoer and R. Bulirsch
in the early seventies [40] and was substantially enhanced and mathematically analysed
by H.G. Bock [8, 9, 10]. Here, some of the well elaborated mathematical details are pre-
sented, but always in scope of practically implementing these ideas. Keeping also track
on the algorithmic issues can be regarded as the major intension of this review. Since
this aspect is neglected in literature the accessibility and re-implementation of multiple
shooting is currently limited.

The remainder of this article is organised as follows: After stating the estimation prob-
lem, Sec. 2, multiple shooting is described in detail, Sec. 3. In order of their algorithmic
occurrence all components of the procedure are discussed. The treatment of unidentifiable
estimation problems is briefly introduced by a regularisation approach in Sec. 4. Finally,
two examples emphasis the practical relevance of the method, Sec. 5.

2 The Estimation Problem

Suppose that a dynamical system is given by the d-dimensional state variable x(t) ∈ R
d

at time t ∈ I = [t0, te], which is the unique and differentiable solution of the initial value
problem

ẋ(t) = f(x(t), t, p) x(t0) = x0 . (1)

The right-hand side of the ODE depends in addition on some parameters p ∈ R
np . It

is further assumed that f is continuously differentiable with respect to the state x and
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parameters p. Let Y (k) define the k-th component of some vector Y and the data (Yi)i=1···n

are assumed to satisfy the observation equation

Y
(j)
i = g(j)(x(ti), p) + σijεij j = 1, · · · , obs , (2)

for some link function g : R
d → R

obs, d ≥ obs, σij > 0, and εi’s are independent and
standard Gaussian distributed random variables. The sample points ti are ordered such
that t0 ≤ t1 < · · · < tn ≤ te and the link function g is again continuously differentiable in
both variables. Eqs. (1) and (2) defines an one experiment design but suppose you have
several experiments, possibly under different experimental conditions. In this case Eq. (2)
depends on each experiment and must be modified in the following manner

Y
(j)
ik = g(j)(x(tij), p) + σijkεijk k = 1, · · · , nexp . (3)

Certain parameters may depend on the experiments itself, but the treatment of these
local parameters and the different experiments requires only obvious modifications of the
described procedures and therefore only the one-experiment design nexp = 1 is considered.

On the basis of the measurements (Yi)i=1,··· ,n the task is now to estimate the initial
state x0 and the parameters p. The principle of maximum-likelihood provides an appro-
priate cost function which has to be minimised for estimating these parameters. Defining
x(ti; x0, p) as being the trajectory at time ti with parameters p and initial value x0, the
cost function is then given by

L(x0, p) =
n∑

i=1

obs∑

j=1

(

Y
(j)
i − g(j)(x(ti; x0, p), p)

)2

2σ2
ij

. (4)

A direct minimisation of L with respect to x0, p leads to the so called initial value approach.

2.1 Initial Value Approach

The development of the initial value approach has a long history, e.g. [31, 38] and recently
[2, 3]. Again, deterministic and stochastic optimisation methods can be considered. If
stochastic optimisation procedures are used for minimising the likelihood, Eq. (4), an
immense computational cost is again needed. On the other hand deterministic or local
optimisation algorithms are having a small domain in parameter space for which the
method converges to the global minimum. These problems are due to the following
difficulties:

1. The optimisation problem is highly non-linear such that local optimisation routines
tend to converge to local minima.

2. The solution of the differential equation can become unstable such that the trajec-
tory diverges before the last time point tn is reached.

An efficient and robust method minimising these effects therefore needs a modification of
the optimisation scheme. One possibility of such a modification is multiple shooting.

3



2.2 Multiple Shooting

A detailed mathematical analysis of the multiple shooting method was done by H.G. Bock
[8, 9, 10]. But in spite of the significant reduction of the problems given above, only a
few research groups use multiple shooting. Besides the example given in Sec. 5 some
applications of the method to measured data are e.g. [36, 41, 20, 45].

The basic idea of multiple shooting is that the parameter space is enlarged during the
optimisation process. This offers the possibility to circumvent local minima because the
procedure has more flexibility for searching the parameter space. It is realised by subdi-
viding the time interval I = [t0, te] into nms < n subintervals Ik such that each interval
contains at least one measurement. Each of the intervals is assigned to an individual
experiment having its own initial values (xk

0)k=1,··· ,nms
but sharing the same parameters

p. The only difference in the cost function Eq. (4) is that the trajectory x(ti; x0, p) is
replaced by the interval dependent trajectory x(ti; x

k
0, p) for all k = 1, · · · , nms. Since

the over-all trajectory for each t ∈ I = I1 ∪ · · · ∪ Inms
is usually discontinuous at the

joins of the subintervals, the fitted curve would not satisfy the smoothness assumption
of the model, Eq. (1). To include smoothness of the final trajectory, the optimisation
is constrained such that all discontinuties are removed which therefore leads to a con-
strained non-linear optimisation problem. This has the advantage that further equality
and inequality constraints, such as parameter bounds or conservation relations can easily
be implemented.

For each k = 1, · · · , nms let t+k = max{Ik}, t−k = min{Ik} and θk = (xk
0, p), the

optimisation problem can then be formulated in the following manner:

L(θ1, · · · , θnms
) = 1

2

∑obs
j=1

∑nms

k=1

∑

{i:ti∈Ik}

(
Ra

ijk(θk)
)2

= minθ1,··· ,θnms

subject to
x(t+i ; θi) − x(t−i+1; θi+1) = 0 i = 1, · · · , nms − 1

Re
j(θ1, · · · , θnms

) = 0 j = 1, · · · , ne

Rg
k(θ1, · · · , θnms

) ≥ 0 k = 1, · · · , ng ,

(5)

where the continuity constrains are given at the first row of the constrains-part followed
by some optional constraints Re

j , Rg
k. The cost function L(θ1, · · · , θnms

) is equivalent to
Eq. (4) if the continuity constraints are satisfied, hence

Ra
ijk(θk) =

Y
(j)
i − g(j)(x(ti; θk), p)

σij

.

This non-linear programming type of problem can only be solved iteratively. We use the
generalised-quasi-Newton method for solving (5), where the cost function is expanded
up to the second order with respect to some initial guess θ0 = (θ0

1, · · · , θ0
nms

). All con-
tributions depending on the second derivative of Ra

ijk are neglected afterwards. This is
possible because these contributions are vanishing asymptotically, n → ∞, if the model
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assumptions are correct [10, 35]. From the quadratic approximation an update step
∆θ = (∆θ1, · · · , ∆θnms

) can be calculated by solving the linear programming problem
∑obs

j=1

∑nms

k=1

∑

{i:ti∈Ik}

(
Ra

ijk(θ
0
k) + JθR

a
ijk(θ

0
k)∆θ

)2
= min∆θ

subject to
x(t+i ; θ0

i ) − x(t−i+1; θ
0
i+1) + Jθi

x(t+i ; θ0
i )∆θi − Jθi+1

x(t−i+1; θ
0
i+1)∆θi+1 = 0

Re
j(θ

0) + JθR
e
j(θ

0) ∆θ = 0

Rg
k(θ

0) + JθR
g
k(θ

0) ∆θ ≥ 0 ,

(6)

where Jθ denotes the Jacobian with respect to the parameters θ of the corresponding
function. Setting θl = θl−1 + ∆θ, l = 1, · · · and repeating (6) until ∆θ ≈ 0, yields a
minimum of Eqs. (5) under the condition that all parameters are identifiable and the
constraints are not contradictory. These extra assumptions are necessary to fulfil the so
called Kuhn-Tucker conditions for the solvability of constrained, non-linear optimisation
problems [23, 10]. In Sec. 4, a regularisation approach is discussed for weakening these
restrictions if non-identifiable parameters are present.

In combination with multiple shooting the generalised-quasi-Newton approach has
three major advantages:

1. The optimisation is sub-quadratically convergent.

2. A transformation of Eqs. (6) can be found such that the transformed equations are
numerically equivalent to the initial value approach, which is called condensing.

3. Due to the linearisation of the continuity constraints, they do not have to be fulfilled
exactly after each iteration, but only at convergence.

Properties 1. and 2. are yielding the desired speed of convergence whereas 3. is mainly
responsible for the stability of multiple-shooting. This results form the possibility that
the algorithm can ”walk trough forbidden ground” while searching the minimum. The
main disadvantage is due to the linearisation of the cost function. It can easily happen
that despite the update step ∆θ is pointing in the direction of decreasing L the proposed
step is too large. Such an overshooting is common to any simple optimisation procedures
based on the local approximation of the cost function. A suitable approach to cure this
defect is to damp the proposed step, which is realised by relaxing the update scheme to
θl = θl−1 + λl∆θ for some λl ∈ (0, 1]. Both, the condensation algorithm and the damping
method are necessary for building up a fast and stable parameter estimator for ODEs.
These procedures as well as the main program flow are the subject of following section.

3 Detailed Description of Multiple Shooting

In the previous section the basic idea and some aspects of the performance of multiple
shooting was displayed without emphasising any algorithmic details of the method. To
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fill this gap, each module, starting from the initialisation and ending in the output of
the procedure is discussed in detail. The different stages of the described method can
be extracted from the flow chart, Fig. 1. Beginning at the initialisation, where e.g the

initialisation integration condensation minimisation damping converged ?

no

yes
output

Figure 1: Program flow

multiple shooting mesh as well as the initial values of each interval are set, a first trial
trajectory has to be integrated. Using these data, the linearised problem Eq. (6) can be
formulated for the initial iteration and condensed in order to accelerate the minimisation
process. To prevent overshooting, the relaxation or damping of the obtained update
step is done. Then, a convergence criterion, such as ||∆θ|| ≈ 0, decides whether the
procedure is converged or a further iteration has to be taken into account by integrating
a new trail trajectory, . . . . If the current iteration is convergent, output such as the
parameter estimates, the estimates for the initial values as well as the covariance matrix
for a statistical analysis of the solution is provided. The first non-trivial stage in the
program flow is the integration of a trial trajectory.

3.1 Integration

The choice of the numerical integrator depends on the class of ODE given in Eq. (1) or
its numerical stability. There are four major groups to consider:

1. non-stiff ODEs,

2. stiff problems,

3. delay differential equations

4. and differential algebraic equations.

For non-stiff ODEs standard numerical integrators such as the Runge-Kutta method [35]
with an appropriate step size control can be used. Whereas, if the solution of the ODE has
at least two different time scales which differ over orders of magnitude only stiff integrators
are useful. Especially in the case of multiple shooting we propose to use ODESSA [25, 24],
because the code is optimised for simultaneously solving the sensitivity equations. The
significance of the trajectory’s sensitivity is due to the linearisation given in Eq. (6) and
will be discussed later. Delay differential equations (DDEs) cannot be represented by (1).
Although DDEs are not ordinary differential equations, it is possible to adapt multiple
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shooting to this class of differential equations [19, 21, 46]. Since the right-hand-side of
a DDE depends on the time delayed trajectory or a delay distribution, specially suited
integrators are needed. A widely used DDE integrator is e.g. RETARD [16], for a deeper
discussion of DDE we refer to [6]. Differential algebraic equations (DAEs) are differential
equations in which algebraic relations between the state variables are present. In some
cases the algebraic relations can be formulated as equality constants and are thus treated
like constrained ODEs. This kind of separation is sometimes not possible such that special
DAEs integrators have to be considered [11].

Besides the choice of the integrator, the solution of the sensitivity equations has to be
obtained, because the Jacobian JθR

a
ijk(θ

0
k) or Jθx(t+i ; θ0

i ) in Eq. (6) contains derivatives of
the trajectory with respect to the initial values and parameters:

∂x(t; θk)

∂xk(i)

0

and
∂x(t; θk)

∂p(j)
t ∈ Ik, k = 1, · · · , nms, i = 1, · · · , d, j = 1, · · · , np .

In order to calculate these quantities numerically, three approaches are feasible:

1. finite differences, called external differentiation [9, 10],

2. differentiation of the integration scheme, called internal differentiation [9, 10, 16],

3. and the simultaneous solution of the sensitivity equations [19].

The approximation of the derivatives by finite differences such as

∂x(t; θk)

∂xk(i)

0

≈ h−1 (x(t; θk + ei,x0h) − x(t; θk))

for some h ¿ 1 and ei,x0 being the i-th unit vector with respect to the initial value, leads
to some difficulties. Due to the numerical integration, the trajectory x(t; θk) is corrupted
by numerical noise. Since an adaptive integration step size is used, the maximal noise
strength can be predefined by some constant eps ¿ 1. Consequently, h cannot be chosen
arbitrarily small without destabilising the method. Arguments based on the expansion of
x(t; θk) reveals that the optimal choice is

h = O(
√

eps) , (7)

see e.g. [22]. Unfortunately, the constant of proportionality in Eq. (7) depends on the
second derivative and is therefore not known. Furthermore, a high integration accuracy
is needed for achieving a suitable derivative. Thus, external differentiation should be
avoided because of the unknown parameter h and the high computational cost.

Differentiating the integration scheme is considerably faster than external differen-
tiation [9, 10] and the problem of adjusting a parameter does not occur. On the other
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hand, internal differentiation depends highly on the used integrator and has to be adapted
whenever one decides to try another integration scheme.

A more flexible and quite efficient approach is the simultaneous integration of the
sensitivity equations. Consider again a trajectory x(t; x0, p) = x(t; θ) of Eq. (1) and the
Jacobian Jθ, where the subscript indicates the variables to be differentiated. The time
evolution of the sensitivities S(t; θ) = Jθx(t; θ) is then given by the solution of

d

dt
S(t; θ) = (Jθf)(x(t; θ), t, p) + (Jxf)(x(t; θ), t, p) S(t; θ)

S0 = S(t0; θ) =
( �

d×d, 0d×np

)
, (8)

where
�

d×d is the d×d-unity matrix and 0d×np
the d×np-matrix of zeros. Simultaneously

integrating Eq. (1) and Eq. (8) yields the trajectory as well as the desired sensitivities. It
is further sufficient to restrict the step size control to the main ODE, Eq. (1). Doing this,
the speed and the accuracy is comparable to the internal differentiation. It is therefore a
matter of taste using either the internal differentiation or the the simultaneous solution
of the sensitivity equations, Eq. (8).

Remark on the calculation of derivatives like Jpf, Jxf , etc.: Calculating such Jacobians
by hand can be very time consuming and error-prone for big systems. Some kind of
an automatic differentiation should therefore taken into account. One possibility is to
generate the derivatives at runtime by using program packages like ADIFOR or ADOLC
[7, 15]. Since the derivatives have to be recalculated for every function evaluation, this
approach can easily slow down the whole method by a factor of 10. The calculation of
the Jacobians should therefore processed before the program is executed which can be
realised by using symbolic computation software, e.g. GinNaC [5].

3.2 Condensation

All information is now available for setting up Eq. (6). Suppose that hi = x(t+i )−x(t−i+1),
∆θi = (∆xi

0, ∆p) for all i = 1, · · · , nms − 1 and because of (8), Jxi+1
0

x(t−i+1) =
�

then the
continuity constraints can be written as

hi + Jxi
0
x(t+i ) ∆xi

0 + Jpx(t+i ) ∆p = ∆xi+1
0 i = 1, · · · , nms − 1 . (9)

According to Eq. (9) all initial value update steps at the multiple shooting intervals can
therefore be related to ∆x1

0 by backward elimination. Inserting all other increments into
Eq. (6) yields a system to be solved only for ∆x1

0 and ∆p. Let Ra be the n · nms · nobs-
dimensional vector with components Ra

ijk and Re, Rg respectively, the condensed problem
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is thus

||ua
1 + Ea

1 ∆x1
0 + P a

1 ∆p||2 = min∆x1
0,∆p

subject to
ue

1 + Ee
1 ∆x1

0 + P e
1 ∆p = 0

ug
1 + Eg

1 ∆x1
0 + P g

1 ∆p ≥ 0 ,

(10)

where u
a/e/g
1 and the matrices E

a/e/g
1 , P

a/e/g
1 are determined by the recursion [9, 10]:

Initialisation : u
a/e/g
nms = Ra/e/g , E

a/e/g
nms = Jxnms

0
Ra/e/g , P

a/e/g
nms = JpR

a/e/g

For i = nms, · · · , 2 : u
a/e/g
i−1 = u

a/e/g
i + E

a/e/g
i hi−1

E
a/e/g
i−1 = Jxi−1

0
Ra/e/g + E

a/e/g
i Jxi−1

0
hi−1

P
a/e/g
i−1 = P

a/e/g
i + E

a/e/g
i JpR

a/e/g .

(11)

The condensation algorithm eliminates (9) such that problem (10) is of lower dimension
than the original, Eq. (6). Since (11) involves only matrix multiplications the desired
increase in speed is achieved by solving only the condensed problem. After the solution
of Eqs. (10) is determined, the actual update step ∆θ is obtained by the recursion given
in Eq. (9), which involves again only matrix multiplications.

3.3 Minimisation

The solution of the linear programming problem (10) can be obtained by a minimisation
procedure with a sufficient pre-conditioning of the parameters. Appropriate minimisation
algorithms for the constrained linear optimisation is e.g. LSEI [17] or the method of Stoer
[39].

3.4 Damping

Damping or relaxation of the update is essential for the stability of the whole method.
To judge if the proposed update step is descendant, some kind of level function has to
be chosen. Such a level function must share the same monotony properties of the cost
function close to the global minimum. In case of unconstrained problems, it is feasible to
use the cost function L directly, whereas some modifications are necessary for constrained
problems, such as multiple shooting. These modifications are due to the constraints
entering the level function via Lagrange multipliers. A possible level function is then

T (θ) = L(θ) +
nms+ne−1∑

i=1

αi |Re
i (θ)|

︸ ︷︷ ︸

equality constr.

+

ng∑

i=1

βi |min{0, Rg
i (θ)}|

︸ ︷︷ ︸

inequality constr.

, (12)
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where αi and βi are bounded below the corresponding Lagrange multipliers. Although,
with the aid of this level function, a downhill procedure can always be constructed by
some one-dimensional line-search algorithm. According to [8, 9, 10] it turns out that the
performance of using T (θ) is rather bad. This inefficiency is due to

1. line-search has a high computational cost since a new trajectory has to be integrated
for each evaluation of Eq. (12) and

2. the local geometry of the minimisation problem is not adapted to the level function,
leading to extremely small steps for badly conditioned problems.

To surmount these problems H.G. Bock [8, 9, 10] proposed to replace the line-search by
some predictor-corrector method and the level function is changed to include the local
geometry.

The adaption to geometrical issue can be realised by the so called natural level function.
Suppose that the solution of the linearised minimisation problem, Eq. (6), can be obtained
by the linear-operator G(θ), mapping R = (Ra, Re, Rg) to the parameter update ∆θ. For
some θ, the natural level function is then given by

TN(θ) = ||G(θl)R(θ)||2 , (13)

where θl is again the initial value for the l-th iteration. It can further be shown that in
the vicinity of the minimum, say θ∗, the natural level function is measuring the distance
between θ and θ∗ up to third order and feasibility condition for level functions is satisfied
for every non-singular problem. Therefore all application specific geometric properties
of the parameter ”landscape” are reduced to the properties of the Euclidean-norm in
the vicinity of θ∗, such that an efficient determination of the relaxation coefficient λ is
expected.

Finding an appropriate λ for which the minimisation scheme is descendant involves
again some kind of line-search to guarantee that TN(θl +λ∆θ) < TN(θl) is satisfied. Since
the evaluation of the natural level function involves the integration of the trajectory and in
addition the solution of the whole minimisation procedure, calculating TN is quite expen-
sive. Fortunately, it is possible to determine the relaxation coefficient without evaluating
TN if the quantity

ω(θl, G, λ) = sup
s∈(0,λ]

{

||G(θl)
(
JθR(θl + s∆θ) − JθR(θl)

)
∆θ||

s||∆θ||2

}

, (14)

for every λ ∈ (0, 1] is known, [10]. Providing some 0 < η < 2, the maximal step length λ∗

is then given by the solution of

λ∗ = min

{

1,
η

ω(θl, G(θl), λ∗) ||∆θ||

}

. (15)
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It can further be shown that this choice of λ∗ yields TN(θl + λ∗∆θ) ≤ (1 − λ∗ (1 −
η/2))2 TN(θl) < TN(θl). Moreover, if the relaxation coefficient is chosen to be λl ∈
[λ∗(η1), λ

∗(η2)], for 0 < η1 ≤ η2 < 2, the damped generalised-quasi-Newton method
converges to a full-step procedure, λ = 1, when the parameters are approaching the
minimum.

Since ω(θl, G, λ) is a-priori not known a suitable estimation or approximation is nec-
essary. Demanding the coincidence of the estimator with Eq. (14) in the limit λ → 0
automatically guarantees an appropriate relaxation scheme whenever a massive damping
is needed. The estimator

ω̂(θl, G, λ) = 2
||G(θl)R(θl + λ∆θ) + (1 − λ)∆θ||

||λ∆θ||2 , (16)

satisfies this desired property, [10]. Although the proposed estimator is sufficient for the
damping strategy, the replacement of ω with ω̂ in Eq. (15) leads again to many com-
putationally expensive function evaluations of R. Providing a computationally efficient
damping algorithm, it is firstly assumed that ω̂(θl−1, G, λl−1) from the previous Gauss-
Newton iteration is approximately constant for the actual iteration. If this assumption
holds the damping of the current iteration is determined by

λl = min

{

1,
η0

ω̂(θl−1, G, λl−1) ||∆θ||

}

, (17)

for some 0 < η0 < 2. If the assumption is violated such that decreasing of the method
cannot be guaranteed, ω̂ has to be recalculated from Eq. (16) but now using λl, given
in Eq. (17). This procedure has to be repeated until a suitable relaxation coefficient has
been obtained. For some 0 < η0 < η2 < 2, τ ∈ [0.5, 1] and 0 < τmin ¿ 1, the damping
procedure can be summarised by the following algorithm:

1. Set j = 0 and calculate the predictor µj = η0/
(
ω̂(θl−1, G, λl−1) ||∆θ||

)
.

2. The predicted relaxation step is then given by

λpred
j =







1 τ < µj

µj τmin ≤ µj ≤ τ

τmin µj < τmin

.

3. If ω̂(θl, G, λpred
j )λpred

j ≤ η2 then the proposed step λpred
j = λl yields a descending

update and is therefore accepted. Whereas, if the above statement is violated,
j = j + 1 and

4. the prediction λpred
j−1 is corrected by

µj =
η0

ω̂(θl, G, λpred
j−1 ) ||∆θ||

.
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5. Step 2, 3 and 4 are repeated until a sufficient relaxation coefficient λl is found or
the minimal step length τmin is reached.

In order to ensure the numerical stability of the damping algorithm, a predefined minimal
relaxation τmin must be provided. An upper threshold τ is also given, which determines the
transition from a damped procedure to a full step approach, λl = 1. Finally, η0, η2 are con-
trolling the correction of the prediction, which can be estimated by λpred

j < (η0/η2)λ
pred
j+1 .

A suitable choice of these control parameters is e.g. τmin = 0.01, τ = 0.9, η0 = 1 and
η2 = 1.8. Since there is no information about ω̂ for the first Gauss-Newton iteration, one
can chose ω̂ such that λ1 attains the lower bound τmin.

The described damping algorithm reflects the advantageous geometrical properties of
the natural level function. Furthermore, the correction of the prediction λpred

j is rarely
activated such that in most of the cases only one extra integration is needed to achieve
an appropriate damping. Unfortunately, there are no rigorous proofs that this damping
strategy always yields a descending method, which is due to the approximation of ω. But
the algorithm provides excellent results in practice, we can therefore highly encourage the
use of this damping scheme.

3.5 Output

Beside the pure estimation of parameters and initial values statistical information such
as standard errors or confidence intervals for these values are essential in practice. In
the case of maximum likelihood estimators the statistical properties can be derived in
the asymptotic limit. Under mild conditions, the estimator is converging to the ”true”
parameters and the parameters are normally distributed [44]. The covariance matrix of the
estimates can be obtained from the Fisher information matrix which can be approximated
by

IF(θ̂)ij =
∂2L(θ̂)

∂θi∂θj

, (18)

where L is the negative logarithm of the likelihood. Inverting IF(θ̂) then yields the
covariance matrix for the estimated parameters θ̂.

The described procedure for estimating parameters in ODEs is a maximum likelihood
approach, such that Eq. (18) provides a sufficient approximation of the covariance matrix.
Most of the minimiser, e.g. [17], simultaneously calculate this covariance matrix within
the quadratic approximation discussed in Sec. 2.2.

All these stages define the basic algorithm of multiple shooting which are valid in
case of identifiable problems. As explained, the restriction of having only identifiable
parameters is of great importance for the convergence of the algorithm, the damping
strategy and the statistical analysis. To judge if the system of interest contains only
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identifiable parameters several methods can be applied, e.g [12, 14, 27, 34]. Since these
methods can involve extremely tedious calculations even for small models, it is often a-
priori not feasible to decide whether the system is identifiable. Alternatively, the multiple
shooting method can be modified to obtain parameter estimates even if some parameters
can not be identified. A possible implementation of such a strategy is described in the
next section.

4 Regularisation

If some parameters are not identifiable at a certain domain in the parameter space, the
matrix P a

1 of the condensed system (10) does not have its full rank whenever the algorithm
tries to enter this region. The central idea of the regularisation approach is to manipulate
the estimation process such that the rank criterion above is satisfied. The manipulation
we propose can be regarded as heavily damp a specific parameter set such that they
appear to be fixed.

A singular value decomposition [35] of P a
1 = U diag(w1, · · · , wnp

) V T has to be cal-
culated first to determine if the rank criterion is fulfilled. Both matrices U , V T are
orthogonal, by convention V T is the transposed matrix of V , and diag(w1, · · · , wnp

) is a
diagonal matrix containing the positive (also by convention) singular values w1, · · · , wnp

.
It this further assumed that the singular values are in descending order w1 ≥ · · · ≥ wnp

.
The rank criterion is said to be violated if the condition number wnp

/w1 is below a given
threshold 0 < εc ¿ 1. Introducing a threshold is necessary because the numerical error
prevents the condition number to vanish exactly. Therefore, the value of εc should be close
to the accuracy of the machine. In order to judge, which parameters contribute to the
violation of the rank criterion, the set Mc = {i : wi/wnp

≤ εc} of all singular directions
is regarded. Let

Πc =
∑

i∈Mc

ei ⊗ eT
i

be the projection onto the space of all singular directions, the regularisation can be realised
by enlarging the corresponding singular values. For this reason, let us choose some ∆ À
w1. The regularised matrix P̃ a

1 is the given by

P̃ a
1 = W

(
diag(w1, · · · , wnp

) + ∆ Πc

)
V T . (19)

For a well adjusted value of ∆ all parameters contributing to the singular directions are
almost kept fixed if P a

1 is replaced by P̃ a
1 in Eq. (10), as desired. Since the described

regularisation method is similar to the classical damping procedure of Levenberg and
Marquardt [26, 30], regularisation can also be regarded as an individual damping of ill-
conditioned directions. Unfortunately, the statistical analysis of regularised parameters is
not possible anymore. On the other hand, regularisation can help to remove parameters
until the system is identifiable. If once the set of identifiable parameters is found, the
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statistical analysis of Sec. 3.5 is possible for the remaining parameter estimates. Note
that if some initial values are not identifiable, the same procedure can also be applied to
the matrix Ea

1 in Eq. (10).

5 Examples

To display how multiple shooting operates, we present two examples in the following. The
first dataset is synthetically generated and can be considered as some kind of benchmark.
Here, a chaotic oscillator is chosen as data generating system which is particularly hard
to identify. This is due to the sensitive dependence of the trajectory with respect to
the initial values. The the data of the second example can be obtained form the online
material of [42]. In this example, biochemical data of the STAT5 pathway are modelled.

5.1 Example 1: Simulated Data

A dataset of the Lorenz system [29] is generated by integrating the system’s equation

dx/dt = σ(y − x)

dy/dt = −y + x(r − z)

dz/dt = xy − bz

using a Runge-Kutta integration scheme with adaptive step size [35]. The three
parameters are chosen to be σ = 10, r = 28, b = 2.66 and the sampling interval is set to
∆t = 0.1. For this parameter setting the system is situated in the chaotic regime and the
sampling guarantees a sufficient amount of data points within a period of the oscillation.
Additionally, only one state variable, the x-component, is observed and corrupted with
Gaussian white noise having a noise-to-signal ratio of 5%.

For the estimation procedure, the parameters are initially set to σ0 = 100, r0 = b0 = 0
resulting a trajectory which is far away of the domain of convergence for the initial value
approach. To assure that the trajectory is lying in the chaotic attractor the time interval
t ∈ [20, 40] is chosen for fitting purposes, yielding a total amount of n = 200 data points.
Due to the sensitive dependence on the initial values of the chaotic motion it is not possible
to fit an arbitrary long dataset. For this reason we divide the dataset in two parts and
fitting them simultaneous in a multi-experiment fashion. Therefore, the strict continuity
is weakened at the joint of the datasets allowing to fit the whole time span.

Snapshots of three multiple shooting iterations are shown in Fig. 2. Since nearly every
data point is used as starting point for the multiple shooting interval the initial curve
is highly erratic. The discontinuities are removed to obtain a smooth trajectory after
the algorithm has been converged. As expected, the data are perfectly fitted and the
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(a)  Initial State
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Figure 2: Identification of the Lorenz system using multiple shooting. Due to the large
amount of multiples shooting intervals the initial trajectory (a) is highly discontinuous.
Since discontinuities are remove during the iterations (b), the trajectory turns out to be
continuous at convergence (c).

estimated parameters σ̂ = 9.87± 0.51, r̂ = 27.68± 0.34, b̂ = 2.73± 0.06 are in accordance
with the true parameters.

5.2 Example 2: Measured Data

So far, only simulated data are considered where the model structure is completely known.
If measured data are modelled the choice or selection of a parameterised model which
properly captures the underlying dynamics complicates the situation significantly. For
the considered data the model selection procedure is thoroughly described in [42]. Here,
we only concentrate on the identification of the model. Before doing this, it is necessary to
provide a brief description of the model. The biochemical reaction starts at the activation
or phosphorylation of the STAT5 molecule. This reaction is driven by the EPO recep-
tor located at the cell membrane. Then, two activated STAT5 molecules can undergo a

15



dimerisation. Only the a STAT5 dimer enters the cell-nucleus and can trigger the tran-
scription of target genes. After the dimer has accomplished its job, the dimer separates
and the STAT5 molecule is dephosphorylated. Finally, these single STAT5 molecules are
able to reenter the cytoplasm and can again be activated by the receptor.

Assuming that the transport mechanisms from the cell membrane to nucleus are suf-
ficiently fast, such that no concentration gradients can occur, the dynamical behaviour of
the pathway can be approximate by an ODE. Since no in-vivo measurements inside of the
nucleus are possible, all nuclear processes are condensed into a single step which contains
a time delay. Let x1 be the concentration of unphosphorylated STAT5, x2 the activated
STAT5 and x3 the STAT5 dimer. The receptor activity is denoted by EpoRA(t) and x4

is the concentration of STAT5 molecules staying in the nucleus. Unfortunately, no con-
centration of the reaction components can be measured directly. Instead, up to a-priori
unknown scaling parameters s1, s2 the total amount of activated STAT5, y1 = s1 (x2 +x3)
and the total amount of STAT5 y2 = s2 (x1 + x2 + x3) in the cytoplasm is accessible. For
a given set of observations, the most simple identifiable ODE capturing all the properties
stated above is

ẋ1 = −k1x1EpoRA(t) + k2x3(t − τ)

ẋ2 = −x2
2 + k1x1EpoRA(t)

ẋ3 = −k2x3 + x2
2

ẋ4 = −k2x3(t − τ) + k2x3 , (20)

where k1, k2 are rate constants and τ is a delay parameter. Instead of using a ”hard”
delay in Eq. (20), we decided to use a delay chain approach. A delay chain of length N
is a linear ODE of type

q̇1 = N/τ (in(t) − q1)

q̇2 = N/τ (q1 − q2)

· · ·
q̇N−1 = N/τ (qN−2 − qN−1)

˙out = N/τ (qN−1 − out(t)) .

Here, in(t) is the input and out(t) the output of the delay chain. It can be shown that
such a chain generates a delay distribution having a mean delay of τ and a variance of
τ 2/N . In case of STAT5 we set in(t) = x3(t), out(t) = x3(t − τ), and N = 8.

Now, all model ingredients are available for fitting the dataset shown in Fig. 3. But
due to the experimental design outlined in [42] it is known that all state variables except
x1 are initially zero, these values are therefore kept fixed throughout the optimisation.
In addition, it is not possible to estimate the scaling parameters s1, s2 from a single
experiment but in a multi-experiment fashion. It turns out that the scaling is s1 = 0.33
and s2 = 0.26 for the displayed dataset. The remaining parameters as well as the initial
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Figure 3: Total activated STAT5, y1, and total STAT5, y2, in the cytoplasm of the cell.
The trajectory of the best fit is indicated by the solid line.

value of x1 can then be estimated form a single dataset. They turns out to be k1 =
(2.12 ± 0.22) min−1mol−1, k2 = (0.109 ± 0.015) min−1mol−1, τ = (5.2 ± 0.6) min and
x1(0) = (3.71± 0.07) mol. The corresponding trajectory is displayed in Fig. 3. Moreover,
the fitted model yields a good description of the data.

6 Summary

The parameter estimation procedure for ordinary differential equations, multiple shooting,
is reviewed and detailedly described. In contrast to other attempts of estimating parame-
ters in differential equations, this procedure does not suffer heavily from the attraction to
local minima and the speed of convergence is considerably higher than global optimisation
methods can achieve. Besides the general idea of embedding the problem into a higher
dimensional parameter space, the speed of convergence as well as the stability can only
be achieved by sophisticated numerical methods. Especially the condensation algorithm
and the damping strategy can be considered as landmarks of this issue. These aspects
are thoroughly explained within the remaining issues of the method, such as integration
of the ODE, minimisation and the statistical analysis of the estimates. Identifiability of
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the parameters can be regarded as central assumption for a successful operation of most
of the numerical components. A regularisation procedure to weaken this assumption is
included to the discussion of multiple shooting. The regularisation can further help to
remove all unidentifiable parameters. Towards the end of this review we appended two
examples to demonstrate the performance of multiple shooting.

Moreover, the extension of multiple shooting to partial differential equations is also
possible, [32, 33]. Additionally, the method can also be used to find an optimal experi-
mental design, see e.g. [28, 13]. This broad applicability of the multiple shooting method
marks the relevance of such a tool for a vast range of applied sciences and engineering.
The method can also yield a valuable contibution for validating the model, e.g. needed in
discrete event simulations. We hope that this review allows an easy re-implementation of
the presented ideas, and therefore propagating the availability of the method to a larger
community.
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