UNIVERSITY OF MINNESOTA

Thisisto certify that | have examined thisbound copy of adoctoral thesis by

Anshul Gupta

and have found that it is complete and satisfactory in all respects,
and that any and all revisionsrequired by thefina

examining committee have been made.

Vipin Kumar

Name of Faculty Adviser

Signature of Faculty Adviser

Date

GRADUATE SCHOOL

Analysis and Design of Scalable Parallel Algorithms
for Scientific Computing

A THESIS
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL
OF THE UNIVERSITY OF MINNESOTA
BY

Anshul Gupta

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

July 31, 1995

ABSTRACT

This dissertation presents a methodol ogy for understanding the performance and scalability of
algorithms on parallel computers and the scalability analysis of a variety of numerical algorithms.
We demonstrate the analytical power of this technique and show how it can guide the development
of better paralel agorithms. We present some new highly scalable parallel algorithms for sparse
matrix computations that were widely considered to be poorly suitable for large scale pardle
computers.

We present some laws governing the performance and scalability properties that apply to al
paralle systems. We show that our results generalize or extend a range of earlier research results
concerning the performance of parallel systems. Our scaability analysis of algorithms such as
fast Fourier transform (FFT), dense matrix multiplication, sparse matrix-vector multiplication, and
the preconditioned conjugate gradient (PCG) provides many interesting insightsinto their behavior
on paralel computers. For example, we show that a commonly used paralel FFT algorithm that
was thought to be ideally suited for hypercubes has a limit on the achievable efficiency that is
determined by the ratio of CPU speed and communication bandwidth of the hypercube channels.
Efficiencies higher than this threshold value can be obtained if the problem size is increased very
rapidly. In the case of parallel PCG agorithm, we found that the use of a truncated Incomplete
Cholesky (IC) preconditioner, which was considered unsuitablefor parallel computers, can actually
improve the scalability over a parallel CG with diagonal or no preconditioning. As a result, a
parallel formulation of the PCG agorithm with this|C preconditioner may execute faster than that
with asimple diagonal preconditioner even if the latter runs faster in a serial implementation for a
given problem.

We have developed a highly parallel sparse Cholesky factorization algorithm that substantially
improves the state of the art in parallel direct solution of sparse linear systems—both in terms of
scalability and overall performance. It isawell known fact that dense matrix factorization scales

well and can be implemented efficiently on parallel computers. However, it had been a challenge

to devel oping efficient and scalable parallel formulations of sparse matrix factorization. Our new
parallel sparse factorization algorithm is asymptotically as scal able as the best dense matrix factor-
ization algorithms for a wide class of problems that include al two- and three-dimensiona finite
element problems. Thisagorithm incurs less communication overhead than any previously known
paralle formulation of sparse matrix factorization. It is equally scalable on paralel architectures
based on 2-D mesh, hypercube, fat-tree, and multistage networks. In addition, it isthe only known
sparse factorization agorithm that can deliver speedups in proportion to an increasing number of
processors while requiring almost constant memory per processor.

We have successfully implemented this agorithm for Cholesky factorization on nCUBE2 and
Cray T3D parald computers. An implementation of this algorithm on the T3D delivers up to
20 GFlops on 1024 processors for medium-size structural engineering and linear programming
problems. To the best of our knowledge, thisis the highest performance ever obtained for sparse
Cholesky factorization on any supercompute.

Numerical factorization is the most time consuming of the four phases involved in obtaining
a direct solution of a sparse system of linear equations. In addition to Cholesky factorization, we
present efficient parallel algorithmsfor two other phases—symbolic factorization and for forward
and backward substitutionto solvethetriangular systemsresulting from sparse matrix factorization.
These agorithms are designed to work in conjunction with our sparse Cholesky factorization
algorithm and incur less communication overhead than parallel sparse Cholesky factorization.
Along with some recently developed parallel ordering algorithms, the algorithms presented in this
thesismakeit possibleto develop complete scalable parallel direct solversfor sparse linear systems.
Although our current implementationswork for Chol esky factorization, thea gorithm can beadapted
for solving sparse linear least squares problems by QR factorization and for Gaussian elimination
of matricesthat do not require pivoting, thus paving theway for scalable parallel solutionto an even

wider class of problems.

ACKNOWLEDGMENTS

In completing this thesis, | am indebted to a number of mentors, colleagues, friends, family
members, and institutions—too many to list comprehensively. First and foremost, my sincere
gratitude goesto my advisor Professor Vipin Kumar, who gave me a unique educational opportunity
and working environment. | owe my academic and other achievements during my graduate student
years to his guidance, support, enthusiasm, and an extremely helpful and generous nature.

I would like to thank Professors Shantanu Dutt, David Lilja, Matthew O’ Keefe, Youcef Saad,
Ahmed Sameh, and Shang-Hua Teng for taking the time to serve on my preliminary and final
examination committees. Some parts of the thesis contain results of research done in collaboration
with George Karypis and Ahmed Sameh. | am grateful to Dr. Fred Gustafson at IBM T. J. Watson
Research Center and Prof. Michael Heath at University of Illinois, Urbanafor their input and interest
in my work. | thank ProfessorsP. C. P. Bhatt, K. K. Biswas, A. K. Gupta, S. K. Gupta, A. Kumar, S.
Kaushik, B. B. Madan, and S. N. Maheshwari at the Computer Science Department, Indian Institute
of Technology for helping me acquire the background necessary to pursue a doctoral degree. In
an administrative capacity, | thank Professors Sameh, Stein, and Tsai for their efforts. | would
also like to thank the cooperative and helpful staff at the Department of Computer Science and the
Army High Performance Computing Research Center (AHPCRC) at the University of Minnesota.
Other institutionsthat supported this research through grants and supercomputer time are the Army
Research Office, Minnesota Supercomputer Institute, Sandia National Labs, Cray Research Inc.,
and Pittsburgh Supercomputer Center.

I thank my colleagues George Karypis, Dan Challou, Ananth Grama, and Tom Nurkkala for
their friendship, advice, and help. | also consider myself lucky to have such dear friends as Ajit,
Deepak, Julianna, Kalpana, Lekha, Sanjay, Sarika, Suranjan, Vivek and many others who made my
six years' stay in Minneapolisarich and rewarding experience. Last, but not theleast, | am indebted

to my parents, without whose love, efforts, and sacrifice thiswork would not have been possible.

LIST OF FIGURES

2.1 Computing the sum of 16 numbers on a 4-processor hypercube.

22 Atypica Teversespeurvefor T, <O(p). . . . v o oo v i v it

2.3 Tpverses p curvefor T, > ©(p) showing T whenC(W) < po.

2.4 Tpverses p curvefor T, > ©(p) showing T whenC(W) > po.

3.1 The Cooley-Tukey algorithm for single dimensional unordered FFT.
3.2 Speedup curves on ahypercube for various problemsizes.
3.3 Isoefficiency curves for 3 different valuesof Eonahypercube.
3.4 Isoefficiency curves on mesh and hypercubefor E=066.
3.5 A comparison of thefour algorithmsfort, =3andt;=150.
3.6 A comparison of thefour algorithmsfort, =3andt;=10..
3.7 A comparison of thefour algorithmsfort, =3andt;=0.5.
3.8 Efficiency as a function of matrix size for Cannon’s algorithm and GK agorithm

for BAProCcesSSOrS. e e e
3.9 Efficiency vs matrix size for Cannon’s agorithm (p = 484) and the GK agorithm

(P=512). o oo oo
3.10 The Preconditioned Conjugate Gradient algorithm.
3.11 Partitioning afinite differencegridonaprocessormesh.
3.12 Isoefficiency curves for E = 0.5 with afixed processor speed and different values

of channel bandwidth. L
3.13 Isoefficiency curves for E = 0.5 with afixed processor speed and different values

of message startuptime.
3.14 Isoefficiency curves for different efficiencies withts = 20 andt, =4..

3.15 Partition of a banded sparse matrix and a vector among the processors.

iv

17
22
23

62

64
65
68

75

76

77
79

3.16 Speedup curves for block-tridiagonal matrices with diagonal preconditioner. . . . 83

3.17 Efficiency curves for the diagona and the IC preconditioner with a 1600 x 1600

matrix of coefficients. 84
3.18 Isoefficiency curves for thetwo preconditioningschemes. 85

3.19 Efficiency plots for unstructured sparse matrices with fixed number of non-zero

gementsperrow. e 86

3.20 Isoefficiency curves for banded unstructured sparse matrices with fixed number of

NON-zero elementSPEr row. i it e 87

3.21 Anisoefficiency curvefor unstructured sparse matriceswith the number of non-zero

elements per row increasing withthe matrixsize. 88

41 Anoverview of the performance and scalability of parallel agorithmsfor factoriza-
tion of sparse matrices resulting from two-dimensional N-node grid graphs. Box
D represents our algorithm, which is a significant improvement over other known

classes of dgorithmsfor thisproblem. 93

4.2 Theseria computational complexity of thevarious phasesof solving asparsesystem
of linear equations arising from two- and three-dimensional constant node-degree

graphs. e e e 95

4.3 An elimination-tree guided recursive formulation of the multifrontal algorithm for
Cholesky factorization of a sparse SPD matrix Ainto LLT. If r isthe root of the
postordered dimination tree of A, then acal to Factor(r) factorsthe matrix A. . . 98

44 The extend-add operation on two 3 x 3 triangular matrices. It is assumed that

i0<i1<i2<i3 99

45 A symmetric sparse matrix and the associated elimination tree with subtree-to-
subcube mapping onto 8 processors. The nonzeros in the origina matrix are

denoted by the symbol “ x” and fill-ins are denoted by the symbol “o”. 100

\'

4.6

4.7

4.8

4.9

4.10

411

4.12

4.13

4.14

Steps in serial multifrontal Cholesky factorization of the matrix shown in Fig-
ure 4.5(a). The symbol “+” denotes an extend-add operation. The nonzeros in
the original matrix are denoted by the symbol “ x” and fill-ins are denoted by the
symbol “o”. . L e

Extend-add operations on the update matrices during parallel multifrontal factoriza-
tion of the matrix shownin Figure4.5(a) on eight processors. P;|M denotesthe part
of the matrix M that resides on processor number i. M may be an update matrix or
theresult of performing an extend-add on two update matrices. The shaded portions

of amatrix are sent out by a processor to its communication partner in that step.

Four successive parallel extend-add operations (denoted by “+") on hypothetical

update matrices for multifrontal factorization on 16 processors.

The two communication operations involved in a single elimination step (index of
pivot = 0 here) of Cholesky factorization on a 12 x 12 frontal matrix distributed

OVEr L6 PrOCESSOIS. . . & v v v o e e e e e e e e e e e e e

101

103

105

Block-cyclic mapping of a12 x 12 matrix onalogical processor mesh of 16 processors.107

Labeling of subtreesin subtree-to-subcube (a) and subtree-to-submesh (b) mappings.108

Comparison of our experimental isoefficiency curves with ®(p*®) curve (theo-
retical asymptotic isoefficiency function of our algorithm due to communication
overhead on a hypercube) and with ® (p'°(log p)®) curve (the lower bound on the
i soefficiency function of the best known parallel sparsefactorization algorithm until
now). The four data points on the curves correspond to the matrices GRID63x63,

GRID103x95, GRID175x127, and GRID223x207.
The two functions performed by thetree balancing algorithm.

Plot of the performance of the parallel sparse multifrontal algorithm for various
problems on Cray T3D (from [53, 78]). The first plot shows total Gigaflops

obtained and the second one shows Megaflops per processor.

Vi

118

120

4.15

4.16

4.17

4.18

4.19

4.20

4.21
4.22

Pictoria representation of forward elimination along three levels of an elimination
tree. The color of an RHS box is determined by the color(s) of the box(es) at the
next lower level that contributetoitsvalue.
Progression of computation consistent with data dependenciesin paralle pipelined
forward eliminationinahypothetical supernode of thelower-triangular factor matrix
L. Thenumber in each box of L representsthetime step inwhich the corresponding
element of L isused in the computation. Communication delays areignored inthis
figure and the computation timefor each box isassumed to beidentical. In parts (b)
and (c), the supernode is partitioned among the processors using a cyclic mapping.
A block-cyclic mapping can be visualized by regarding each box asab x b block
(the diagonal boxeswill represent triangular blocks).
Column-priority pipelined backward substitution on a hypothetical supernode dis-
tributed among 4 processors using column-wisecyclic mapping.
A table of communication overheads and isoefficiency functions for sparse factor-
ization and triangular solution with different partitioningschemes.
Converting the two-dimensional partitioning of a supernode into one-dimensional
partitioning. e
Performance versus number of processorson a Cray T3D for parallel sparse trian-
gular solutionswith different number of right-hand side vectors (from [57]). . . .
An dimination-tree guided recursive algorithm for symbolicfactorization
Theserial and parallel complexitiesof the various phases of solving asparse system

of linear equations arising from two- and three-dimensional constant node-degree

Vii

127

129

130

136

137

140
142

21

31

3.2

3.3

34

4.1

4.2

4.3

LIST OF TABLES

Performance of FFT on a hypercube with N = 1024, t, = 2andt, = 0.1.

Scalability of FFT agorithm on four different hypercubes for various efficiencies.
Each entry denotestheratioof logntologp.
Efficiencies as afunction of input size and number of processors on a hypercube of

type My, . . e
Communication overhead, scal ability and range of application of thefour algorithms
onahypercube.
Scalability of aPCG iteration with unstructured sparse matrices of coefficients. The
average number of entriesin each row of the N x N matrix isae N* and these entries

are located within aband of width 8NY along the principa diagonal.

Experimental results for factoring sparse symmetric positive definite matrices as-
sociated with a 9-point difference operator on rectangular grids. All times are in
SECONOS.
Experimental resultsfor factoring some sparse symmetric positive definite matrices
resulting from 3-D problems in structura engineering. All times are in seconds.
The single processor run times suffixed by “*” and “#” were estimated by timing
different parts of factorization on two and 32 processors, respectively.
The performance of sparse Cholesky factorization on Cray T3D (from [53, 78]).
For each problem the table contains the number of equations n of the matrix A,
the original number of nonzeros in A, the nonzeros in the Cholesky factor L, the
number of operations required to factor the nodes, and the performance in gigaflops

for different number of processors.

viii

28

47

48

82

117

119

123

44 A table of experimental results for sparse forward and backward substitution on
a Cray T3D (from [57]). In the above table, “NRHS’ denotes the number of
right-hand side vectors, “FBsolve time” denotes the total time spent in both the
forward and the backward solvers, and “FBsolve MFLOPS’ denotes the average

performance of the solvers in million floating point operations per second. See

footnote in the text

Contents

List of Figures iv
List of Tables viii
1 Introduction 1
2 Performance and Scalability Metricsfor Parallel Systems 5
21 Définitionand Assumptions 6
2.2 Thelsoefficiency Metricof Scalability 9
2.3 Reationship between Isoefficiency and Other Metrics 13
231 Minimizingthe Parallel ExecutionTime 16
2.3.2 Minimizing Tp and the Isoefficiency Function 22
233 Minimizing p(Tp)" o o e 25
234 Minimizing p(Tp)" and the Isoefficiency Function 26
235 Significanceinthe Context of Related Research 29
3 Scalability Analysisof Some Numerical Algorithms 32
31 FastFourier Transform 33
3.11 TheFFT Algorithm 33

3.1.2 Scalahility Analysis of the Binary-Exchange Algorithm for Single Dimen-
sional Radix-2Unordered FFT 35

3.1.3 Scalahility Analysis of the Transpose Algorithm for Single Dimensional
Radix-2Unordered FFT, 39
3.14 Impact of Architectural and Algorithmic Variations on Scalability of FFT . 40
3.1.5 Comparison between Binary-Exchange and Transpose Algorithms 40

3.2

3.3

3.1.6 Cost-Effectiveness of Mesh and Hypercube for FFT Computation 41

317 Expeimenta Results 43
Dense Matrix Multiplication 47
321 Padld Matrix Multiplication Algorithms 48
322 ScdabilityAnalysis 54
3.23 Relative Performance of the Four Algorithmson aHypercube 55

3.2.4 Scalabilities of Different Algorithms with Simultaneous Communication

on All HypercubeChannels 58
3.25 Isoefficiency asaFunction of Technology Dependent Factors 60
326 Expeimenta Results 61

Performance and Scalability of Preconditioned Conjugate Gradient Methods on

Paralld Computers 63
331 TheSerid PCG Algorithm 64
3.3.2 Scalahility Analysis: Block-Tridiagonal Matrices 68
3.3.3 Scalahility Analysis. Unstructured Sparse Matrices 78
3.34 Experimenta Resultsand their Interpretations 82
335 SummaryofResults 87

4 Scalable Parallel Algorithmsfor Solving Sparse Systems of Linear Equations 90

4.1
4.2
4.3
44

45

Earlier Research in Sparse Matrix Factorization and Our Contribution. 92
Chapter Outline e 95
The Serial Multifrontal Algorithm for Sparse Matrix Factorization 97
A Pardld Multifrontal Algorithm 100
441 Block-Cyclic Mapping of MatricesontoProcessors 106
44.2 Subtree-to-Submesh Mapping for the 2-D Mesh Architecture 107
Anaysisof CommunicationOverhead 109
451 OverheadinPardlel Extend-Add 111
452 OverheadinFactorizationSteps 111

Xi

453 Communication Overhead for 3-D Problems . . .
454 Communication OverheadonaMesh
4.6 Scaability Analysis
4.6.1 Scalability with Respect to Memory Requirement .
4.7 Experimental Results of Sparse Cholesky Factorization . .
471 Load Baancing for Factorization
4.8 Pardle Algorithmsfor Forward Elimination and Backward
Solutionof SparseLinear Systems
481 Algorithm Description
482 Backward Substitution.
483 Andysis.o
484 DataDistribution for Efficient Triangular Solution .
485 Experimenta Results
49 Padld Symbolic Factorization
491 TheSerid Algorithm
492 Padld Formulation
49.3 Overhead and Scaability
4.10 A Complete Scalable Direct Solver for Sparse SPD Systems

411 Applicationto Gaussian Elimination and QR Factorization
5 Concluding Remarksand Future Work
Bibliography

A Complexity of Functions and Order Analysis
Al Complexityof Functions
A.2 Order Analysisof Functions

B Proof of Casel in Section 2.3.1

Xii

Substitution in Direct

147

151

164
164
165

168

C Proof of Casell in Section 2.3.1 169

D Derivation of the | soefficiency Function for Parallel Triangular Solvers 171

Xiii

Chapter 1

INTRODUCTION

Parallel computersconsisting of thousandsof processorsare now commercially available. These
computers provide many orders of magnitude more raw computing power than traditional super-
computersat amuch lower cost. They open up new frontiersin the application of computers—many
previously unsolvable problems can be solved if the power of these machines is used effectively.
The availability of massively paralel computers has created a number of challenges, for example:
How should parallel computers be programmed? What algorithms and data structures should be
used? How can the quality of the agorithms be analyzed? Which algorithms are suitable for
particular paralel computer architectures? This dissertation addresses some of these issues in the

design and analysis of parallel agorithms.

Anayzing the performance of agiven parallel algorithm/architecture calls for acomprehensive
method that accounts for scalability: ameasure of aparalel system’s capacity to effectively utilize
an increasing number of processors. There hasbeen extensivework ininvestigatingthe performance
and scalability properties of large scale parallel systems and several laws governing their behavior
have been proposed. Amdahl’s law one of the earliest examples. In Chapter 2, we survey a
number of techniques and formalisms that have been devel oped for studying the performance and
scalability issuesin parallel systems, and discusstheir interrel ationships. We present amethodol ogy
for understanding these issues based on isoefficiency metric of scalability, which relates problem
size to the number of processors required to maintain a fixed efficiency. We present some laws
governing the performance and scalability propertiesthat parallel systemsmust obey and show that
our results generalize or extend a range of earlier research results concerning the performance of
paralld systems. For example, we show that instances of a problem with increasing size can be

solved in a constant parallel run time by employing an increasing number of processorsif and only

if theisoefficiency function of the parallel systemislinear with respect to the number of processors.
We show that for awide class of parallel systems, the relationship between the problem size and the
number of processors that minimize the run time for that problem size is given by an isoefficiency

curve.

I soefficiency analysis can be used to determine scal ability with respect to the number of proces-
sors, their speed, and the communication bandwidth of the interconnection network. It succinctly
capturesthe characteristics of aparticul ar algorithm/architecturecombinationin asingleexpression;
thus, allowingacomparison among various combinationsfor arange of problem and machine sizes.
In Chapter 3, we demonstrate the analytical power of the isoefficiency function by obtaining many
useful insightsinto the behavior of several numerical agorithms on different parallel architectures.
For example, we show that a commonly used parallel FFT agorithm that was thought to be ideally
suited for hypercubes has a limit on the achievable efficiency that is determined by the ratio of
CPU speed and communi cation bandwidth of the hypercube channels. Efficiencies higher than this
threshold value can be obtained if the problem sizeisincreased very rapidly. Inthe context of dense
matrix multiplication, we show that special hardware permitting simultaneous communication on
all the ports of the processors does not improve the overall scalability on ahypercube. In the case of
parallel PCG algorithm, we found that the use of a truncated Incomplete Cholesky (1C) precondi-
tioner, which was considered unsuitablefor paralel computers, can actually improvethe scal ability
over aparalel CG with diagonal or no preconditioning. As aresult, a paralel formulation of the
PCG agorithm with this IC preconditioner may execute faster than that with a simple diagona

preconditioner even if the latter runs faster in a serial implementation for a given problem.

In Chapter 4, we present ahighly parallel sparse Cholesky factorization algorithm that substan-
tially improvesthe state of the art in parallel direct solution of sparselinear systems—bothinterms
of scalability and overall performance. This chapter showshow isoefficiency analysiscan guidethe
development of better parallel algorithms by aiding in identifying and eliminating or reducing the
scalahility bottlenecks in a parallel system. Through an analysis of this and other parallel sparse
factorization algorithms, we have shown that our algorithm is thefirst and only paralel algorithm
for this problem that is optimally scalable for awide class of practical problems. Itisawell known

fact that dense matrix factorization scales well and can be implemented efficiently on parallel com-

puters. However, it had been a challenge to devel oping efficient and scalable parallel formulations
of sparse matrix factorization. Our new parallel sparse factorization agorithm is asymptotically
as scalable as the best dense matrix factorization algorithms on a variety of parallel architectures
for awide class of problemsthat include al two- and three-dimensional finite element problems.
Thisalgorithm incursless communication overhead than any previously known parallel formulation
of sparse matrix factorization. It isequally scalable on parallel architectures based on 2-D mesh,
hypercube, fat-tree, and multistage networks. In addition, it is the only known sparse factorization
algorithm that can deliver speedups in proportion to an increasing number of processors while

requiring almost constant memory per processor.

The performance and scalability analysis of our algorithm is supported by experimenta results
on up to 1024 processors of the nCUBE2 parallel computer. We have been able to achieve
speedups of up to 364 on 1024 processors and 230 on 512 processors over a highly efficient
sequentia implementation for moderately sized problems from the Harwell-Boeing collection. An
implementation of this algorithm on a 1024-processor Cray T3D delivers up to 20 GFLOPS on
medium-size structura engineering and linear programming problems [53, 78]. To the best of our
knowledge, thisis the highest performance ever achieved on any supercomputer for sparse matrix

factorization.

Numerical factorization is the most time consuming of the four phases involved in obtaining
a direct solution of the sparse system of linear equation. Although direct methods are used
extensively in practice, their use for solving large sparse systems has been mostly confined to
big vector supercomputers due to the high time and memory requirements of the factorization
phase. Parallel processing offers the potential to tackle both these problems; however, only limited
success had been achieved until recently in developing scalable parallel formulations of sparse
matrix factorization. By using our algorithm, large sparse systems can be solved efficiently on large
scale paralel computers. Given the highly scalable nature of our paralel numerical factorization
algorithm, itisimperativethat theremaining phases of the solution processbe paral lelized effectively
in order to scale the performance of the overall solver. Furthermore, without an overal pardle
solver, the size of the sparse systems that can be solved may be severely restricted by the amount

of memory available on a uniprocessor system. In Chapter 4, we aso present efficient paralle

algorithmsfor two other phases—symbolicfactorization and for forward and backward substitution
to solve the triangular systems resulting from sparse matrix factorization. These algorithms are
designed to work in conjunction with our sparse Cholesky factorization agorithm and incur less
communication overhead than parallel sparse Cholesky factorization. Along with some recently
developed paralle ordering algorithms|[76], the algorithms presented in thisthesismake it possible
to develop complete scalable parallel direct solvers for sparse linear systems. Although our current
implementations work for Cholesky factorization, the algorithm can be adapted for solving sparse
linear least squares problems by QR factorization and for Gaussian elimination of matrices that do
not require pivoting, thus paving the way for scalable parallel solution to an even wider class of

problems.

Chapter 2

PERFORMANCE AND SCALABILITY METRICSFOR PARALLEL SYSTEMS

At the current state of technology, it is possible to construct paralel computers that employ
hundreds or thousands of processors. The availability of such computers has created a number of
challenges. Determining the best parallel agorithm to solve a problem on a given architecture is
considerably more complex that determining the best sequential algorithm. A parallel agorithm
that solves a problem well using a fixed number of processors on a particular architecture may
perform poorly if either of these parameters changes. Therefore, analyzing the performance of a
given parallel agorithm/architecture calls for a rather comprehensive method. In this chapter, we
present amethodology for understanding the performance and scal ability of algorithmson parale
computers and present some laws governing the performance and scal ability propertiesthat parallel
systems must obey.

When solving aproblem in paraldl, it isreasonable to expect a reduction in execution timethat
is commensurable with the amount of processing resources employed to solve the problem. The
scalability of aparallel algorithm on aparallel architectureisameasure of its capacity to effectively
utilize an increasing number of processors. Scalability analysis of aparallel algorithm-architecture
combination can be used for a variety of purposes. It may be used to select the best algorithm-
architecture combination for a problem under different constraints on the growth of the problem
size and the number of processors. It may be used to predict the performance of aparallel algorithm
and a parallel architecture for alarge number of processors from the known performance on fewer
processors. For afixed problem size, it may be used to determine the optimal number of processors
to be used and the maximum possible speedup that can be obtained. The scalability analysis can
also predict theimpact of changing hardware technology on the performance and thus help design
better paralle architectures for solving various problems.

In this chapter, we discuss in detail a popular and useful scalability metric, the isoefficiency
function, first proposed by Kumar and Rao [85] in the context of depth-first search. We present

results that generalize this metric to subsume many others proposed in the literature. We aso
survey some properties of the common performance metrics, such as, parale run time, speedup,
and efficiency. A number of properties of these metrics have been studied in the literature. For
example, it isawell known fact that given a paralld architecture and a problem of afixed size, the
speedup of aparallel agorithm does not continueto increase with increasing number of processors.
It usually tendsto saturate or pesk at acertain limit. Thusit may not be useful to employ more than
an optimal number of processorsfor solvingaproblem onaparalel computer. Thisoptimal number
of processors depends on the problem size, the paralel agorithm and the parallel architecture. In
this chapter, we study the impact of parallel processing overheads and the degree of concurrency of
aparallel agorithm on the optima number of processorsto be used when the criterion for optimality
isminimizing the parallel execution time. We then study a more general criterion of optimality and
show how operating at the optimal point is equivaent to operating at a unique value of efficiency
which is characteristic of the criterion of optimality and the properties of the parallel system under
study. We put the technical results derived in this chapter in perspective with similar results that
have appeared in the literature before and show how these results generalize or extend the earlier

results.

2.1 Definition and Assumptions

In this section, we formally describe the terminology used in the remainder of the dissertation.

Parallel System : The performance of a parallel algorithm cannot be studied in isolation from
the parallel architecture it isimplemented on. For the purpose of performance evaluation we
define a parallel system as a combination of a parallel algorithm and a parallel architec-
ture that is a homogeneous ensemble of processors; i.e., al processors and communication

channels are identical in speed.

Problem Size W : The size of a problem is ameasure of the number of basic operations needed
to solve the problem. There can be several different algorithms to solve the same problem.
To keep the problem size unique for a given problem, we define it as the number of basic

operationsrequired by thefastest known sequential algorithm to solvetheproblem onasingle

processor. Problem sizeis afunction of the size of the input. For example, for the problem

of computing an N-point FFT, W = ©(N log N).

According to our definition, the sequential time complexity of the fastest known seria
algorithm to solve a problem determines the size of the problem. If the time taken by
an optimal (or the fastest known) sequential algorithm to solve a problem of size W on a

single processor is Ts, then Ts oc W, or
Ts =t W, (2.1)

where t, is a machine dependent constant. Often, we assumet. = 1 and normalize the other

constantswith respect tot.. Asaresult, we can use W and Ts interchangeably in such cases.

Parallel Execution Time Tp : Thetimeelapsed from the moment aparallel computation starts,
to the moment the last processor finishes execution. For a given paradle system, Tp is
normally a function of the problem size (W) and the number of processors (p), and we will

sometimeswriteit as Tp(W, p).

Cost: The cost of a parallel system is defined as the product of parallel execution time and the
number of processors utilized. A paralel system is said to be cost-optimal if and only if
the cost is asymptotically of the same order of magnitude as the seria execution time (i.e.,

pTe = ©(W)). Cost isaso referred to as processor-time product.

Speedup S: Theratio of the serial execution time of the fastest known serial algorithm (Ts) to

the parallel execution time of the chosen agorithm (Tp).

Total Parallel Overhead T,: Thesumtotal of all the overhead incurred dueto parallel process-
ing by al the processors. It includes communication costs, non-essential work and idletime

due to synchronization and serial components of the algorithm. Mathematically,

To = pr - Ts. (22)

In order to simplify the analysis, we assume that T, is a non-negative quantity. Thisimplies

that speedup is aways bounded by p. For instance, speedup can be superlinear and T, can

be negative if the memory is hierarchical and the access time increases (in discrete steps) as
the memory used by the program increases. In this case, the effective computation speed of
alarge program will be slower on a serial processor than on a parallel computer employing
similar processors. The reason isthat a sequential algorithm using M bytes of memory will
use only M/ p bytes on each processor of a p-processor parallel computer. The core results
of in this dissertation are till valid with hierarchical memory, except that the scalability
and performance metrics will have discontinuities, and their expressions will be different in
different ranges of problem sizes. Theflat memory assumption hel ps usto concentrate on the
characteristics of the parallel agorithm and architectures, without getting into the details of

a particular machine.

For a given parale system, T, is normaly a function of both W and p and we will often

writeit as To(W, p).

Efficiency E : Theratio of speedup (S) to the number of processors (p). Thus,

T 1
E=—0 = ——. (2.3)
pTe 1+T—Z

Serial Fraction s: Theratio of the serial component of an agorithm to its execution time on one

processor. The seria component of the agorithm is that part of the algorithm which cannot

be paralldlized and has to be executed on a single processor.

Degree of Concurrency C(W): Themaximumnumber of tasksthat can be executed simultane-
ously at any giventimeinthe paralel agorithm. Clearly, for agiven W, the parallel algorithm
can not use more than C(W) processors. C (W) depends only on the parallel algorithm, and
is independent of the architecture. For example, for multiplyingtwo N x N matrices using
Fox’s parallel matrix multiplication algorithm [37], W = N2 and C(W) = N2 = W23, |tis
easily seenthat if the processor-time product [5] is® (W) (i.e., thealgorithmiscost-optimal),
then C(W) = O(W).

Maximum Number of Processors Usable, ppax: The number of processors that yield maxi-
mum speedup S™* for a given W. This is the maximum number of processors one would

like to use because using more processors will not increase the speedup.

2.2 Thelsoefficiency Metric of Scalability

If aparalld system isused to solve a problem instance of afixed size, then the efficiency decreases
as p increases. Thereason isthat T, increases with p. For many parale systems, if the problem
size W is increased on a fixed number of processors, then the efficiency increases because T,
grows slower than W. For these paralldl systems, the efficiency can be maintained at some fixed
value (between 0 and 1) for increasing p, provided that W is also increased. We call such systems
scalable! paralel systems. Thisdefinition of scalable parallel algorithmsissimilar to the definition
of paralld effective algorithms given by Moler [102].

For different parallel systems, W should be increased at different rates with respect to p in order
to maintain afixed efficiency. For instance, in some cases, W might need to grow as an exponential
function of p to keep the efficiency from dropping as p increases. Such parallel systemsare poorly
scalable. The reason is that on these parallel systems, it is difficult to obtain good speedups for a
large number of processors unless the problem sizeis enormous. On the other hand, if W needsto
grow only linearly with respect to p, then the parallel system ishighly scalable. Thisis because it
can easily deliver speedups proportional to the number of processors for reasonabl e problem sizes.

The rate a which W is required to grow w.r.t. p to keep the efficiency fixed can be used as a
measure of scalability of the parallel agorithm for aspecific architecture. 1f W must grow as fe (p)
to maintain an efficiency E, then fg(p) is defined to be the isoefficiency function for efficiency
E and theplot of fz(p) vs. p iscalled theisoefficiency curve for efficiency E. Equivaently, if the
relation W = fe(p) defines the isoefficiency curve for a parale system, then p should not grow
faster that fz (W) if an efficiency of at least E isdesired.

Giventhat E = 1/(1 + To(W, p)/(t.W)), in order to maintain a fixed efficiency, W should
be proportional to To(W, p). In other words, the following relation must be satisfied in order to
maintain afixed efficiency:

W = KT(W, p), (24)

where K = E/(t.(1 — E)) is a constant depending on the efficiency to be maintained. Equation

1 For some parallel systems (e.g., some of the ones discussed in [125] and [88]), the maximum obtainable efficiency
E™* islessthan 1. Even such parallel systemsare considered scalableif the efficiency can be maintained at adesirable
value between 0 and E™* .

10

.................. 12 5o I, I I
ONONO) @3 @ @3 ®
@ (b)

pd b e
@000 © 006

(©) (d)

Figure 2.1: Computing the sum of 16 numbers on a 4-processor hypercube.

24 isthecentra relation that isused to determine theisoefficiency function of aparallel algorithm-
architecture combination. This is accomplished by abstracting W as a function of p through
algebraic manipulations on Equation 2.4.

For example, consider the problem of adding n numbers. For this problem the number of
operations, and hence the problem size W isequal to n. If we assume that each addition takes unit
time, then Ts = n = W (in reality the number of basic operations, W, isn — 1; however, for large
values of n, W can be approximated by n). Now consider aparalle agorithm for adding n numbers
using a p-processor hypercube. ThisalgorithmisshowninFigure2.1 forn = 16 and p = 4. Each
processorsisalocated n/p numbers. In thefirst step of thisalgorithm, each processor locally adds
itsn/p numbersin ®(n/p) time. The problem is now reduced to adding the p partial sumson p
processors. These can be done by propagating and adding the partial sumsas shown in Figure 2.1.
A single step consists of one addition and one nearest neighbor communication of a single word,
each of which is a constant time operation. For the sake of simplicity, let us assume that it takes
one unit of timeto add two numbers and also to communicate a number between two processors.
Therefore, n/p time is spent in adding the n/p local numbers at each processor. After the local
addition, the p partia sums are added in log p steps, each step consisting of one addition and one
communication. Thus, the total parallel execution time Tp isn/p 4+ 2log p. The same task can
be accomplished sequentialy in n time units. Thus, out of then/p + 2log p time units that each

processor spendsin parallel execution, n/ p timeis spent in performing useful work. The remaining

11

2log p units of time per processor contribute to atotal overhead of
To=2plogp. (2.5)
Substituting the value of T, in Equation 2.4, we get
W = 2K plog p. (2.6)

Thus the asymptotic isoefficiency function for this parallel systemis ®(plog p). This means that
if the number of processors is increased from p to p’, the problem size (in this case, n) will have
to be increased by afactor of p log p /(plog p) to get the same efficiency as on p processors. In
other words, increasing the number of processors by afactor of p'/p requires n to be increased by
afactor of p'log p /(plog p), in order to increase the speedup by afactor of p'/p.

In the simple example of adding n numbers, the communication overhead is afunction of only
p. In generd, it can depend on both the problem size and the number of processors. A typica
overhead function may have severd different terms of different orders of magnitude with respect to
p and W. When there are multipleterms of different orders of magnitudein the overhead function,
it may be impossible or cumbersome to obtain the isoefficiency function as a closed form function
of p. For instance, consider a hypothetical parallel system, for which T, = p¥2 + p¥*W?4. In
this case Equation 2.4 will be W = Kp¥? + Kp¥*W?%4, It is difficult to solve for W in terms
of p. Recal that the condition for constant efficiency isthat the ratio of T, and W should remain
fixed. As p and W increase in a parallel system, the efficiency is guaranteed not to drop if none
of the terms of T, grow faster than W. Therefore, if T, has multiple terms, we balance W against
each individual term of T, to compute the respective isoefficiency function. The component of T,
that causes the problem size to grow at the fastest rate with respect to p determines the overall
asymptotic isoefficiency function of the computation.

For example, consider a hypothetical parallel agorithm-architecture combination for which
T, = p¥2 + p¥*W¥4. If we ignore the second term of T, and use only the first term in Equation

2.4, we get

W = K p?2. 2.7)

12

Now consider only the second term of the overhead function and repeat the above analysis.

Equation 2.4 now takes the form

W = Kp3/4W3/4,
Wl/4 — Kp3/4,
W = K*p (2.8)

In order to ensure that the efficiency does not decrease asthe number of processorsincrease, the
first and the second term of the overhead function require the problem size to grow as © (p*/?) and
O(p?), respectively. The asymptotically higher of the two rates should be regarded as the overall
asymptoticisoefficiency function. Thus, theisoefficiency functionis ® (p®) for thisparallel system.
Thisis because if the problem size W grows as © (p?), then T, would remain of the same order as
W.

Isoefficiency analysis has been found to be very useful in characterizing the scalability of a
variety of parallel systems[53, 70, 58, 85, 86, 88, 118, 125, 144, 143, 56, 54, 87, 52, 83]. Inasingle
expression, the isoefficiency function captures the characteristics of a paralel algorithm aswell as
the parallel architecture on whichit isimplemented. After performing theisoefficiency analysis, we
can test the performance of aparallel program on afew processors and then predict its performance
on alarger number of processors. However, the utility of isoefficiency analysisis not limited to
predicting the impact on performance of an increasing number of processors. In [51], we show how
the isoefficiency function characterizes the amount of paralelism inherent in a paralel agorithm.
We will see in later (for example in the context of paralel FFT in Chapter 3) that isoefficiency
analysis can be used also to study the behavior of a parallel system with respect to changes in
hardware parameters such as the speed of processors and communication channels.

The reader should note that in the framework described in this section, a parale system is
considered scalable if itsisoefficiency function exists; otherwise the paralel system is unscalable.
The isoefficiency function of a scalable system could, however, be arbitrarily large; i.e, it could
dictate a very high rate of growth of problem size w.r.t. the number of processors. In practice, the
problem size can be increased asymptoticaly only at a rate permitted by the amount of memory

available at each processor. If the memory constraint does not allow the size of the problem to

13

increase at the rate necessary to maintain a fixed efficiency, then the parallel system should be

considered unscal able from a practical point of view.

2.3 Reationship between | soefficiency and Other Metrics

A number of scalability metrics have been proposed by various researchers [22, 34, 36, 55, 61,
59, 60, 75, 80, 98, 108, 131, 130, 132, 137, 142, 146, 149]. We present a detailed survey of these
metricsin [84]. After reviewing these various measures of scalability, one may ask whether there
exists one measure that is better than al others[66]? The answer to thisquestionis no, as different
measures are suitable for different situations.

One situation arises when the problem at hand is fixed and one is trying to use an increasing
number of processorsto solveit. In this case, the speedup is determined by the serial fraction in
the program as well as other overheads such as those due to communication and due to redundant
work. In this situation choosing one parallel system over the other can be done using the standard
speedup metric. Note that for any fixed problem size W, the speedup on a paralel system will
saturate or peak at some value S™(W), which can also be used as ametric. Scalability issues for
the fixed problem size case are addressed in [36, 75, 55, 105, 134, 146].

Another possible scenarioisthat in which aparallel computer with afixed number of processors
is being used and the best parallel agorithm needs to be chosen for solving a particular problem.
For a fixed p, the efficiency increases as the problem size is increased. The rate at which the
efficiency increases and approaches one (or some other maximum value) with respect to increase
in problem size may be used to characterize the quality of the algorithm’s implementation on the
given architecture.

Thethird situation ariseswhen the additional computing power dueto theuse of more processors
isto be used to solvebigger problems. Now the questionishow should the problem size beincreased
with the number of processors?

For many problem domains, it is appropriate to increase the problem size with the number of
processors so that the total parallel execution time remains fixed. An example is the domain of
weather forecasting. In this domain, the size of the problem can be increased arbitrarily provided

that the problem can be solved within a specified time (e.g., it does not make sense to take more

14

than 24 hours to forecast the next day’s weather). The scalability issues for such problems have
been explored by Worley [146], Gustafson [61, 59], and Sun and Ni [131].

Another extreme in scaling the problem size isto try as big problems as can be handled in the
memory. Thisisinvestigated by Worley [145, 146, 147], Gustafson [61, 59] and by Sun and Ni
[131], and is called the memory-constrained case. Since the total memory of a parallel computer
increaseswith increasing p, it ispossibleto solve bigger problemson parallel computer with bigger
p. It should aso be clear that any problem size for which the memory requirement exceeds the total

available memory cannot be solved on the system.

An important scenario is that in which oneisinterested in making efficient use of the parale
system; i.e, it isdesired that the overall performance of the parallel system increases linearly with
p. Clearly, thiscan be doneonly for scalable parallel systems, which are exactly the onesfor which
a fixed efficiency can be maintained for arbitrarily large p by ssmply increasing the problem size.
For such systems, it is natural to use isoefficiency function or related metrics [85, 80, 22]. The
analysesin [148, 149, 36, 97, 105, 134, 34] aso attempt to study the behavior of a parallel system

with some concern for overall efficiency.

Although different scalability measures are appropriate for rather different situations, many of
them arerelated to each other. For example, from theisoefficiency analysis, one can reach anumber
of conclusionsregarding the time-constrained case (i.e., when bigger problemsare solved on larger
parallel computers with some upper-bound on the parallel execution time). 1t can be shown that for
cost-optimal agorithms, the problem size can be increased linearly with the number of processors
while maintaining afixed execution timeif and only if theisoefficiency functionis ®(p). The proof
isasfollows. Let C(W) be the degree of concurrency of the algorithm. Thus, as p isincreased,
W hasto beincreased at least as © (p), or else p will eventually exceed C(W). Note that C(W) is
upper-bounded by ® (W) and p is upper-bounded by C(W). Tp isgiven by (Ts+ To(W, p))/p =
(tW + To(W, p))/p. Now consider the following two cases. Let the first case be when C(W) is
smaller than ® (W). Inthiscase, evenif asmany as C (W) processors are used, thetermt.W/C (W)
of the expression for T will diverge with increasing W, and hence, it is not possible to continue
to increase the problem size and maintain a fixed paralel execution time. At the same time, the

overall isoefficiency function grows faster than ® (p) because the isoefficiency due to concurrency

15

exceeds ®(p). Inthe second case in which C(W) = ®(W), as many as ® (W) processors can be
used. If ®(W) processors are used, then thefirst termin Ty can be maintained at a constant value
irrespective of W. The second term in Tp will remain constant if and only if To(W, p)/p remains
constant when p = ® (W) (in other words, T,/ W remains constant while p and W are of the same

order). Thiscondition is necessary and sufficient for linear isoefficiency.

A direct corollary of the above result is that if the isoefficiency function is greater than ©(p),
then the minimum parallel execution time will increase even if the problem size is increased as
slowly as linearly with the number of processors. Worley [145, 146, 147] has shown that for many
algorithms used in the scientific domain, for any given Tp, there will exist a problem size large
enough so that it cannot be solved in time Tp, No matter how many processors are used. Our above
analysis showsthat for these parallel systems, the i soefficiency curves have to be worsethan linear.
It can be easily shown that the isoefficiency function will be greater than ® (p) for any algorithm-
architecture combination for which T, > ®(p) for agiven W. Thelatter istrue when any algorithm
with aglobal operation (such asbroadcast, and one-to-all and all-to-all personalized communication
[18, 71]) is implemented on a parallel architecture that has a message passing latency or message
startup time. Thus, it can be concluded that for any cost-optimal parallel algorithm involving
global communication, the problem size cannot be increased indefinitely without increasing
the execution time on a parallel computer having a startup latency for messages, no matter
how many processors are used (up to a maximum of W). This class of agorithms includes
somefairly important algorithms such as matrix multiplication (all-to-all/one-to-al| broadcast) [54],
vector dot products (single node accumulation) [58], shortest paths (one-to-all broadcast) [88], and
FFT (al-to-all personalized communication) [56], etc. Thereaders should notethat the presence of a
globa communication operationinan agorithm isasufficient but not anecessary condition for non-
linear isoefficiency on an architecture with message passing latency. Thus, the class of agorithms

having the above mentioned property is not limited to the algorithms with global communication.

If the isoefficiency function of a parallel system is greater than ®(p), then given a problem
size W, there is as lower-bound on the paralel execution time. This lower-bound (lets cal it
TX"(W)) is anon-decreasing function of W. The rate at which the T2 (W) for a problem (given

arbitrarily many processors) must increase with the problem size can aso serve as a measure of

16

scalability of the parallel system. In the best case, TJ""(W) is constant; i.e., larger problems can
be solved in a fixed amount of time by simply increasing the number of processors. In the worst
case, T (W) = ©(W). This happens when the degree of effective parallelism is constant. The
slower T""(W) grows as a function of the problem size, the more scalable the paralel system
is. T'" is closely related to S™*(W). For a problem size W, these two metrics are related by
W = S™@x(W) x TIn(W),

Let £(W) be the number of processors that should be used for obtaining the minimum parale
execution time T2 (W) for a problem of size W. Clearly, TI""(W) = (W + To(W, £(W))) /& (W).
Using &(W) processors leads to optimal parallel execution time T2'"(W), but may not lead to
minimum pTp product (or the cost of parallel execution). Now consider the cost-optimal imple-
mentation of the parallel system (i.e., when the number of processors used for a given problem size
is governed by the isoefficiency function). Inthiscase, if f(p) istheisoefficiency function, then
T isgiven by (W + To(W, f~1(W)))/ f~1(W) for afixed W. Let uscall this T;*(W). Clearly,
TS°(W) can be no better than T (W).

Several researchers have proposed to use an operating point where the value of p(Tp)" is
minimized for some constant r and for agiven problem size W [36, 34, 134]. It can be shown [134]
that this corresponds to the point where ES'~ is maximized for a given problem size. Note that
the location of the minimaof p(Tp)" (with respect to p) for two different algorithm-architecture
combinations can be used to choose one between the two.

In the following subsections, we will show the relationship between the isoefficiency function

and operating at the point of minimum Tp or minimum p(Tp)" for awide class of parallel systems.

2.3.1 Minimizingthe Parallel Execution Time

In this section werelate the behavior of the Tp verses p curveto the nature of the overhead function
To. As the number of processors is increased, Tp either asymptotically approaches a minimum
value, or attains a minimum and starts rising again. We identify the overhead functionswhich lead
to one case or the other. We show that in either case, the problem can be solved in minimum time
by using a certain number of processors which we call prax. Using more processors than pmay will

either have no effect or will degrade the performance of the paralel system in terms of parallel

17

execution time.

Most problems have a serial component W;, which is the part of W that has to be executed
sequentialy. We do not consider the sequential component of an algorithm as a separate entity
becauseit can be subsumedin T,. While one processor isworking on the sequential component, the
remaining p — 1 are ideal and contribute (p — 1)W; to T,. Thus for any parallel algorithm with a
nonzero W, the analysis can be performed by assuming that T, includesaterm equal to (p — 1) Ws.
Under this assumption, the parallel execution time Tp for a problem of size W on p processorsis

given by thefollowing relation:
W+ To(W, p)

p

We now study the behavior of T under two different conditions.

To (2.9)

1000

800 -

T 600 -

_|
©

400 -
200 + -
T ‘;nin
Pmax = C(W)
0 | | | | | |
0 200 400 600 800 1000 1200

p—>

Figure2.2: A typical Tp verses p curve for T, < ©(p).

Casel: T, < ©O(p)

From Equation 2.9 it isclear that if To(W, p) grows slower than ® (p), then the overall power of p
in the R.H.S. of Equation 2.9 is negative. In this case it would appear that if p isincreased, then

18

Tp will continue to decrease indefinitely. If To(W, p) grows as fast as ©(p) then there will be a
lower bound on Tp, but that will be aconstant independent of W. But we know that for any parallel
system, the maximum number of processors that can be used for a given W is limited by C(W).
So the maximum speedup is bounded by WC (W) /(W + To(W, C(W))) for a problem of size W
and the efficiency at this point of peak performance is given by W/ (W + T,(W, C(W))). Figure 1
illustratesthe curve of Tr for the casewhen T, < ©(p).

There are many important natural parallel systems for which the overhead function does not
grow faster than ® (p). Such systemstypically arise whileusing shared memory or SIMD machines
which do not have a message startup time for data communication. For example, consider a
paralle implementation of the FFT algorithm [56] on a SIMD hypercube connected machine (e.g.,
the CM-2 [72]). If an N point FFT is being attempted on such a machine with p processors,
N/p units of data will be communicated among directly connected processors in log p of the
log N iterations of the algorithm. For this parallel system W = NlogN. As shown in [56],
To=1t, x (N/p)logp x p =t,Nlog p, wheret, isthe message communication time per word.
Clearly, for agiven W, T, < ®(p). Since C(W) for the parallel FFT algorithm is N, thereis a
lower bound on parallel execution timewhichisgiven by (1+t,)logN. Thus, pmax for an N point

FFT on aSIMD hypercubeis N and the problem cannot be solved in lessthan ® (log N) time.

Casell: T, > O(p)

When T,(W, p) grows faster than ®(p), a glance at Equation 2.9 will revea that the term W/ p

will keep decreasing with increasing p, while the term T,/ p will increase. Therefore, the overall

Tp will first decrease and then increase with increasing p, resulting in a distinct minimum. Now

we derive the rel ationship between W and p such that T isminimized. Let p, be thevalue of p for

which the mathematical expression on the R.H.S of Equation 2.9 for Tp attainsits minimum value.
At p = po, Tp isminimum and therefore dipr =0.

d W+ T(W, p)

TPy
' p
_ iTo W,
W_mwm+w(P) _ 9
p? p? p
d W TW,
drwp = ¥, WP

dp p p

19

d
d—pTO(W, p = Tp (2.10)

For agiven W, we can solvetheabove equationtofind po. A rather general form of the overhead
isoneinwhich the overhead functionisasum of termswhere each term isa product of afunction of
W and afunction of p. In most real life paralel systems, these functionsof W and p are such that
T, can bewritten as ©!='c; WY (log W) p* (log p)?, wherec;’sare constantsand x; > Oandy; > 0
forl <i <n,andu;’sand z'sare0'sor 1's. The overhead functions of al architecture-algorithm
combinations that we have come across fit this form [85, 88, 125, 56, 54, 58, 144, 143, 52]. As
illustrated by a variety of examples in this chapter (these include important algorithms such as
Matrix Multiplication, FFT, Parallel Search, finding Shortest Paths in a graph, etc.), on almost all
paralld architectures of interest.

For the sake of simplicity of the following analysis, we assumez = Oand u; = Ofor al i’s.
Anaysissimilar to that presented bel ow can be performed even without this assumption and similar
results can be obtained (Appendix B). Substituting £/="c; W¥ p* for To(W, p) in Equation 2.10,
we abtain the following equation:

W + S0 W p

p
W = X=0¢(x — WY p. (2.11)

Ti=nGx WY pr -t

For the overhead function described above, Equation 2.11 determines the rel ationship between

W and p for minimizing Tp provided that T, grows faster than ®(p). Because of the nature of

Equation 2.11, it may not always be possibleto express p as afunction of W in aclosed form. So

we solve Equation 2.11, considering one R.H.S. term at atime and ignoring therest. If theith term
isbeing considered, therelation W = ¢; (x; — 1)WY p* yields

Wiy Ly

p= (m) = O(W). (2.12)

It can be shown (Appendix C) that among all the i solutions for p obtained in this manner, the

I

speedup is maximum for any given W when p = ©@(W%/%) where (1 — y)/x; < (1= ¥)/X;
forali (1 <i <n). Wecdl the jth term of T, the dominant term if the value of (1 — y;)/x;
isthe least among all values (1 — vy;)/x (1 < i < n) because thisis the term that determines the

order of pg, or the asymptotic the solution to Equation 2.10 for large values of W and p. If jthterm

20

is the dominant term of T,, then solving Equation 2.11 with respect to the jth term on the R.H.S.

yields the following approximate expression for p, for large values of W:
Wiy o 1
N (——)%. 213
Po (cj(xj—l)) (2.13)
The value of pg thus obtained can be used in the expression for Tp to determine the minimum
paralld executiontimefor agiven W. Thevalueof p,, when pluggedintheexpressionfor efficiency,

yields the following:

w
Eo = ,
W+T,
w
Eo »~ ; ,
W+ W (22
(% —¢)™
1
Eo, ~ 1——. (2.14)
X

Note that the above analysis holds only if x;, the exponent of p in the dominant term of T, is
greater than 1. If x; < 1, then the asymptoticaly highest term in T, (i.e., ;WY p%) isless than or
equal to ®(p) and theresults for the case when T, < ®(p) apply.

Equations 2.13 and 2.14 yield the mathematical values of p, and E, respectively. But the
derived value of p, may exceed C(W). So in practice, a the point of peak performance (in
terms of maximum speedup or minimum execution time), the number of processors pmay IS given
by min(py, C(W)) for a given W. Thus it is possible that C(W) of a paralel algorithm may
determine the minimum execution time rather than the mathematically derived conditions. For
example, consider the implementation of Floyd’s algorithm described in [88] for finding shortest
paths in a graph. In this algorithm, the N x N adjacency matrix of the graph is striped among
p processors such that each processor stores N/ p full rows of the matrix. The problem size W
here is given by N3 for finding al to al shortest paths on an N-node graph. In each of the N
iterations of this algorithm, a processor broadcasts a row of length N of the adjacency matrix of
the graph to every other processor. Asshown in [88], if the p processor are connected in a mesh
configuration with cut-through routing, the total overhead due to this communication is given by
To = t:Np*®> +t,(N 4+ ./P)Np. Herets and t, are constants related to message startup time and
the speed of message transfer respectively. Sincet,, is often very small compared to ts,

To = (ts+tw)Npl.5+th2p,

21

To ~ tNp*®+1,N?p,

To ~ tLWY3ptS4t,W2p.

From Equation 2.11, po is equal to (%)% ~ %ﬂim But since at most N processors can be used
in this algorithm, pmax = Min(C(W), po) = N. The minimum execution time for this parallel
system istherefore N2 + t;N1° 4+ t, N2 for pmax = N.

If working on a 100 node graph, then the speedup will peak at p = N = 100 and fort; = 1
and t, = 0.1, the speedup will be 83.33 resulting in an efficiency of 0.83 at the point of peak
performance.

It is also possible for two parallel systems to have the same T, (and hence the same pg) but
different C(W)s. In such cases, an anadysis of the overhead function might mislead one into
believing that the two parallel systems are equivalent in terms of maximum speedup and minimum
execution time. For example, consider a different parallel system consisting of another variation
of Floyd'salgorithm discussed in [88] and awrap-around mesh with store-and-forward routing. In
thisalgorithm, the N x N adjacency matrix is partitioned into p sub-blocksof sizeN/.,./p x N/,/p
each, and these sub-blocks are mapped on a p processor mesh. In thisversion of Floyd's agorithm,
a processor broadcasts N/,/p elements among ,/p processors in each of the N iterations. As
shown in [88], thisresultsin atotal overhead of T, = tsNp'° +t, N?p. Since the expression for T,
is same as that in the previous example, po = 1.59N*3/t2/3 again. But C(W) for the checkerboard
version of the agorithmis W%2 = N2, Therefore pynax = po inthiscaseas py < C(W).

Fort; = 1andt, = 0.1, Equation 2.11 yields avalue of p, = 738 for a 100 node graph. The
speedup peaks with 738 processors at a value of 246, but the efficiency at this peak speedupisonly
0.33.

The above example illustrates the case when the speedup peaks at p = p,. The algorithmin
the earlier example with striped partitioning on a cut-through mesh has exactly the same T, and
hence the same p,, but the speedup peaksat p = C(W) because C(W) < p,. Thusthetwo parallée
systems described in these examples are significantly different in terms of their peak performances,
although their overhead functions are the same.

Figures 2.3.1 and 2.3.1 graphically depict T as a function of p corresponding to Floyd's

algorithm with stripe partitioning on a cut-through mesh and with checkerboard partitioning on a

22

30000 | | |

C(W) < po, Pmax = C(W)
25000 —

20000 - -
15000 - .

T Tl;nin

10000 - -

_|
©

5000 |- -

0 | | | C |
0 C(W) 200 400 600 Po 800 1000 1200

p—>

Figure 2.3: Tp verses p curvefor T, > @(p) showing T when C(W) < po.

store-and-forward mesh, respectively.

2.3.2 Minimizing T and the | soefficiency Function

In this section we show that for a wide class of overhead functions, studying a paralel system
at its peak performance in terms of the speedup is equivalent to studying its behavior at a fixed
efficiency. Theisoefficiency metric[81, 51, 84] comesin asahandy tool to study thefixed efficiency
characteristics of aparallel system. Theisoefficiency function relatesthe problem sizeto thenumber
of processors necessary for an increase in speedup in proportion to the number of processors used.
If a parallel system incurs atotal overhead of T,(W, p) while solving a problem of size W on p
processors, the efficiency of the systemisgivenby E = 1/(1 + To(W, p)/W). Inorder to maintain
aconstant efficiency, W o T,(W, p) or W = KT, (W, p) must be satisfied, where K = E/(1 — E)
is a constant depending on the efficiency to be maintained. Thisisthe centra relation that is used
to determine isoefficiency as afunction of p. From this equation, the problem size W can usually
be obtained as a function of p by algebraic manipulations. If the problem size W needs to grow as

fast as fz (p) to maintain an efficiency E, then fe (p) is defined to be the isoefficiency function of

23

30000 | | | |

CW) > Po, Pmax = Po
25000

20000
15000 - .

10000 - -

Tl;nl n
0 | | | | | | C(W)
0 200 400 600 Po 800 1000 1200 10000 10200

p—>

_|
©

Figure 2.4: Tp verses p curvefor T, > @(p) showing T when C(W) > po.

the parallel algorithm-architecture combination for efficiency E.

We now show that unless pnax = C(W) for a parallel system, a unique efficiency is attained
a the point of peak performance. This value of E depends only on the characteristics of the
paralle system (i.e, thetype of overhead function for the algorithm-architecture combination) and
isindependent of W or Tp. For the type of overhead function assumed in Case I, the following

relation determines the i soefficiency function for an efficiency E:

W = =0 WY pX. (2.15)

1-E

Clearly, the above eguation has the sameform as Equation 2.11, but has different constants. The
dominant term on the R.H.S. will yield the relationship between W and p in a closed form in both
the equations. If thisisthe jth term, then both the equationswill become equivalent asymptotically
if their jthtermsare same. Thisamountsto operating at an efficiency that is given by the following

relation obtained by equating the coefficients of the jth terms of Equations2.11 and 2.15.

1—Ecj = Cj(Xj—l),

E = 1-—.

24

The above equation is in conformation with Equation 2.14. Once we know that working at the
point of peak performance amounts to working at an efficiency of 1 — 1/x;, then, for a given W,
we can find the number of processors at which the performance will peak by using the relation
1-1/% =W/(W + To(W, p)).

As discussed in [81, 51], the relation between the problem size and the maximum number
of processors that can be used in a cost-optimal fashion for solving the problem is given by the
isoefficiency function. Often, using as many processors as possible results in a non-cost-optimal
system. For example, adding n numbers on an n-processor hypercube takes ® (logn) time, which
is the minimum execution timefor this problem. Thisis not acost optimal parallel system because
W = 0O(N) < pTp = ®(nlogn). Animportant corollary of the result presented in this section is
that for the paralel systemsfor which the rel ationship between the problem size and the number of
processors for maximum speedup (minimum execution time) is given by the i soefficiency function,
the asymptotic minimum execution time can be attained in a cost-optimal fashion. For instance,
if ®(n/logn) processors are used to add n numbers on a hypercube, the parallel system will be
cost-optimal and the parallel execution timewill still be ® (logn).

Note that the correspondence between the isoefficiency function and the relation between W
and p for operating at minimum T, will fail if the X; in the dominant term is less than or equal to
1. Inthiscase, aterm other than the one that determines the isoefficiency function will determine

the condition for minimum Tp.

Summary of Results

At this point we state the important results of this section.

. For parallel algorithmswith T, < ®©(p), the maximum speedup is obtained at p =
C(W) and for algorithms with T, > ©(p), the maximum speedup is obtained at
p = min(p,, C(W)), where p, for a given W is determined by solving Equation 2.11.

. For the parallel algorithmswith T, of the form described in Case I, if the jth termis
the dominant termin the expression for T, and x; > 1, then the efficiency at the point
of maximum speedup always remainsthe sameirrespective of the problemsize, and is

25

givenby E =1 - 1/x;.

. For the parallél algorithms satisfying the above conditions, the relationship between
the problem size and the number of processors at which the speedup is maximum
for that problem size, is given by the isoefficiency function for E = 1 — 1/x;, unless
Pmax = C(W).

2.3.3 Minimizing p(Tp)"

From the previous sections, it is clear that operating at a point where Tp is minimum might not
be a good idea because for some parallel systems the efficiency at this point might be low. On
the other hand, the maximum efficiency is always attained at p = 1 which obvioudly is the point
of minimum speedup. Therefore, in order to achieve a balance between speedup and efficiency,
several researchers have proposed to operate at a point where the value of p(Tp)" is minimized for
some constant r (r > 1) and for agiven problem size W [36, 34, 134]. It can be shown [134] that
this corresponds to the point where ES'~* is maximized for a given problem size.

Wr

_ Wit _
p(Tp)" = pTP() ~Eg 1

Thus p(Tp)" will be minimum when ES 1 is maximum for a given W and by minimizing
p(Tp)", we are choosing an operating point with a concern for both speedup and efficiency, their
relative weights being determined by the value of r. Now let us locate the point where p(Tp)" is

minimum.

P(Te) = p(; et oy (T4 T

Again, asin the previous section, the foll owing two cases arise:

Casel: T, < ©(p*—b/m

Since p(Tp)" = p* " (Te + To)' = (TepT"" + Topd="/1) | if T, < ©(p~Y/") then the overall
power of pintheexpressionfor p(Tp)" will becomenegativeand henceitsvauewill mathematically
tend to some lower bound as p ~+ oo. Thus using as many processors as are feasible will lead to

minimum p(Tp)". In other words, for thiscase, p(Tp)" isminimumwhen p = C(W).

26

Casell: T, > ©(p"~b/)

If T, grows faster than ®(p*~Y/"), then we proceed as follows. In order to minimize p(Tp)",

dip p(Tp)" should be equal to zero; i.e.,

d
A-np" (Te+To)" +rp* " (Te+ To)" d—pTo = 0

d _
d: - r—1
dp r

Tp. (2.16)

We choose the same type of overhead function as in Case Il of Section 2.3.1. Substituting
=0, WY p* for T, in Equation 2.16, we get the following equation:

| r—1 |
TiZex WY pt Tt = —p W W po),

W = Eiijci(—l—l)wyi p%. (2.17)

rX
r —

Now even the number of processors for which p(Tp)" is minimum could exceed the value of p
that is permitted by the degree of concurrency of the algorithm. In this case the minimum possible
valuefor p(Tp)" will be obtained when C (W) processors are used. For example, consider asimple
algorithm described in [54] for multiplyingtwo N x N matricesona.,/p x ,/p wrap-around mesh.
As thefirst step of the algorithm, each processor acquires all those elements of both the matrices
that are required to generate the N?/p elements of the product matrix which are to reside in that
processor. For this parallel system, W = N3 and T, = t;p,/p + t,N?,/p. For determining the
operating point where p(Tp)? is minimum, we substituten = 2,r = 2,¢; =t;, ¢, = t,,, X, = 1.5,
X, = 0.5, y; = 0and y, = 2/3 in Equation 2.17. This substitutionyieldsthe relation W = 2t;p*®
for determining the required operating point. In other words, the number of processors pg a which
pP(Tp)? is minimum is given by py = (W/2t;)?® = N?/(2ts)%3. But the maximum number of
processors that this algorithm can useis only N2. Therefore, for t; < .5, po > C(W) and hence

C (W) processors should be used to minimize pT3.

234 Minimizing p(Tp)" and the | soefficiency Function

In this subsection we show that for a wide class of paralel systems, even minimizing p(Tp)"
amounts to operating a a unique efficiency that depends only on the overhead function and the

value of r. In other words, for a given W, p(Tp)" is minimum for some value of p and the

27

relationship between W and this p for the parallel system is given by its isoefficiency function for
a unigque value of efficiency that depends only on r and the type of overhead function. Equation
2.17, which gives the relationship between W and p for minimum p(Tp)", has the same form as
Equation 2.15 that determines the isoefficiency function for some efficiency E. If the jth terms
of the R.H.S.:s of Equations 2.15 and 2.17 dominate (and x; > (r — 1)/r), then the efficiency at
minimum p(Te)" can be obtained by equating the corresponding constants; i.e., Ec; /(1 — E) and
Ci(rxj/(r —1) —1). Thisyields the following expression for the value of efficiency at the point

where p(Tp)" isminimum:
r—1

E=1- .
rX;

(2.18)

We now give an example that illustrates how the analysis of Section 2.3.3 can be used for
chosing an appropriate operating point (in terms of p) for a parallel algorithm to solve a problem
instanceof agiven size. It aso confirmsthevalidity of Equation 2.18. Consider theimplementation
of the FFT agorithm on an MIMD hypercube using the binary-exchange algorithm. As shown in
[56], for an N point FFT on p processors, W = NlogN and T, = tsplog p + t,,N log p for this
algorithm. Taking ts = 2, t, = 0.1 and rewriting the expression for T, in the form described in

Case Il in Section 2.3.1, we get the following:

W
T, ~ 2plo 0.1

log p.

Now suppose it is desired to minimize p(Tp)?, which is equivalent to maximizing the ES
product. Clearly, the first term of T, dominates and hence puttingr = 2 and X; = 1 in Equation
2.18, an efficiency of 0.5 is predicted when p(Tp)? is minimized. An analysis similar to that in
Case Il in Section 2.3.3 will show that p(Tp)" will be minimumwhen p ~ N/2 isused.

If @1024 point FFT is being attempted, then Table 2.1 shows that at p = 512 the ES product
isindeed maximum and the efficiency at thispoint isindeed 0.5.

Again, just like in Section 2.3.2, there are exceptions to the correspondence between the
isoefficiency function and the condition for minimum p(Tp)". If the jth term in Equation 2.15
determines the isoefficiency function and in Equation 2.17, X; < (r — 1)/r, then the coefficient of
the jth term in Equation 2.17 will be zero or negative and some other term in Equation 2.17 will

determine the relationship between W and p for minimum p(Tp)".

The following subsection summarizes the results of this section.

28

p | T | S| E |ExS

128 | 996 | 103 | .80 | 824

256 | 59.2 | 173 | .68 | 117.6

384 | 46.1 | 222 | .58 | 1284
512 | 39.8 | 257 | .50 | 129.3
640 | 36.1 | 284 | .44 | 1249

768 | 33.8 | 303 | .39 | 116.2

896 | 322 | 318 | .35 | 1128

1024 | 31.0 | 330 | .32 | 1055

Table 2.1: Performance of FFT on ahypercubewith N = 1024, t; = 2 andt,, = 0.1.

Summary of Results

. For parallel algorithmswith T, < ©(p~Y/"), the minimum value for the expression
p(Tp)" isattained at p = C(W) and for algorithmswith T, > ©(p*—Y/), itisattained
at p = min(C(W), po), where p, for a given W is obtained by solving Equation 2.17.

. For the parallel algorithms with T, of the form described in Case Il, if the jth term
dominatesin the expression for T, and x; > (r — 1)/r, then the efficiency at the point
of minimum p(Tp)" always remains same irrespective of the problemsize and is given
byE=1—(r —1)/rx.

. For the paralléel algorithms satisfying the above conditions, the relationship between
the problem size and the number of processors at which p(Tp)" is minimum for that
problem size, is given by the isoefficiency function for E = 1 — (r — 1)/rx;, provided
C(W) > po determined from Equation 2.17.

In fact the results pertaining to minimization of Tp are special cases of the above results when

r ~» oo; i.e., theweight of p iszero with respect to Tp or the weight of E is zero with respect

29

to S. Equation 2.11 can be derived from Equation 2.17 and Equation 2.14 from Equation 2.18 if
(r —1/risreplaced by lim, . (r —1)/r = 1.

2.3.5 Significance in the Context of Related Research

In this section we discuss how this chapter encapsulates several results that have appeared in the
literature before and happen to be specia cases of the more general results presented here.

Flatt and Kennedy [36, 35] show that if the overhead function satisfies certain mathematical
properties, then there exists aunique val ue p, of the number of processorsfor which Tp isminimum
for a given W. A property of T, on which their analysis depends heavily isthat T, > ©(p).2
This assumption on the overhead function limits the range of the applicability of their anaysis.
As seen in the example in Section 2.2 (Equation 2.5), there exist parallel systemsthat do not obey
this condition, and in such cases the point of peak performance is determined by the degree of
concurrency of the algorithm being used.

Flatt and Kennedy show that the maximum speedup attainable for a given problem is upper-
bounded by 1/(dip(pr)) a p = po- They aso show that the better a parallel algorithm is (i.e,
the slower T, grows with p), the higher is the value of py and the lower is the value of efficiency
obtained at this point. Equations 2.13 and 2.14 provide results similar to Flatt and Kennedy’s. But
theanalysisin[36] tendsto concludethefollowing- (i) if theoverhead function growsvery fast with
respect to p, then py is small, and hence parallel processing cannot provide substantial speedups;
(i) if the overhead function grows slowly (i.e.,, closer to ®(p)), then the overal efficiency is
very poor a p = po. Notethat if we keep improving the overhead function, the mathematically
derived value of pg will ultimately exceed the limit imposed by the degree of concurrency on the
number of processors that can be used. Hence, in practice no more than C(W) processors will
be used. Thus, in this situation, the theoretical value of p, and the efficiency at this point does
not serve a useful purpose because the point of peak performance efficiency cannot be worse than
W/ (W + T, (W, C(W))). For instance, Flatt and Kennedy's analysis will predict identical values
of pmax @nd efficiency at this operating point for the parallel systems described in the examplesin

2T,, as defined in [36], is the overhead incurred per processor when all costs are normalized with respectto W = 1. So
in the light of the definition of T, in this chapter, the actual mathematical condition of [36], that T, is an increasing
nonnegative function of p, has been translated to the condition that T, grows faster than ® (p).

30

Section 2.3.1 because their overhead functions are identical. But as we saw in these examples, this

is not the case because the the value of C(W) in thetwo casesis different.

In [98], Marinescu and Rice develop a model to describe and analyze a parallel computation
on aMIMD machine in terms of the number of threads of control p into which the computationis
divided and the number events g(p) as afunction of p. They consider the case where each event
is of afixed duration 6 and hence T, = 6g(p). Under these assumptionson T,, they conclude
that with increasing number of processors, the speedup saturates at some vaueif T, = ®(p), and
it asymptotically approaches zero if T, = ©(p™), where m > 2. The results of Section 2.3.1 are
generalizations of these conclusions for awider class of overhead functions. Case | in this section
shows that the speedup saturates at some maximum value if T, < ®(p), and Case Il shows that
speedup will attain a maximum value and then it will drop monotonicaly with p if T, > ®(p).

Usually, the duration of an event or a communication step 6 is not a constant as assumed in
[98]. In genera, both & and T, are functions of W and p. If T, is of the form 6g(p), Marinescu
and Rice [98] derive that the number of processors that will yield maximum speedup will be given
by p = (W/6 4+ g(p))/g'(p), which can be rewritten as 6g'(p) = (W + 60g(p))/p. Itiseasly
verified that thisis a special case of Equation 2.10 for T, = 6g(p).

Worley [146] showed that for certain algorithms, given a certain amount of time Tp, there will
exist a problem size large enough so that it cannot be solved in time Tp, no matter how many
processors are used. In Section 2.3.1, we describe the exact nature of the overhead function for
which a lower bound exists on the execution time for a given problem size. Thisis exactly the
condition for which, given afixed time, an upper bound will exist on the size of the problem that can
be solved withinthistime. We show that for aclassof parallel systems, therelation between problem
size W and the number of processors p at which the parallel execution time Tp is minimized, is

given by theisoefficiency function for a particular efficiency.

Several other researchers have used the minimum parall el execution time of aproblem of agiven
sizefor analyzing the performance of parallel systems[105, 97, 108]. Nussbaum and Agarwal [108]
define scalability of an architecture for a given algorithm asthe ratio of the algorithm’s asymptotic
speedup when run on the architecture in question to its corresponding asymptotic speedup when
run on an EREW PRAM. The asymptotic speedup is the maximum obtainabl e speedup for a given

31

problem size if an unlimited number of processors is available. For a fixed problem size, the
scal ability of the parallel system, according to their metric, depends directly on the minimum Tp for
the system. For the class of parallel systemsfor which the correspondence between theisoefficiency
function and the relation between W and p for minimizing Tp exists, Nussbaum and Agarwal’s
scal ability metric will yield results identical to those predicted by the isoefficiency function on the
behavior of these parallel systems.

Eager et al. [34] and Tang and Li [134] have proposed a criterion of optimality different from
optimal speedup. They argue that the optimal operating point should be chosen so that abalanceis
struck between efficiency and speedup. It is proposed in [34] that the “knee" of the execution time
verses efficiency curve isagood choice of the operating point because at this point the incremental
benefit of adding processorsisroughly 0.5 per processor, or, in other words, efficiency is0.5. Eager
et. al. and Tang and Li also conclude that for T, = ©(p), thisis also equivalent to operating at a
point where the E S product is maximum or p(Tp)? isminimum. Thisconclusionin[34, 134] isa
special case of the more general case that is captured in Equation 2.18. If we substitutex; = 1in
Equation 2.18 (whichisthe case if T, = ©(p)), it can seen that we indeed get an efficiency of 0.5
forr = 2. Ingenera, operating at the optimal point or the“knee" referred toin[34] and [134] for a
parallel systemwith T, = ©(p*) will beidentical to operating at apoint where p(Tp)" iSminimum,
wherer = 2/(2 — x;). Thisis obtained from Equation 2.18 for E = 0.5. Minimizing p(Tp)" for
r > 2/(2 — x;) will result in an operating point with efficiency lower than 0.5 but a higher speedup.
On the other hand, minimizing p(Te)" for r < 2/(2 — x;) will result in an operating point with

efficiency higher than 0.5 and a lower speedup.

32

Chapter 3

SCALABILITY ANALYSISOF SOME NUMERICAL ALGORITHMS

In this chapter, we present a comprehensive scalability analysis of paralel algorithms for fast
Fourier transform (FFT), dense matrix multiplication, sparse matrix-vector multiplication, and the
preconditioned conjugate gradient (PCG) algorithm. Wherever applicable, we analyze theimpact of
algorithmic features, as well as, hardware dependent parameters on scal ability of paralel systems.
We discuss the cost-performance tradeoffs and the cost-effectiveness of various architectures. In
most cases, we present experimental results on commercially available parallel computers such as
the nCUBE and CM-5 to support our analysis.

Our scalability analysis of these numerical algorithms provides many interesting insights into
their behavior on parallel computers. For example, we show that a commonly used paralléel
FFT algorithm that was thought to be ideally suited for hypercubes has a limit on the achievable
efficiency that is determined by the ratio of CPU speed and communication bandwidth of the
hypercube channels. Efficiencies higher than this threshold value can be obtained if the problem
size is increased very rapidly. If the hardware supports cut-through routing, then this threshold
can also be overcome by using a series of successively less scalable parallel formulations. In the
context of dense matrix multiplication, we show that specia hardware permitting simultaneous
communication on all the ports of the processors does not improve the overall scalability on a
hypercube. We discuss the dependence of scalability on technology dependent factors such as
communication and computation speeds and show that under certain conditions, it may be better
to use a paralle computer with k-fold as many processors rather than one with the same number
of processors, each k-fold as fast. In the case of paralldd PCG agorithm, we found that the
use of a truncated Incomplete Cholesky (IC) preconditioner, which was considered unsuitable
for parallel computers, can actualy improve the scalability over aparallel CG with diagonal or no
preconditioning. Asaresult, aparallel formulation of the PCG algorithmwith this1C preconditioner

may execute faster than that with asimple diagona preconditioner even if the latter runsfaster ina

33

seria implementation for a given problem.

3.1 Fast Fourier Transform

Fast Fourier Transform plays an important role in severa scientific and technical applications.
Some of the applications of the FFT algorithm include Time Series and Wave Analysis, solving
Linear Partial Differential Equations, Convolution, Digital Signal Processing and Image Filtering,
etc. Hence, there has been agreat interest in implementing FFT on parallel computers[11, 17, 29,
56, 72, 106, 133, 13, 74, 19, 25, 3].

3.1.1 TheFFT Algorithm

Figure 3.1 outlinesthe seria Cooley-Tukey algorithm for an n point single dimensional unordered
radix-2 FFT adapted from [4, 116]. X isthe input vector of length n (n = 2" for some integer r)
and Y is its Fourier Transform. «* denotes the complex number €127/ where j = /—1. More
generdly, w isthe primitive nth root of unity and hence w* could be thought of as an element of the
finite commutative ring of integers modulo n. Notethat inthelth (0 < | < r) iteration of the loop
starting on Line 3, those elements of the vector are combined whose indices differ by 2'~'-1. Thus

the pattern of the combination of these elementsisidentical to a butterfly network.

The computation of each R[i] in Line 8 is independent for different values of i. Hence p
processors (p < n) can be used to compute the n values on Line 8 such that each processor
computes n/p values. For the sake of simplicity, assumethat p isapower of 2, or more precisdly,
p = 29 for someinteger d such that d < r. To obtain good performance on a parallel machine, it
isimportant to distribute the elements of vectors R and S among the processorsin away that keeps
the interprocess communication to a minimum. In a parale implementation, there are two main
contributors to the data communi cation cost—the message startup timets and the per-word transfer
timet,. In the following subsections, we present two paralel formulations of the Cooley-Tukey
algorithm. As the analysis of Section 3.1.2 will show, each of these formulations minimizes the

cost due to one of these constants.

1 begin
2. fori :==0ton-1doR[i] :=X;j;
3. forl :=0tor-1do
4. begin
5. fori:=0ton-1do gi] :=R[i];
6. fori:=0ton-1do
7. begin
(* Let (bgby - - -br_1) bethe binary representation of i *)
8. R{(bo---br_1)] :=S[(bo - - - bi_10by 41 - - - by _1)] + ®O--20-OG (g - - by_31byyq -+ br_y)];
9. end;
10. end;
11. end.

Figure 3.1: The Cooley-Tukey algorithm for single dimensional unordered FFT.

The Binary-Exchange Algorithm

In the most commonly used mapping that minimizes communication for the binary-exchange
algorithm [81, 5, 11, 17, 29, 72, 106, 133, 116, 94], if (bgb; - - - b,_1) isthe binary representation of
i,thenforali, R[i] and S[i] are mapped to processor number (by - - - by_1).

With this mapping, processors need to communicate with each other in the first d iterations of
the main loop (starting at line 3) of thea gorithm. For theremainingr — d iterations of theloop, the
elementsto be combined are available on the same processor. Also, inthelth (0 <1 < d) iteration,
al the n/p values required by a processor are available to it from a single processor; i.e., the one

whose number differs from it in thelth most significant bit.

The Transpose Algorithm

Let the vector X be arranged in an /n x /n two dimensional array in row mgjor order. An

unordered Fourier Transform of X can be obtained by performing an unordered radix-2 FFT over

35

all therows of this2-D array followed by an unordered radix-2 FFT over all the columns. The row
FFT corresponds to the first logn/2 iterations of the FFT over the entire vector X and the column
FFT corresponds to the remaining logn/2 iterations. In a parallel implementation, this \/n x 4/n
can be mapped on to p processors (p < 4/n) such that each processor stores ,/n/p rows of the
array. Now the FFT over the rows can be performed without any inter-processor communication.
After this step, the 2-D array istransposed and an FFT of all the rows of the transpose is computed.
The only step that requires any inter-processor communication istransposing an 4/n x 4/n array on
P Processors.

The algorithm described above is a two-dimensional transpose algorithm because the data
is arranged in a two-dimensional array mapped onto a one-dimensiona array of processors. In
general, ag-dimensional transpose algorithm can be formulated a ong the above lines by mapping
ag-dimensional array of dataonto a(q — 1)-dimensiona array of processors. Thebinary-exchange
algorithm is nothing but a a (log p 4+ 1)-dimensional algorithm. In this chapter, we confine our
discussion to the two extremes (2-D transpose and binary-exchange) of this sequence of algorithms.

More detailed discussion can be found in [81].

3.1.2 Scalability Analysis of the Binary-Exchange Algorithm for Single Dimensional
Radix-2 Unordered FFT

We assumethat the cost of one unit of computation (i.e., the cost of executing line8in Figure3.1) is
t.. Thusfor an n point FFT, W = t;nlogn. Asdiscussed in Section 3.1.1, the parallel formulation
of FFT can use a most n processors. As p isincreased, the additional processorswill not have any
work to do after p exceeds n. So in order to prevent the efficiency to diminishwith increasing p, n
must grow at least as p so that no processor remainsidle. If n increases linearly with p, then W (
= t.nlogn) must grow in proportionto t.p log p. Thisgivesusalower bound of 2(plogp) onthe
isoefficiency function for the FFT agorithm. Thisfigure isindependent of the parallel architecture
and is afunction of the inherent paralelismin the agorithm. The overall isoefficiency function of

this agorithm can be worse depending upon how the overall overhead T, increases with p.

Several factors may contributeto T, in aparallel implementation of FFT. The most significant of

these overheads is due to data communication between processors. As discussed in Section 3.1.1,

36

the p processors communicatein pairsind (d = log p) of ther (r = logn) iterations of the loop
starting on Line 3 of Figure 3.1. Let z be the distance between the communicating processorsin
the Ith iteration. If the distances between al pairs of communicating processors are not the same,
then z isthe maximum distance between any pair. In this subsection, assume that no part of the
various data paths coincides. Since each processor has n/p words, the total communication cost

for aparale computer with store-and-forward routing is given by the following equation:

To=px =43t + tw%m. (31)

| soefficiency on a Hypercube

As discussed in Section 3.1.1, in the Ith iteration of the loop beginning on Line 3 of Figure
3.1, data messages containing n/p words are exchanged between the processors whose binary
representations are different in the lth most significant bit position (I < d = log p). Since al these
pairs of processorswith addresses differing in onebit position are directly connected in ahypercube

configuration, Equation 3.1 becomes:

_ n
To = pPX 2:|;(()Iog p)il(ts + th),

To

tsplog p + t,nlog p. 3.2

If pincreases, then in order to maintain the efficiency at somevaue E, W should be equal to KT,

where K = E/(1 — E). Since W = t.nlogn, n must grow such that
t.-nlogn = K(tsplog p + t,nlog p). (3.3
Clearly, the isoefficiency function dueto thefirst termin T,, is given by:
W = Ktsplog p. (34

The requirement on the growth of W (to maintain a fixed efficiency) due to the second termin T,
is more complicated. If thisterm requires W to grow at a rate less than ®(plog p), then it can be
ignored in favor of thefirst term. On the other hand, if thisterm requires W to grow at arate higher
than ®(plog p), then thefirst term of T, can be ignored.

Balancing W against the second term only yields the following:

37

nt.logn = Kt,nlog p,
logn = K3t log p,

n= pKe.
This leads to the following isoefficiency function (due to the second term of T,):
W = Kt, x p¥"/ x log p. (3.5)

This growth is less than ®(plog p) as long as Kt,,/t: < 1. As soon as this product exceeds 1,
the overal isoefficiency function is given by Equation 3.5. Since the binary-exchange algorithm
involves only nearest neighbor communication on ahypercube, thetotal overhead T, and hence the

scal ability, cannot be improved by using cut-through routing.

Efficiency Threshold

The isoefficiency function given by Equation 3.5 deteriorates very rapidly with the increase in the
vaue of Kt, /t..

In fact the efficiency corresponding to Kt, /t. = 1, (i.e,, E = t./(t. +t,)) acts somewhat as a
threshold value. For a given hypercube with fixed t. and t,,, efficiencies up to this values can be
obtained easily. But efficiencies much higher than thisthreshold can be obtained only if the problem
sizeis extremely large. For example, consider the computation of an n point FFT on a p-processor
hypercube on which t,, = t.. The isoefficiency function of the paralel FFT on this machine is
Kt, x p* x logp. Now for K < 1 (i.e, E < 0.5) the overal isoefficiency is ®(plog p), but
for E > 0.5, the isoefficiency function is much worse. If E = 0.9, then K = 9 and hence the
isoefficiency function becomes ® (p®log p). As another example, consider the computation of an
n point FFT on a p-processor hypercube on which t,, = 2t.. Now the threshold efficiency is 0.33.
The isoefficiency function for E = 0.5is ®(p?log p) and for E = 0.9, it becomes © (p*®log p).

The above examples show how theratio of t,, and t. effects the scalability and how hard it isto
obtain efficiencies higher than the threshold determined by thisratio.

38

| soefficiency on a Mesh

Assume that an n point FFT is being computed on a p-processor simple mesh (,/p rows x ./p
columns) such that ,/p is a power of 2. For example consider p = 64 such that processor
0,1,2,3,4,5,6,7 form thefirst row and processors 0,8,16,24,32,40,48,56 form the first column. Now
during the execution of the algorithm, processor O will need to communicate with processors
1,2,4,8,16,32. All these communicating processors lie in the same row or the same column.
More precisely, in log ./p of the log p steps that require data communication, the communicating
processors are in the same row, and in the remaining log ,/p steps, they are in the same column.
The distance between the communicating processors in arow grows from one hop to ,/p/2 hops,
doubling in each of thelog ,/p steps. The communication pattern issimilar in case of the columns.
The reader can verify that thisistruefor all the communicating processorsin the mesh. Thus, from

Equation 3.1 we get:

T, = px 259 g, + tw%2'>,
n
T, = 2p(tslog/p+ th(\/ﬁ - 1)),
T, ~ tplogp+ 2t,n/p. (3.6)

Balancing W against the first term yields the foll owing equation for the isoefficiency function:
W = Ktsplog p. (3.7
Balancing W against the second term yields the following:

t.nlogn = 2Kt, x n x /p.

b
logn = 2K 3 x /P.
n = 22V,

Since the growthin W required by thethird termin T, is much higher than that required by the first
two terms (unless p isvery small), thisisthe term that determinesthe overall isoefficiency function

which is given by the following equation:

W = 2Kt, /P x 22¢EP, (3.8)

39

From Equation 3.8, it is obvious that the problem size has to grow exponentialy with the
number of processors to maintain a constant efficiency; hence the algorithm is not very scalable
on asimple mesh. Any different mapping of input vector X on the processors does not reduce
the communication overhead. It has been shown [135] that in any mapping, there will be at least
oneiteration in which the pairs of processors that need to communicate will be at least ,/p/2 hops
apart. Hence the expression for T, used in the above analysis cannot be improved by more than a

factor of two.

3.1.3 Scalability Analysisof the Transpose Algorithm for Single Dimensional Radix-2
Unordered FFT

As discussed earlier in Section 3.1.1, the only data communication involved in this algorithm
is the transposition of an ./n x ,/n two dimensiona array on p processors. It is easily seen
that this involves the communication of a chunk of unique data of size n/p? between every pair
of processors. This communication (known as all-to-all personalized communication) can be

performed by executing the following code on each processor:

fori =1topdo

send data to processor number (self_address @i)

It is shown in [71], that on a hypercube, in each iteration of the above code, each pair of
communi cating processors have a contention-free communication path. On a hypercube with store-
and-forward routing, this communication will taket,,(n/p) log p + tsp time. This communication
term yields an overhead function which isidentical to the overhead function of the binary exchange
algorithm and hence this scheme does not offer any improvement over the binary exchange scheme.
However, on a hypercube with cut-through routing, this can be donein timet,n/p + tsp, leading

to an overhead function T, given by the following equation:
T, = t,n + tsp°. (3.9)

The first term of T, is independent of p and hence, as p increases, the problem size must

increase to balance the second communication term. For an efficiency E, thisyields the following

40

isoefficiency function, where K = E/(1 — E):
W = Ktsp?. (3.10)

In the transpose a gorithm, the mapping of data on the processors requires that ./n > p. Thus, as
p increases, n has to increase as p?, or else some processors will eventualy be out of work. This
requirement imposesand i soefficiency function of ® (p? log p) dueto thelimited concurrency of the
transpose agorithm. Since the isoefficiency function dueto concurrency exceeds the i soefficiency
function due to communication, the former (i.e, ®(p?logp)) is aso the overall isoefficiency
function of the transpose agorithm on a hypercube.

As mentioned in Section 3.1.1, in this chapter we have confined our discussion of the trans-
pose agorithm to the two-dimensional case. A generalized transpose algorithm and the related

performance and scalability analysis can be found in [81].

3.1.4 Impact of Architectural and Algorithmic Variationson Scalability of FFT

In [56], we analyze the scalability of multidimensional FFTs, ordered FFT, and FFTs with radix
higher than 2, and survey some other variationsof the Cooley-Tukey a gorithm. We find that within
asmall constant factor, the isoefficiency functions are the same as the ones derived in this chapter
for the simplified case of unordered, radix-2, single dimensional FFT. The analysisin this chapter
assumes store-and-forward routing on the mesh. In [56] we show that due to message contention,
the expressions for the communication overhead (and hence, for the isoefficiency function too)
on the mesh do not improve if cut-through or worm-hole routing is used. In [56] and [81], we
also discuss the additional overhead that a parallel FFT algorithm might incur due to redundant
computation of twiddle-factors. Our anaysis shows that the asymptotic isoefficiency term due to
this overhead is ®(plog p) and is subsumed by the isoefficiency function due to communication

overhead.

3.1.5 Comparison between Binary-Exchange and Transpose Algorithms

As discussed earlier in this section, an overall isoefficiency function of ®(plog p) can be realized
by using the binary exchange agorithm if the efficiency of operation is such that Kt,, /t, < 1. If

41

the desired efficiency is such that Kt, /t. = 2, then the overall isoefficiency functions of both the
binary-exchange and the transpose schemes are ®(p?log p). When Kt,/t. > 2, the transpose
algorithm is more scalable than the binary-exchange algorithm and should be the algorithm of
choice provided that n > p.

Inthetransposealgorithm describedin Section 3.1.1, thedataof sizenisarrangedinan /nx /n
two dimensional array and is mapped on to alinear array of p processors® with p = /n/k, where
k is a positive integer between 1 and /n. In a generdization of this method [81], the vector X
can be arranged in an m-dimensional array mapped on to an (m — 1)-dimensional logical array
of p processors, where p = n™-9/M/k. The 2-D transpose a gorithm discussed in this section is
a specia case of this generaization with m = 2 and the binary-exchange algorithm is a special
case form = (log p 4+ 1). A comparison of Equations 3.2 and 3.9 shows that the binary exchange
algorithm minimizes the communication overhead due to ts, whereas the 2-D transpose algorithm
minimizes the overhead dueto t,,. Also, the binary-exchange agorithm is highly concurrent and
can use as many as n processors, whereas the concurrency of the 2-D transpose algorithmislimited
to ./n processors. By selecting values of m between 2 and (log p + 1), it is possible to derive
algorithms whose concurrencies and communication overheads due to ts and t,, have intermediate
values between thosefor the two a gorithmsdescribed in this section. Under certain circumstances,
one of these agorithms might be the best choice in terms of both concurrency and communication

overheads.

3.1.6 Cost-Effectiveness of Mesh and Hypercube for FFT Computation

The scalability of a certain algorithm-architecture combination determines its capability to use
increasing number of processors effectively. Many agorithms may be more scalable on costlier
architectures. In such situations, one needs to consider whether it is better to have a larger
parallel computer of a cost-wise more scalable architecture that is underutilized (because of poor
efficiency), or to have a smaller parallel computer of a cost-wise less scalable architecture that is
better utilized. For a given amount of resources, the aim is to maximize the overall performance

which is proportional to the number of processors and the efficiency obtained on them. From the

Litisalogical linear array of processorswhich are physically connected in a hypercube network.

42

scalability analysis of Section 3.1.2, it can be predicted that the FFT agorithm will perform much
poorly on amesh ascompared to ahypercube. On the other hand constructing amesh multicomputer
is cheaper than constructing a hypercube with the same number of processors. In this section we
show that in spite of this, it might be more cost-effective to implement FFT on a hypercube rather

than on amesh.

Suppose that the cost of building a communication network for a parallel computer is directly
proportional to the number of communication links. If we neglect the effect of the length of the
links (i.e., t, = 0) and assume that ts = 0, then the efficiency of an n point FFT computation using
the binary-exchange schemeis approximately given by (1 +t,, log p/(t.logn))~* on a p processor
hypercube and by (1 + 2t,,,/p/(t.logn))~* on a p processor mesh. It is assumed here that t,, and
t. are same for both the computers. Now it is possible to obtain similar performance on both the
computers if we make each channel on the mesh w wide (thus effectively reducing the per-word
communication time to t,,/w), choosing w such that 2,/p/w = log p. The cost of constructing
these hypercube and mesh networks will be plog p and 4wp respectively, where w = 2,/p/log p.
Since 8p,/p/log p isgreater than plog p for all p (itiseasier toseethat 8,/p/(log p)> > 1 for all
p), it will be cheaper to obtain the same performance for FFT computation on ahypercube than on a
mesh. If the comparison is based on the transpose a gorithm, then the hypercube will turn out to be
even more cost effective, as the factor w by which the bandwidth of the mesh channelswill have to
be increased to match its performance with that of a hypercube will now be ,/p. Thusthe relative

costs of building a mesh and a hypercube with identical performance for the FFT computation will

be 8p,/p and plog p, respectively.

However, if the cost of the network is considered to be a function of the bisection width of
the network, as may be the case in VLSl implementations [26], then the picture improves for the
mesh. The hisection widths of a hypercube and a mesh containing p processors each are p/2 and
/P respectively. In order to match the performance of the mesh with that of the hypercube for the
binary-exchange algorithm, each of its channels has to made wider by afactor of w = 2,/p/log p.
In this case, the bisection width of the mesh network becomes 2p/log p. Thus the costs of the
hypercube and mesh networkswith p processors each, such that they yield similar performance on

the FFT, will be functions of p/2 and 2p/log p, respectively. Clearly, for p > 256, such a mesh

43

network is cheaper to build than a hypercube. However, for the transpose algorithm the relative
costs of the mesh and the hypercube yielding same throughput will be p/2 and 2p, respectively.
Hence the hypercube is still more cost effective by a constant factor.

The above analysi s showsthat the performance of the FFT algorithm on amesh can beimproved
considerably by increasing the bandwidth of its communication channels by afactor of ,/p/2. But
the enhanced bandwidth can be fully utilized only if there are at least ,/p/4 data items to be
transferred in each communication step. Thus the input data size n should be at least p,/p/4.
This leads to an isoefficiency term of ®(p*®log p) due to concurrency, but is still a significant
improvement for the mesh from ©(,/p22"/*) with channels of constant bandwidth. In fact
O (p*°log p) is the best possible isoefficiency for FFT on a mesh even if the channel width is
increased arbitrarily with the number of processors. It can be shown that if the channel bandwidth
grows as O (p*), then the isoefficiency function dueto communication will be © (p5—*22Kt/p*™)
and the isoefficiency function due to concurrency will be ®(p*™*log p). If x < 0.5, then the
overal isoefficiency is determined by communication overheads, and is exponentia. If x > 0.5,
then the overall isoefficiency is determined by concurrency. Thus, the best i soefficiency function of
©(p*°log p) can be obtained at x = .5.

Many researchers [33, 124, 2, 1] prefer to compare architectures while keeping the number of
communi cation portsper processor (as opposed to bi sectionwidth) the same acrossthearchitectures.
Dutt and Trinh [33] show that for FFT-like computations, hypercubes are more cost-effective even

with this cost criterion.

3.1.7 Experimental Results

We implemented the binary-exchange algorithm for unordered single dimensional radix-2 FFT
on a 1024-node nCUBEL hypercube. Experiments were conducted for a range of problem sizes
and arange of machine sizes; i.e., number of processors. The length of the input vector was varied
between 4 and 65536, and the number of processors was varied between 1 and 1024. The required
twiddle factors were precomputed and stored at each processor. Speedups and efficiencies were

computed w.rt. the run time of sequential FFT running on one processor of the nCUBEL. A unit

900 : — |
800 - n=1024 <— '
n=8192 ——
700 = = 65536 H— . 7
600 Linear - - - - _
T 500 .
S 400 .
300 .
200 =
100 '
(0R4;
0 200 400 600 800 1000
p—

Figure 3.2: Speedup curves on a hypercube for various problem sizes.

FFT computation takes? approximately 80 microseconds; i.e., t. ~ 80 microseconds. Figures 3.2
through 3.4 summarize the results of these experiments.

Figure 3.2 shows the speedup curves for 3 different problem sizes. As expected, for a small
problem size (input vector length = 1024), the speedup reaches a saturation point for a small
number of processors. Beyond this point, an increase in the number of processors does not result
in additional speedup. On the other hand, the speedup curve is nearly linear for alarger problem
size (length of input vector = 65536).

From the timings obtained in the experiments, we determined t,,, the time to transfer aword (8
bytes), to be 16 microseconds. From the experimentally obtained values of t,, and t., the value of
Kt,/t. wasfound to exceed 1 at E = .83 and theisoefficiency curvesfor E > .83 should be non-
linear. We selected those sets of data pointsfrom our experiment that correspond to approximately

2In our actual FFT program written in C a unit of computation took approximately 400 microseconds. Given that
each FFT computation requires four 32-bit additions/subtractions and four 32 bit multiplications, this correspondsto a
Mega-FLOPrating of 0.02 which isfar lower than those obtained from FFT benchmarkswritten in Fortran or assembly
language. Thisis perhaps dueto our inefficient C-compiler. Since CPU speed has a tremendous impact on the overall
scalability of FFT, weartificially increased the CPU speedto amorerealistic rating of 0.1 Mega-FLOP. Thisisobtained
by replacing the actual complex arithmetic of the inner loop of the FFT computation by a dummy loop that takes 80
microsecondsto execute.

45

le+06

800000

0 600000

n log(n)
400000

200000

O T
0 500 1000 1500 2000

p log(p) —

Figure 3.3: Isoefficiency curves for 3 different values of E on a hypercube.

the same efficiencies and used these to plot the three isoefficiency curves given in Figure 3.3. In
order to make it easier to see the relationship between problem size and the number of processor,
we plot nlogn on the X-axisand plog p on the Y-axis. The plot is nearly linear for E = .76 and
E = .66, thus, showing an isoefficiency of Q2 (plog p) which conformsto our analysis. The third
curve corresponding to E = .87 shows poor isoefficiency. Thisisin agreement with our analytical

results as 0.87 is greater than the break-even efficiency of 0.83.

Using therun timeson the hypercube, the corresponding resultsfor a mesh connected computer
having identical processor speed and identical communication costs per link were projected. Figure
3.4 shows the isoefficiency curves for hypercube and mesh connected computers for the same
efficiency of 0.66. It is clear that the problem size has to grow much more rapidly on a mesh than

on a hypercube to maintain the same efficiency.

Table3.lillustratestheeffect of t,,/t. ratio on the scalability of the FFT algorithm on hypercubes.
Theentriesin thetableshow theslopeof logn tolog p curve for maintaining different efficiencies on
4 different machines, namely, M1, M,, M3 and My, for which thet, /t; ratiosare 0.2, 1.28, 0.18 and
10.7 respectively. Thistable aso servesto predict the maximum practically achievable efficiencies

46

|
1e+t06 - Hypercube <— .
Mesh ——
800000 —
0 600000 - :
n log(n)

400000 —

200000 —

0 } i |
0 500 1000 1500 2000

p log(p) —

Figure 3.4: Isoefficiency curves on mesh and hypercube for E = 0.66.

on these machines for the FFT computation. A machine can easily obtain those efficiencies for
whichtheentry intableissmall; i.e., around 1. For example, theentry for machine M, corresponding
to an efficiency of 0.5is1.28. Thusit can obtain an efficiency of 0.5 even on more than 10,000
processors (p ~ 2'7) on a FFT problem with n = 217128 ~ 222 which is only moderately large.
A machine for which the entry in the table is large cannot obtain those efficiencies except on a
very small number of processors. For example in order to maintain an efficiency of 0.7 on My, n
will have to grow asymptotically as p%. In other words, a problem with 22° input data elements
is required to get an efficiency of 0.7 even on a 2 processors machine for which the t,, /t; ratio is
equal tothat of M. Note that as discussed in Section 3.1.2, when thisfigure is lessthan one, n has
to grow as p (or nlogn hasto grow asymptotically in proportion with plog p) due to concurrency

and other factors such as ..

Table 3.2 shows the efficiencies obtainable on a hypercube of type M, as a function of number
of processors and the size of theinput. Thistable gives an ideaasto how large the problem size has
to be to obtain reasonabl e efficiencies on hypercubes of various sizes of type M,. Clearly, except

for unreasonably large problem sizes (with n > 23°), the efficiencies obtained will be small (< 0.2)

47

E M; M, Ms (Y

01| .022 | 143 | .020 | 1.19
02| .050 | .320 | .045 | 2.68
03| .085 | 548 | .076 | 4.59
04| .133 | 853 | 119 | 7.14
05| .200 | 128 | .178 | 10.7
06| .300 | 192 | 267 | 16.1
07| 466 | 299 | 415 | 25.0
08| 080 | 512 | .712 | 429
09| 180 | 115 | 160 | 96.4
95| 380 | 243 | 338 | 203

Table 3.1: Scalability of FFT algorithm on four different hypercubes for various efficiencies. Each

entry denotestheratio of logn to log p.

for large hypercubes (having a thousand or more nodes) of type M.

Thereader should notethat thet, /t. ratiosfor My, M,, M3 and M, roughly correspond to those
of four commercialy available machines; i.e., nCUBE1, nCUBE2, Intel 1PSC/2 and 1PSC/860
respectively. Their communication channel bandwidthsare roughly 0.5, 2.5, 2.8 and 2.8 M egabytes
per second and the individua processor speeds are roughly 0.1, 3.2, 0.5 and 30 Mega-FLOPS
respectively for FFT computation®.

3.2 DenseMatrix Multiplication

Matrix multiplication is widely used in a variety of applications and is often one of the core
components of many scientific computations. Since the matrix multiplication agorithm is highly
computation intensive, there has been agreat deal of interest in devel oping parallel formulations of

thisalgorithm and testing its performance on various parallel architectures[5, 16, 21, 23, 24, 28, 39,

3 The processor speeds for nNCUBE2, Intel IPSC/2 and IPSC/860 are quoted by the respective manufacturers for FFT
benchmarks.

48

Input Size — 212 | 220 | 2% | 40 | 250
No. of Processors |

1 100 | 1.00 | 1.00 | 1.00 | 1.00

16 022 | 032 | 041 | 048 | 0.4

64 019 | 024 | 032 | 0.38 | 0.44

256 012 | 019 | 026 | 0.32 | 0.37

1024 010 | 016 | 022 | 027 | 0.32

4096 009 | 013 | 0.19 | 0.24 | 0.28

Table 3.2: Efficiencies as afunction of input size and number of processors on a hypercube of type

My.

67, 68, 136, 27]. A number of parallel formulations of dense matrix multiplication algorithm have
been developed. For arbitrarily large number of processors, any of these algorithmsor their variants
can provide near linear speedup for sufficiently large matrix sizes and none of the algorithms can
be clearly claimed to be superior than the others. In this section, we analyze the performance and
scalability of a number of parallel formulations of the matrix multiplication algorithm and predict

the conditions under which each formulation is better than the others.

3.21 Paralle Matrix Multiplication Algorithms

In this section we briefly describe somewell known parallel matrix multiplication algorithms give

their parallel execution times.

A Simple Algorithm

Consider alogica two dimensional mesh of p processors (with ,/p rows and ,/p columns) on
whichtwo n x n matrices A and B are to be multipliedto yield the product matrix C. Letn > ,/p.
The matrices are divided into sub-blocks of sizen/,/p x n//p which are mapped naturally on the
processor array. The algorithm can be implemented on a hypercube by embedding this processor

mesh intoit. Inthefirst step of the algorithm, each processor acquires all those elements of both the

49

matrices that are required to generate the n?/p elements of the product matrix which are to reside
in that processor. This involves an al-to-all broadcast of n?/p elements of matrix A among the
/P processors of each row of processors and that of the same sized blocks of matrix B among ,/p
processors of each column which can be accomplished in 2tslog p + 2t,,n?/,/p time. After each
processor gets all the data it needs, it multipliesthe ,/p pairs of sub-blocks of the two matrices
to compute its share of n?/p elements of the product matrix. Assuming that an addition and
multiplication takes a unit time, the multiplication phase can be completed in n3/p units of time.

Thusthetota parale execution time of the algorithm is given by the following equation:

n3 n?
T, = — +2t;logp + 2t,—. 3.11
p D gp NG ()

Thisalgorithmismemory-inefficient. Thememory requirement for each processoris® (n?//p)
and thus the total memory requirement is ©(n®,/p) words as against ©(n®) for the sequential
algorithm.

Cannon’s Algorithm

A parallel agorithm that is memory efficient and is frequently used is due to Cannon [21]. Again
thetwo n x n matrices A and B are divided into square submatrices of sizen/,/p x n/,/p among
the p processors of awrap-around mesh (which can be embedded in a hypercube if the algorithm
was to be implemented on it). The sub-blocks of A and B residing with the processor (i, j) are
denoted by Al and B'/ respectively, where0 < i < ,/pand0 < j < /p. In thefirst phase of
the execution of the algorithm, the data in the two input matrices is aligned in such a manner that
the corresponding square submatrices at each processor can be multiplied together localy. This
is done by sending the block Al to processor (i, (j + i)mod,/p), and the block B'l to processor
((i + j)mod,/p, j). The copied sub-blocks are then multiplied together. Now the A sub-blocks
are rolled one step to the left and the B sub-blocks are rolled one step upward and the newly
copied sub-blocks are multiplied and the results added to the partia resultsin the C sub-blocks.
The multiplication of A and B is complete after ,/p steps of rolling the sub-blocks of A and B
leftwards and upwards, respectively, and multiplying the in coming sub-blocksin each processor.
In a hypercube with cut-through routing, the time spent in theinitial alignment step can be ignored
with respect to the ,/p shift operations during the multiplication phase, as the former isa simple

50

one-to-one communication along non-conflicting paths. Since each sub-block movement in the
second phase takests + t,,n?/p time, the total parallel execution time for al the movements of the
sub-blocks of both the matricesis given by the foll owing equation:

3 2

n n
T, = — + 2t /p + 2t, —. 312

Fox’'s Algorithm

This agorithm is due to Fox et al. and is described in detail in [39] and [38]. The input matrices
are initidly distributed among the processors in the same manner as in the simple algorithm in
Section 3.2.1. The agorithm worksin ,/p iterations, where p is the number of processors being
used. The data communicationin the algorithm involves successive broadcast of the the sub-blocks
of Ainahorizontal direction so that all processorsin the ith row receive the sub-block A'(+1 in
the jthiteration (iterations are numbered from O to j — 1). After each broadcast the sub-blocks of
A are multiplied by the sub-blocks of B currently residing in each processor and are accumul ated
in the sub-blocks of S. The last step of each iteration is the shifting of the sub-blocks of B in all
the processors to their respective North neighbors in the wrap-around mesh, the sub-blocks of the
topmost row being rolled into the bottommost row. Thus, for the mesh architecture, the algorithm
takes (ts + t,n?/p),/P time in communication in each of the ./p iterations, resulting in a total
paralel execution time of n3/p + t,n? + tsp. By sending the sub-blocks in small packets in a
pipelined fashion, Fox et al. show the run time of thisagorithm to be asfollows:
T, = % ; 2tw3—; Ftp. (313)
Clearly the parallel execution time of this agorithm isworse than that of the simple algorithm
or Cannon’s agorithm. On a hypercube, it is possible to employ a more sophisticated scheme for
one-to-all broadcast [71] of sub-blocks of matrix A among therows. Using this scheme, the parallel
execution time can be improved to n®/p + 2t,n%/,/p + ts,/plog p + 2n/tt,fogp, which is till
worsethan Cannon’s agorithm. However, if the procedureis performed in an asynchronous manner
(i.e, inevery iteration, aprocessor starts performing itscomputation as soon asit hasall therequired
data, and doesnot wait for the entire broadcast to finish) the computation and communi cation of sub-

blocks can be interleaved. It can be shown that if each step of Fox’s algorithm is not synchronized

51

and the processors work independently, then its parallel execution time can be reduced to amost a

factor of two of that Cannon’s agorithm.

Berntsen’s Algorithm

Due to nearest neighbor communications on the ,/p x ,/p wrap-around array of processors,
Cannon’s agorithm’s performance is the same on both mesh and hypercube architectures. In [16],
Berntsen describes an a gorithm which exploits greater connectivity provided by a hypercube. The
algorithm uses p = 2% processors with the restriction that p < n®2 for multiplying two n x n
matrices A and B. Matrix A is split by columns and B by rows into 29 parts. The hypercube
is split into 2% subcubes, each performing a submatrix multiplication between submatrices of A
of size n/2% x n/2?9 and submatrices of B of size n/2%% x n/29 using Cannon’s agorithm. It
is shown in [16] that the time spent in data communication by this agorithm on a hypercube is
2tsp*® + (tslog p)/3 + 3t,n?/p*3, and hence the tota parallel execution time is given by the
following eguation:

n3 2

1 n
T, = 5 + 2t,p'3 + 3100 P+ 3t — (3.14)

w p2/3‘
The terms associated with both ts and t,, are smaler in this algorithm than the agorithms
discussed earlier in this section. It should also be noted that this agorithm, like the simple
algorithm, is not memory efficient as it requires storage of 2n?/p + n?/p?3 matrix elements per

[processor.

The DNS Algorithm

One Element Per Processor Version An algorithm that uses a hypercube with p = n3 = 2%
processors to multiply two n x n matrices was proposed by Dekel, Nassimi and Sahni in [28, 118].
The p processors can bevisualized asbeing arranged inan 29 x 29 x 29 array. Inthisarray, processor
P, occupies position (i, j, k) wherer =229 + j29 + kand 0 < i, j,k < 29. Thusif the binary
representation of r iSraq_1rsq—2...ro, thenthebinary representationsof i, j andk arersq_i1rsq_2...l 2q,
M2g—1l2q—2...Fq @ rq_1rq_2...ro respectively. Each processor p, has three data registers a,, b, and
G, respectively. Initially, processor ps in position (0,j,k) contains the element a(j, k) and b(j, k)
in as and bs respectively. The computation is accomplished in three stages. In the first stage, the

52

elements of the matrices A and B are distributed over the p processors. Asaresult, a; getsa(j, i)
and b, getsb(i, k). Inthe second stage, product elementsc(j, k) are computed and stored in each

G . Inthefina stage, the sums =15 ; « are computed and stored in Co | k.

The above agorithm accomplishes the © (n®) task of matrix multiplication in ®(logn) time
using n® processors. Since the processor-time product of this parallel algorithm exceeds the
sequentia time complexity of the algorithm, it is not processor-efficient. This agorithm can be
made processor-efficient by using fewer that n® processors; i.e., by putting more than one element
of the matrices on each processor. There are more than one ways to adapt this algorithm to use
fewer than n® processors. The method proposed by Dekel, Nassimi, and Sahni in [28, 118] is as

follows.

Variant with Morethan One Element Per Processor Thisvariant of the DNSalgorithmcan
work with n?r processors, where 1 < r < n, thus using one processor for more than one element
of each of thetwo n x n matrices. The agorithm is similar to the one above except that alogical
processor array of r® (instead of n®) superprocessors is used, each superprocessor comprising
of (n/r)? hypercube processors. In the second step, multiplication of blocks of (n/r) x (n/r)
elementsinstead of individual elementsis performed. This multiplicationof (n/r) x (n/r) blocks
isperformed according to Fox’sonn/r x n/r subarrays (each such subarray is actually a subcube)
of processors using Cannon’s algorithm for one element per processor. This step will require a

communication time of 2(ts + t,)n/r.

In thefirst stage of the algorithm, each data element is broadcast over r processors. In order to
place the elements of matrix A in their respective positions, first the buffer a ; i, is sent to a j
inlogr steps and then ay i, isbroadcast to ay 1), 0 <1 < r, againinlogr steps. By following
a similar procedure, the elements of matrix B can be transmitted to their respective processors.
In the second stage, groups of (n/r)? processors multiply blocks of (n/r) x (n/r) elements each
processor performing n/r computationsand 2n/r communications. In thefina step, the eements
of matrix C are restored to their designated processorsin logr steps. The communication time can

thus be shown to be equal to (ts +t,)(5logr + 2n/r) resulting in the parallel run time given by the

53

following eguation:
n3 p n3
T, = o (ts + 1) (5log(3) + ZF)' (3.15)
If p = n3/logn processors are used, then the paralel execution time of the DNS agorithm
is ®(logn). The processor-time product is now ®(n®), which is same as the sequentia time

complexity of the algorithm.

Our Variant of the DNS Algorithm

Here we present another scheme to adapt the single element per processor version of the DNS
algorithm to be able to use fewer than n® processors on a hypercube. Henceforth, we shall refer
to this algorithm as the GK variant of the DNS agorithm. As shown later in Section 3.2.3, this
algorithm performs better than the DNS algorithm for a wide range of n and p. Also, unlike the
DNS agorithmwhichworksonly for n? < p < n?, thisalgorithm can use any number of processors
from 1 to n. In thisvariant, we use p = 2% processors where q < (logn)/3. The matrices are
divided into sub-blocks of n/2% x n/2% elements and the sub-blocks are numbered just the way the
single elements were numbered in the one-element-per-processor version of the DNS algorithm.
Now, al the single element operations of this algorithm are replaced by sub-block operations; i.e.,

matrix sub-blocks are multiplied, communicated, and added.

Let t and tyyg is the time to perform a single floating point multiplication and addition
respectively. Also, according to the earlier assumption, tyy; + tags = 1. In the first stage of this
algorithm, n?/ p%? dataelements are broadcast over p/3 processorsfor each matrix. Inorder to place
theelementsof matrix Aintheir respective positions, first thebuffer a j x issenttoay j x inlog p*/3
steps and then ay j « is broadcast to ay j 1, 0 < | < p/3, again in log p*/® steps. By following a
similar procedure, theelementsof matrix B can be sent to the processorswherethey areto beutilized
in 2log pY/® steps. In the second stage of the algorithm, each processor performs (n/p/3)® = n3/p
multiplications. In the third step, the corresponding elements of p'/® groups of n?/p?? elements
each are added in a tree fashion. The first stage takes 4tslog p*/® + 4t,,(n?/p??) log p*/® time.
The second stage contributes t,,,n3/p to the parallel execution time and the third stage involves

tslog pt/3+t,(n?/p%3) log p*/® communicationtimeand t,44n3/ p computation timefor calculating

Algorithm Total Overhead Asymptotic Range of
Function, T, Isoeff. Function Applicability
Berntsen's 2t;p** + itsplog p + 3t,n?p*/3 O(p? 1< p<n¥?
Cannon’s 2t p¥2 + 2t,n2 /P O(ptd) l<p<n?
GK 2t;plog p + 3t,n?p*3log p ©(p(log p)*) l<p=r
Improved GK | t,n?p*® + tsplog p + 2np2/3\/%tstw logp | ®(pllogp)*® |1<p< (\/%”lm)3
DNS (ts +t,)(3plog p + 2n%) ©(plog p) n?<p<nd

Table 3.3: Communication overhead, scalability and range of application of the four algorithmson

a hypercube.

the sums. The total parallel execution timeis therefore given by the following equation:
3 5 2

n 5 n
Tp = F + étslog p+ étw@ log p. (3.16)

This execution time can be further reduced by using a more sophisticated scheme for one-to-all

broadcast on a hypercube [71]. Thisis discussed in detail later while analyzing the scalability of
the GK agorithm.

3.2.2 Scalability Analysis

Following the technique described in Section 2.2, in [54] we have analyzed the scalability of all the
algorithms discussed in Section 3.2.1 on the hypercube architecture using the isoefficiency metric.
The asymptotic scalabilities and the range of applicability of these algorithms is summarized in
Table 3.3. Theisoefficiency functionsin Table 3.3 reflect the impact of communication overheads,
as well as, the degree of concurrency. For example, the isoefficiency term for Berntsen’s algorithm
is ©(p*?) due to communication overhead [54]. However, for this algorithm, p cannot exceed
n%2. This restriction p < n¥? impliesthat n® = W = Q(p?). Hence, the overall asymptotic
isoefficiency function for this algorithm is ®(p?). In this section and the rest of this chapter, we
skip the discussion of the simple agorithm and Fox’s algorithm because the expressions for their
iso-efficiency functionsdiffer with that for Cannon’s algorithm by small constant factors only [54].

Note that Table 3.3 gives only the asymptotic scalahilities of the four algorithms. In practice,

55

none of the algorithmsis strictly better than the others for al possible problem sizes and number
of processors. Further analysisisrequired to determine the best algorithm for a given problem size
and a certain parallel machine depending on the number of processors being used and the hardware
parameters of the machine. A detailed comparison of these algorithms based on their respective

total overhead functionsis presented in the next section.

3.2.3 RéativePerformance of the Four Algorithmson a Hypercube

Theisoefficiency functionsof the four matrix multiplication a gorithms predict their relative perfor-
mance for alarge number of processors and large problem sizes. But for moderate values of n and
p, aseemingly less scalable parallel formulation can outperform the one that has an asymptotically
smaller isoefficiency function. In this subsection, we derive the exact conditions under which each
of these four algorithmsyields the best performance.

We compare a pair of algorithms by comparing their total overhead functions (T,) as given in
Table 3.3. For instance, while comparing the GK agorithm with Cannon’s agorithm, it is clear
that the ts term for the GK agorithm will always be less than that for Cannon’s algorithm. Even
if ts = O, the t,, term of the GK algorithm becomes smaller than that of Cannon’s agorithm for
p > 130 million. Thus, p = 130 millionis the cut-off point beyond which the GK agorithm will
perform better than Cannon’s algorithm irrespective of the values of n. For p < 130 million, the
performance of the GK algorithm will be better than that of Cannon’s algorithm for values of n less
than a certain threshold value which is afunction of p and the ration of ts and t,,. A hundred and
thirty million processors is clearly too large, but we show that for reasonable values of t, the GK
algorithm performs better than Cannon’s algorithm for very practical values of p and n.

In order to determine ranges of p and n where the GK agorithm performs better than Cannon’s
algorithm, we equate their respective overhead functions and compute n as a function of p. We
call this ngqua—1,(P) because this value of n is the threshold at which the overheads of the two
agorithms will be identical for agiven p. If n > nggua—7, (p), Cannon’s algorithm will perform

better and if N < Ngqua—1, (P), the GK agorithm will perform better.

5 5
T camom — 2t p¥? + 2t,n*/p = T, = 3iPlogp + :—%twn2 p**log p,

56

GK vs. Berntsen's ——
DNSvs. GK -
GK vs. Cannon’s -
p:n1.5 S e
p:n2 -+ -
p=n3 -

30 40 50 60 70

Figure 3.5: A comparison of the four agorithmsfor t,, = 3 and t; = 150.

5/3plog p — 2p%2)t,
nEqual_To(p):\/ (5/3plog p — 2p*?) 317)

(2,/p—5/3p*2log pit,,’
Similarly, equal overhead conditions can be determined for other pairs of agorithms too and
the values of t,, and ts can be plugged in depending upon the machine in question to determine the
best agorithm for a give problem size and number of processors. We have performed thisanalysis
for three practical sets of valuesof t,, and ts. In the rest of the section we demonstrate the practical
importance of this analysis by showing how any of the four algorithms can be useful depending on
the problem size and the parallel machine available.
Theplain linesrepresent equal overhead conditionsfor pairs of agorithms. For acurve marked
“X vsY” inafigure, algorithm X has asmaller value of communication overhead to the | ft of the
curve, algorithm Y has smaller communication overhead to the right side of the curve, while the
two agorithms have the same value of T, along the curve. The lines with symbols <, +, and O
plot the functions p = n*2, p = n? and p = n3, respectively. These lines demarcate the regions
of applicabilities of the four algorithms (see Table 3.3) and are important because an agorithm
might not be applicablein theregion whereitsoverhead function T, ismathematically superior than
others. In all the figures in this section, the region marked with an X is the one where p > n® and

none of the algorithmsis applicable, the region marked with an aisthe one where the GK algorithm

57

GK vs. Berntsen's —
DNSvs.GK
GK vs. Cannon's ~—~ -
=nl5s -
pp =n2 -+-

p=n 3 '

20 25 30 35

Figure 3.6: A comparison of the four agorithmsfor t,, = 3 and t; = 10.

isthe best choice, the symbol b represents the region where Berntsen’s algorithm is superior to the
others, the region marked with a c is the one where Cannon’s agorithm should be used and the
region marked with ad isthe one where the DNS agorithm is the best.

Figure 3.5 compares the four algorithmsfor t, = 3 and t; = 150. These parameters are very
close to that of a currently available parallel computer like the NnCUBE2. In thisfigure, since the
Nequai—T, curve for the DNS agorithm and the GK algorithm lies in the X region, and the DNS
agorithm is better than the GK agorithm only for values of n smaller than ngqua -1, (P). Hence the
DNS algorithm will always* perform worse than the GK a gorithm for this set of valuesof ts and t,,
and the latter isthe best overal choicefor p > n? as Berntsen’s algorithm and Cannon’s algorithm
are not applicable in this range of p. Since the Ngqua -1, curve for GK and Cannon’s agorithm
lies below the p = n¥2 curve, the GK algorithm is the best choice even for n¥2 < p < n? For
p < n®?, Berntsen's algorithm is always better than Cannon’s algorithm, and for this set of ts and
t,,, aso than the GK agorithm. Henceit isthe best choice in that region in Figure 3.5.

In Figure 3.6, we compare the four algorithmsfor a hypercube witht,, = 3and t; = 10. Such

a machine could easily be developed in the near future by using faster CPU’s (t,, and ts represent

4 Actually, the ngqua 1, curve for DNSvs GK algorithms will crossthe p = n® curve for p = 2.6 x 10%, but clearly
this region has no practical importance.

58

GK vs. Berntsen's — -
/ DNSvs.GK
4 GK vs. Cannon's ~~~~

5 10 15 20 25 30 35 40 45

Figure 3.7: A comparison of the four agorithmsfor t,, = 3and t; = 0.5.

relative communication costs with respect to the unit computation time) and reducing the message
startup time. By observing the ngqua—7, curves and the regions of applicability of these algorithms,
the regions of superiority of each of the algorithms can be determined just asin case of Figure 3.5.
It is noteworthy that in Figure 3.6 each of the four algorithms performs better than the rest in some
region and all the four regions a, b, c and d contain practical values of p and n.

In Figure 3.7, we present a comparison of the four algorithmsfor t, = 3andt; = 0.5. These
parameters are close to what one can expect to observe on atypica SIMD machine likethe CM-2.
For the range of processors shown in the figure, the GK algorithm isinferior to the others®. Hence
it is best to use the DNS agorithm for n? < p < n®, Cannon’s algorithm for n®2? < p < n? and

Berntsen’s algorithm for p < n®2,

3.24 Scalabilitiesof Different Algorithmswith Simultaneous Communication on All
Hypercube Channels

On certain parallel machineslikethe nCUBEZ2, the hardware supports simultaneouscommunication

on al the channdls. This feature of the hardware can be utilized to significantly reduce the

> The GK algorithm does begin to perform better than the other algorithms for p > 1.3 x 108, but again we consider this
range of p to be impractical.

59

communication cost of certain operations involving broadcasting and personalized communication
[71]. Inthissection weinvestigate asto what extent can the performance of the al gorithmsdescribed
in Section 3.2.1 can be improved by utilizing simultaneous communication on all thelog p ports of
the hypercube processors.

Cannon’s algorithm, Berntsen’s algorithm and the pipelined version of Fox’s algorithm employ
only nearest neighbor communication and hence can benefit from simultaneous communication by
a constant factor only as the subbocks of matrices A and B can now be transferred simultaneously.
The DNS algorithm can also gain only a constant factor in its communication terms as all data
messages are only one word long. Hence, among the matrix multiplication agorithms discussed
here, the ones that can potentially benefit from simultaneous communications on all the ports are

the simple algorithm (or its variations[68]) and the GK algorithm.

The Simple Algorithm with All-Port Communication

This agorithm requires an al-to-all broadcast of the sub-blocks of the matrices A and B among
groups of ,/p processors. The best possible scheme utilizing al the channels of a hypercube
simultaneously can accomplish an all-to-all broadcast of blocks of sizen?/p among /P processors
intime2t,n?,/p/(plog p) + (tslog p)/2. Moreover, the communication of the sub-blocks of both
A and B can proceed simultaneously. Thus the parallel execution time of this algorithm on a

hypercube with simultaneous communication is given by the following equation:

3 2

+ 1tS log p. (3.18)

n
Ty = — + 2t ————
) J/Plogp 2

Recall that the simple algorithm isnot memory efficient. Ho et al. [68] give amemory efficient
version of this algorithm which has somewhat higher execution time than that given by Equation
3.18. It can be shown that the isoefficiency function due to communication overheads is only
®(plog p) now, which is asignificant improvement over the ® (p*°) isoefficiency function of this
algorithm when communication on only one of thelog p ports of a processor was alowed at atime.

However, as mentioned in [68], the lower limit on the message size imposes the condition that
n > (/plogp)/2. Thisrequiresthat n® = W > p*>(log p)®/8. Thusthe rate at which the the

problem sizeis required to grow with respect to the number of processorsin order to utilize al the

60

communication channels of the hypercube is higher than the i soefficiency function of the agorithm

implemented on a simple hypercube with one port communication at atime.

The GK Algorithm with All-Port Communication

Using the one-to-all broadcast scheme of [71] for a hypercube with simultaneous all-port commu-
nication, the parallel execution time of the GK algorithm can be reduced to the following:

3 2 n

n
T = F +tslog p + 9t, 6 pl/s“/tstw' (3.19)

p>3log p "

The communication terms now yield an isoefficiency function of ®(plog p), but it can be
shown that lower limit on the message size entails the problem size to grow as ® (p(log p)?3) with
respect to p which is not any better that the isoefficiency function of this algorithm on a simple

hypercube with one port communication a atime.

Discussion

The gist of the analysisin this section is that allowing simultaneous on al the ports of a processor
on a hypercube does not improve the overall scalability of matrix multiplication agorithms. The
reason is that simultaneous communication on all channels requires that each processor has large
enough chunks of data to transfer to other processors. Thisimposes a lower bound on the size of
the problem that will generate such large messages. In case of matrix multiplication algorithms,
the problem size (as a function of p) that can generate large enough messages for simultaneous
communicationto be useful, turnsout to belarger than what isrequired to maintain afixed efficiency
with only one port communication at atime. However, there will be certain values of n and p for

which the modified algorithm will perform better.

3.25 Isoefficiency asa Function of Technology Dependent Factors

Theisoefficiency function can beused not only to determinetherate at whichthe problem sizeshould
grow with respect to the number of processors, but also with respect to avariation in other hardware
dependent constants such as the communication speed and processing power of the processors

used etc. In many agorithms, these constants contribute a multiplicative term to the isoefficiency

61

function, but in some others they effect the asymptotic isoefficiency of a pardld system (eg.,
parallel FFT). For instance, a multiplicativeterm of (t,,)® appears in most i soefficiency functions of
matrix multiplication algorithms described in this chapter. As discussed earlier, t,, depends on the
ratio of the data communication speed of the channels to the computation speed of the processors
used inthe parallel architecture. Thismeansthat if the processorsof the multicomputer are replaced
by k times faster processors, then the problem size will have to be increased by a factor of k in
order to abtain the same efficiency. Thustheisoefficiency function for matrix multiplicationisvery
sensitive to the hardware dependent constants of the architecture. For example, in case of Cannon’s
algorithm, if the number of processorsisincreased 10 times, onewould haveto solveaproblem 31.6
timesbigger in order to get the same efficiency. On the other hand, for small values of t, (as may be
the case with most SIMD machines), if p iskept the same and 10 times faster processors are used,
then one would need to solve a 1000 times larger problem to be able to obtain the same efficiency.
Hence for certain problem sizes, it may be better to have a parallel computer with k-fold as many
processors rather than one with the same number of processors, each k-fold as fast (assuming that
the communication network and the bandwidth etc. remain the same). This should be contrasted
with the conventional wisdom that suggeststhat better performance is always obtained using fewer

faster processors [15].

3.26 Experimental Results

We verified a part of the analysis of Section 3.2.3 through experiments on the CM-5 paralel
computer. On this machine, the fat-tree [89] like communication network on the CM-5 provides
simultaneous paths for communication between all pairs of processors. Hence the CM-5 can be
viewed as a fully connected architecture which can simulate a hypercube connected network. We
implemented Cannon’s and the algorithm and our (GK) variant of the DNS algorithm.

On the CM-5, the time taken for one floating point multiplication and addition was measured
to be 1.53 microseconds on our implementation. The message startup time for our program was
observed to be about 380 microseconds and the per-word transfer timefor 4 bytewordswas observed

to be about 1.8 microseconds®. Since the CM-5 can be considered as a fully connected network

6 These values do not necessarily reflect the communication speed of the hardware but the overheads observed for our

62

m —>

40 60 80 100 120 140
n—

Figure 3.8: Efficiency as afunction of matrix sizefor Cannon’s algorithm and GK agorithm for 64

processors.

of processors, the expression for the parallel execution time for the agorithm of Section 3.2.1 will
have to be modified dlightly. The first part of the procedure to place the elements of matrix A in
their respective positions, requires sending the buffer a x) to ay j . Thiscan be donein one step
on the CM-5 instead of log(p*/®) steps on a conventional hypercube. The sameistrue for matrix B
as well. It can be shown that the following modified expression gives the parallel execution time

for thisagorithm on the CM-5:

Tp:n—;+ts(logp+2)+twpnTj3(Iogp+2). (3.20)

Computing the conditionfor equa T, for thisand Cannon’s algorithm by deriving the respective
values of T, from Equations 3.20 and 3.12, it can be shown that for 64 processors, Cannon’'s
algorithm should perform better that our algorithm for n > 83. Figure 3.8 shows the efficiency
vs n curves for the two algorithms for p = 64. It can be seen that as predicted, our algorithm

performs better for smaller problem sizes. The experimenta cross-over point of the two curves

implementation. For instance, a function call in the program associated with sending or receiving a message could
contribute to the message startup overhead.

63

isat n = 96. A dlight deviation from the derived value of 83 can be explained due to the fact
that the values of t; and t,, are not exactly the same for the two programs. For 512 processors,
the predicted cross-over point isfor n = 295. Since the number of processors has to be a perfect
square for Cannon’s algorithm on sguare matrices, in Figure 3.9, we draw the efficiency vsn curve
for p = 484 for Cannon’s agorithm and for p = 512 for the GK algorithm’. The cross-over point
again closely matches the predicted value. These experiments suggest that the agorithm of Section
3.2.1 can outperform the classical agorithmslike Cannon’s for a wide range of problem sizes and
number of processors. Moreover, as the number of processors is increased, the cross-over point
of the efficiency curves of the GK algorithm and Cannon’s algorithm corresponds to a very high
efficiency. As seen in Figure 3.9, the cross-over happens at E ~ 0.93 and Cannon’s agorithm
cannot outperform the GK algorithm by awide margin at such high efficiencies. On the other hand,
the GK algorithm achieves an efficiency of 0.5 for amatrix size of 112 x 112, whereas Cannon’s
algorithm operates at an efficiency of only 0.28 on 484 processors on 110 x 110 matrices. In other
words, in the region where the GK agorithm is better than Cannon’s agorithm, the difference in

the efficiencies is quite significant.

3.3 Performanceand Scalability of Preconditioned Conjugate Gradient M ethodson
Parallel Computers

Solving large sparse systems of linear equationsis an integral part of mathematical and scientific
computing and finds application in a variety of fields such as fluid dynamics, structural analysis,
circuit theory, power system analysis, surveying, and atmospheric modeling. With the avail ability
of large-scale parallel computers, iterative methods such as the Conjugate Gradient method for
solving such systems are becoming increasingly appealing, as they can be pardlelized with much
greater ease than direct methods. As aresult there hasbeen agreat deal of interest inimplementing
the Conjugate Gradient algorithm on parallel computers [6, 12, 62, 73, 79, 101, 122, 138, 139].
In this section, we study performance and scalability of parallel formulations of an iteration of the
Preconditioned Conjugate Gradient (PCG) algorithm [50] for solving large sparse linear systems

of equations of the form A x = b, where A is a symmetric positive definite matrix. Although,

" Thisis not an unfair comparison because the efficiency can only be better for smaller number of processors.

m —>

100 150 200 250 300 350 400 450
n—

Figure 3.9: Efficiency vs matrix size for Cannon’s algorithm (p = 484) and the GK algorithm (p =
512).

we specificaly dea with the Preconditioned CG algorithm only, the anaysis of the diagona
preconditioner case appliesto the non-preconditioned method also. In fact the results of this section
can be adapted to a number of iterative methods that use matrix-vector multiplication and vector

inner product calculation as the basic operations in each iteration.

3.3.1 TheSerial PCG Algorithm

Figure 3.10 illustrates the PCG agorithm [50] for solving a linear system of equations A X =
b, where A is a sparse symmetric positive definite matrix. The PCG algorithm performs a few
basic operations in each iteration. These are matrix-vector multiplication, vector inner product
calculation, scalar-vector multiplication, vector addition and solution of alinear syssemM z =r.
Here M is the preconditioner matrix, usually derived from A using certain techniques. We will
consider two kinds of preconditioner matrices M - (i) when M is chosen to be a diagonal matrix,
usually derived from the principal diagonal of A, and (ii) when M is obtained through a truncated
Incomplete Cholesky (IC) factorization [73, 138] of A. In the following subsections, we determine

© o N o g k~c 0w DN PR

I R S T T o o e =
© © 0o N o o ~ W DN PP O

begin
i :=0;X0:=0; Io:=D; po :=|[roll3;
while (/A > €llFoll2) and (i < imax) do

begin
SolveM z =r1;;
Y= I g
=i+ 1
if(i=1) p1:=2
elsebegin
Bi = Yie1/Vi-2;
Pi :=Z1+ BiPi-1;
end;
w; =Ap;;

ai = yi4lpf wi;
X ==Xi_1 + aiPi;

M =ri_y—oWw;

pi =I5
end; {while}
X=X,

end.

Figure 3.10: The Preconditioned Conjugate Gradient algorithm.

65

66

the seria execution timefor each iteration of the PCG agorithm with both preconditioners.

Diagonal Preconditioner

During aPCG iteration for solving asystem of N equations, the serial complexity of computing the
vector inner product, scalar-vector multiplication and vector additionis ®(N). If M isadiagona
matrix, the complexity of solvingM z =r isaso ©®(N). If there are m non-zero elements in
each row of the sparse matrix A, then the matrix-vector multiplication of a CG iteration can be
performed in ®(MN) time by using a suitable scheme for storing A. Thus, with the diagonal
preconditioner, each CG iteration involves afew stepsof ®(N) complexity and one step of ® (mN)
complexity. As aresult, the serial execution time for one iteration of the PCG algorithm with a

diagonal preconditioner can be expressed as follows:
W = ¢;N + c;mN. (3.21)

Here ¢, and ¢, are constants depending upon the floating point speed of the computer and m isthe

number non-zero elements in each row of the sparse matrix.

The |l C Preconditioner

In this section, we only consider the case when A is a block-tridiagona matrix of dimension N
resulting from the discretization of a2-dimensional self-adjoint elliptic partial differential equation
via finite differences using natural ordering of grid points. Besides the principa diagona, the
matrix A has two diagonals on each side of the principal diagonal at distances of 1 and /N fromiit.
Clearly, al the vector operations can be performed in ® (N) time. The matrix-vector multiplication
operation takes time proportiona to 5N. When M is an IC preconditioner, the structure of M is
identical to that of A.

A method for solving M z = r, originally proposed for vector machines [138], is briefly
described below. A detailed description of the same can be found in [81]. As shown in Section
3.3.2, thismethod is perfectly paralleizable on CM-5 and other architectures ranging from mesh
to hypercube. In fact, this method leads to a paralel formulation of the PCG agorithm that is
somewhat more scalable and efficient (in terms of processor utilization) than aformulation using a

simple diagonal preconditioner.

67

The matrix M can bewrittenasM =(I - L)D(l - L), where D isadiagonal matrix and L isa
strictly lower triangular matrix with two diagonal s corresponding to the two lower diagonas of M.

Thus, the system Mz =r may be solved by the following steps:

solve (I -Lu=r
solve Dv=u

solve (I-LT)z=v

Since L isstrictly lower triangular (i.e, LN = 0), u and z may bewrittenasu = X' ;'L'r and
z =3 HL)v. These series may be truncated to (k + 1) terms where k <« N because M is
diagonally dominant [73, 138]. In our formulation, we form the matrix L= (I+L+L2+ .. +

L*) explicitly. Thus, solvingMz =r isequivalent to

() u=~Lr

(i) v~Dlu

(i) z~LTv

The number of diagonals in the matrix L is equal to (k + 1)(k + 2)/2. These diagonals are

distributedin k+ 1 clusters at distancesof +/N from each other. Thefirst cluster, whichincludesthe
principal diagonal, hask + 1 diagonals, and then the number of diagonalsin each cluster decreases
by one. The last cluster has only one diagonal which is at a distance of k/N from the principal
diagonal. Thus solving the system M z =r, in case of the IC preconditioner, is equivaent to
performing one vector division (step (ii)) and two matrix-vector multiplications (steps (i) and (iii)),
where each matrix has (k + 1)(k + 2)/2 diagonals. Hence the complexity of solvingM z =r for
thiscaseis proportional to (k + 1)(k + 2) N and the serial execution time of one complete iteration

is given by the following equation:
W= (c;+ 5+ (k+Dk+2)c) x N.

Here ¢, and ¢, are constants depending upon the floating point speed of the computer. The above

equation can be written compactly as follows by putting n(k) = ¢; + (5 + (K + 1)(k + 2)).

W = n(k)N. (3.22)

68

0 1 2 3 4 5
P, P, P,
6 7 8 9 10 11

8 1 20 2 2 2B
24 25 26 27 28 29
PG I:)7 PS
30 31 32 33 34 35

Figure 3.11: Partitioning afinite difference grid on a processor mesh.

3.3.2 Scalability Analysis: Block-Tridiagonal Matrices

In this section we consider the parallel formulation of the PCG algorithm with block-tridiagonal
matrix of coefficients resulting from a square two dimensional finite difference grid with natura
ordering of grid points. Each point on the grid contributes one equation to the system A X = b; i.e,

one row of matrix A and one element of the vector b.

The Parallel Formulation

The pointson thefinite difference grid can be partitioned among the processors of amesh connected
parallel computer as shown in Figure 3.11. Since a mesh can be mapped onto a hypercube or a
fully connected network, a mapping similar to the one shown in Figure 3.11 will work for these
architectures as well.

In the PCG algorithm, the scalar-vector multiplication and vector addition operations do not
involve any communication overhead, as al therequired dataislocally available on each processor
and the results are stored locally as well. If the diagonal preconditioner is used, then even solving
thesystem M z =r does not require any data communication because the resultant vector z can be
obtained by simply dividing each element of r by the corresponding diagonal element of M, both of
which arelocally available on each processor. Thus, the operationsthat invol ve any communication
overheads are computation of inner products, matrix-vector multiplication, and, in case of the IC

preconditioner, solving thesystemM z =r.

69

In the computation of the inner product of two vectors, the corresponding elements of each
vector are multiplied locally and these products are summed up. The value of the inner product
is the sum of these partial sums located at each processor. The data communication required to
perform this step involves adding al the partial sums and distributing the resulting value to each
Processor.

In order to perform parallel matrix-vector multiplicationinvolving the block-tridiagona matrix,
each processor has to acquire the vector elements corresponding to the column numbers of al
the matrix elements it stores. It can be seen from Figure 3.11 that each processor needs to
exchange information corresponding toits ./N/p boundary pointswith each of itsfour neighboring
processors. After this communication step, each processor gets all the elements of the vector it
needs to multiply with all the matrix elementsit stores. Now the multiplicationsare performed and
the resultant products are summed and stored locally on each processor.

A method for solving M z = r for the IC preconditioner M has been described in Section
3.3.1. Thiscomputation involves multiplication of avector with alower triangular matrix L and an
upper triangular matrix LT, where each triangular matrix has (k + 1)(k 4+ 2)/2 diagonals arranged
in the fashion described in Section 3.3.1. If the scheme of partitioning A among the processors
(every processor stores /N/p clusters of /N/p matrix rows each) is extended to L and LT, then
it can be shown that for ./N/p > k the data communication for performing these matrix-vector
multiplicationsrequires each processor inthemesh to send k/N/ p vector el ementsto itsimmediate

north, east, south and west neighbors.

Communication Over heads

In this section we determine the overall overhead due to parallel processing in a PCG iteration.
As discussed in the previous subsection, the operations that incur communication overheads are
computation of inner products, matrix-vector multiplication and solving thesystem M z =r. Let
these three components of T, be TJner—Prod T Matrix-Vector gnd T PC-sdve regpectively. In order to
compute each component of T, first we compute the time spent by each processor in performing
data communication for the operation in question. The product of thistime with p gives the total

time spent by all the processors in performing this operation and T, is the sum of each of these

70

individual components.

Overhead in Computing thelnner Products Thesummationof p partial sums (onelocated
at each processor) can be performed through recursivedoublingin (ts+t,,) log p timeon ahypercube,
andin (ts +t,) log p + ty,/p time on atwo dimensional mesh. It takes the same amount of timeto
broadcast the final result to each processor. On a machine like the CM-5, such operations (known
as reduction operations) are performed by the control network in a small constant time which
can be ignored in comparison with the overhead incurred in other parts of the algorithm, such as,
matrix-vector multiplication. The following equations give the expressions for the total overhead
for each iteration over all the processors for computing the three inner products (lines 6, 14 and 17
in Figure 3.10) on different architectures. In these equationst,, isignored in comparison with ts as

the latter is much larger in most practical machines.

Tol nner—Prod B(ts |Og p+ th\/ﬁ) X P 2-D mesh) (323)
T/mer—Prod ~ 6t logp x p (Hyper cube). (3.24)
-I-OI nner —Prod 0 (CM — 5) (325)

Overhead Due to Matrix-Vector Multiplication During matrix-vector multiplication, each
processor needs to exchange vector elements corresponding to its boundary grid pointswith each of
its four neighboring processors. This can be donein 4t + 4t,,./N/p time on amesh, hypercube or
avirtualy fully connected network like that of the CM-5. The total overhead for this step is given
by the following equation:

_ IN
ToMatr|x7Vect0r — 4(ts +tw B) X p (326)

Overhead in SolvingM z =r If asimplediagona preconditioner is used, then this step does
not require any communication. For the case of the IC preconditioner, as discussed in Section
3.3.1, the communication pattern for this step is identical to that for matrix-vector multiplication,
except that ky/N/p vector elements are now exchanged at each processor boundary. The required

expression for the overall overhead for this step is as follows.

T emsove — g (diagonal preconditioner). (3.27)

71

T PC-solve _ 4(ts+twk\/g) X p (1C preconditioner). (3.28)

Total Overhead Now, having computed each of its components, we can write the expressions
for the overall T, using Equations 3.23 through 3.28. The following equations give the required

approximate expressions (after dropping the insignificant terms, if any) for T,.

e TheCM-5
To = 4(tsp + t,4/PN) (diagonal preconditioner). (3.29)
To = 4(2tsp + t,(k+ 1)/ pN) (1C preconditioner). (3.30)
e Hypercube
T, = 6tsplog p + 4t,+/ pN (diagonal preconditioner). (3.31)
T, = 6tsplog p + 4(k + t,,/pN (1C preconditioner). (3.32)
e Mesh
T, = 6tsplog p + 4t/ PN + 6thp/p (diagonal preconditioner). (3.33)
T, = 6tsplog p + 4(k + 1t/ pN + 6t p/p (1C preconditioner). (3.34)

| soefficiency Analysis

Since we perform the scalability analysis with respect to one PCG iteration, the problem size W
will be considered to be ®(N) and we will study the rate at which N needs to grow with p for a
fixed efficiency as a measure of scalability. If To(W, P) isthe total overhead, the efficiency E is
given by W/ (W + To(W, p)). Clearly, for agiven N, if p increases, then E will decrease because
To(W, p) increases with p. On the other hand, if N increases, then E increases because the rate

of increase of T, is slower than that of W for a scalable algorithm. The isoefficiency function

72

for a certain efficiency E can be obtained by equating W with T,E /(1 — E) (Equation 2.4) and
then solving this equation to determine N as afunction of p. In our paralel formulation, T, has a
number of different terms due to ts, t,, tn, etc. When there are multiple terms of different orders
of magnitude with respect to p and N in W or T,, it is often impossible to obtain the i soefficiency
function as a closed form function of p. For a paralld agorithm-architecture combination, as p
and W increase, efficiency isguaranteed not to drop if none of theterms of T, grows faster than W.
Therefore, if T, has multiple terms, we balance W against each individua term of T, to compute
the respective isoefficiency function. The component of T, that requires the problem size to grow
a the fastest rate with respect to p determines the overall asymptotic isoefficiency function of the

entire computation.

Diagonal Preconditioner Sincethe number of € ements per row (m) inthematrix of coefficients

isfive, from Equation 3.21, we obtain the following expression for W:
W = N(c; + 5¢,). (3.39)

Now we will use Equations 3.29, 3.31, 3.33, and 3.35 to compute the i soefficiency functionsfor the

case of diagonal preconditioner on different architectures.

e TheCM-5

According to Equation 2.4, in order to determine the isoefficiency term due to t;, W hasto
be proportiona to 4etsp (see Equation 3.29), where e = E/(1 — E) and E is the desired
efficiency that hasto be maintained. Therefore,

N(c; +5C) oc 4etsp,
0 4et, .
¢+ 5¢;

Theterm duetot, in T, is 4t,/pN (see Equation 3.29) and the associated isoefficiency

N

(3.36)

condition is determined as follows:

N(c; +5¢C,) o 4et,/pN,
4et,,
VN JvP

1+ 5¢°
4et,,
)2, (3.37)

73

According to both Equations 3.36 and 3.37, the overall isoefficiency function for the PCG
algorithm with a simple diagonal preconditioner is ®(p); i.e, it isahighly scalable parallel
system which requires only alinear growth of problem size with respect to p to maintain a

certain efficiency.

e Hypercube

Since theterms due to t,, are identical in the overhead functions for both the hypercube and
the CM-5 architectures, the isoefficiency condition resulting from t,, is still determined by
Equation 3.37. The term associated with t5 yields the following isoefficiency function:

N o oL, plog p. (3.38)

Since Equation 3.38 suggests a higher growth rate for the problem size with respect to p
to maintain a fixed E, it determines the overall isoefficiency function which is ®(plog p).

Also, ts has ahigher impact on the efficiency on a hypercube than on the CM-5.

e Mesh

The isoefficiency term due to ts will be the same as in Equation 3.38 because the terms due
to ts in the overhead functions for the hypercube and the mesh are identical. Similarly, the
isoefficiency term dueto t,, will be the same as in Equation 3.37. Balancing W against the
term duetot, in Equation 3.33, we get

N(c; +5¢;) o 6ethpy/Pp,
Geth 15
ci+5¢

(3.39)

Now N hastogrow as® (p) to balancethe overheadsduetot,, (Equation 3.37), as®(plog p)
to balance the overhead due to ts (Equation 3.38), and as ©(p'®°) to balance the overhead
due to t,, (Equation 3.39). Clearly, Equation 3.39 determines the asymptotic isoefficiency

function for the mesh.

74

IC Preconditioner The following overall isoefficiency functions can be derived for the case of
the I1C preconditioner using the anaysis similar to that in the case of rge diagonal preconditioner by
taking the expression for W from Equation 3.22 and expressions for T, from Equations 3.30, 3.32,

and 3.34 for various architectures:

N p(w)z (CM —5). (3.40)
n(k)
N o Bets plogp (hyper cube). (3.41)
n(k)
6et;,
x m p (mesh). (342

The isoefficiency functions given by the above equations are asymptotically the same as those
for the diagonal preconditioner (Equations 3.36 through 3.39), but with different constants. The
impact of these constants on the overal efficiency and scalability of the PCG iteration is discussed

in the next section.

Discussion

A number of interesting inferences can be drawn from the scal ability analysis performed in Section
3.3.2. For atypica MIMD mesh or hypercube with ts > t,,, matrix-vector multiplication and
solution of M z = r with the preconditioner M incur relatively small communication overheads
compared to the computation of inner-product of vectors. For these architectures, theinner-products
calculation contributes the overhead term that determinesthe overall isoefficiency function and the
total communication cost isdominated by the message startup timets. In contrast, onthe CM-5, the
communication overhead in theinner product calculation is minimal dueto the control network. As
aresult, the CM-5 isidedlly scalable for an iteration of this algorithm; i.e., speedups proportional
to the number of processors can be obtained by ssimply increasing N linearly with p. Equivaently,
bigger instances of problems can be solved in afixed giventimeby using linearly increasing number
of processors. Inthe absence of the control network, even on the CM-5 the overhead dueto message
startup timein the inner product computation would have dominated and the i soefficiency function
of the PCG agorithm would have been greater than ®(p). Thus, for this application, the control
network is highly useful.

75

180000 :
160000 - t
140000 - tt _ 16
120000 - .

T 100000 —

N 80000 |- .
60000 |- .
40000 + .
20000 |- .

0 | | | |
0 100 200 300 400 500 600

p—

Figure 3.12: Isoefficiency curvesfor E = 0.5 with afixed processor speed and different values of

channel bandwidth.

There are certain iterative schemes, like the Jacobi method [50], that require inner product
calculation only for the purpose of performing a convergence check. In such schemes, the parallée
formulation can be made almost linearly scalable even on mesh and hypercube architectures by
performing the convergence check oncein afew iterations. For instance, the isoefficiency function
for the Jacobi method on a hypercube is ® (plog p). If the convergence check is performed once
every log p iterations, the amortized overhead dueto inner product calculation will be ® (p) ineach
iteration, instead of ® (plog p) and theisoefficiency function of the modified schemewill be ® (p).
Similarly, performing the convergence check once in every ,/p iterations on a mesh architecture

will result in linear scalability.

Equations 3.36 and 3.37 suggest that the PCG agorithm is highly scalable on a CM-5 type
architecture and a linear increase in problem size with respect to the number of processors is
sufficient to maintain a fixed efficiency. However, we would like to point out as to how hardware
related parameters other than the number of processors affect the i soefficiency function. According

to Equation 3.37, N needsto grow in proportion to the square of theratio of t,, to theunit computation

76

180000
160000
140000 |-
120000

4 100000

N 80000

60000 |-
40000
20000

0 | |
0 100 200 300 400 500 600

p—

I I
oo

Figure 3.13: Isoefficiency curvesfor E = 0.5 with afixed processor speed and different values of

message startup time.

time on a processor. According to Equation 3.36, N needsto grow in proportion to theratio of ts to
the unit computation time. Thusisoefficiency isaso afunction of theratio of communication and
computation speeds. Figure 3.12 shows theoretical isoefficiency curves for different values of t,,
for a hypothetical machine with fixed processor speed ((c; + 5¢,) = 2 microseconds?) and message
startup time (ts = 20 microseconds). Figure 3.13 shows isoefficiency curves for different values of
ts for the same processor speed with t,, = 4 microseconds. These curves show that theisoefficiency
function is much more sensitive to changesin t,, than t;. Note that ts and t,, are normalized with
respect to CPU speed. Hence, effectively t,, could go up if either the CPU speed increases or
inter-processor communi cation bandwidth decreases. Figure 3.12 suggeststhat it isvery important
to have a balance between the speed of the processors and the bandwidth of the communication
channels, otherwise good efficiencies will be hard to obtain; i.e., very large problems will be

required.

8 This correspondsto a throughput of roughly 10 MFLOPS. On afully configured CM-5 with vector units, a throughput
of this order can be achieved very easily.

77

180000 — |

160000 - - E=03 — -
: E=05 —

140000 |- : E=07 — 7]
120000 |- : E=09 -~
T 100000 |- - .
N 80000 | -
60000 |- .
40000 | -

__ J—
20000 - - _

0 | | | | |

0 100 200 300 400 500 600
p—

Figure 3.14: Isoefficiency curvesfor different efficiencieswithts = 20and t,, = 4.

Apart from the computation and communication rel ated constants, i soefficiency isalso afunction
of the efficiency that is desired to be maintained. N needs to grow in proportionto (E/(1 — E))?
in order to balance the useful computation W with the overhead due to t,, (Equation 3.37) and in
proportionto E /(1 — E) to balance the overhead dueto ts (Equation 3.36). Figure 3.14 graphically
illustrate the impact of desired efficiency on the scalability of a PCG iteration. The figure shows
that as higher and higher efficiencies are desired, it becomes increasingly difficult to obtain them.
Animprovement in the efficiency from 0.3 to 0.5 takes little effort, but it takes substantially larger
problem sizes for asimilar increase in efficiency from 0.7 to 0.9. The constant (et,,/(c; + 5¢,))? in
Equation 3.37 indicates that a better balance between communication channel bandwidth and the
processor speed will reduce theimpact of increasing the efficiency on the rate of growth of problem

size and higher efficiencies will be obtained more readily.

Theisoefficiency functionsfor the case of the I C preconditioner for different architectures given
by Equations 3.40 through 3.41 are of the same order of magnitude as those for the case of the
diagonal preconditioner given by Equations 3.36 to 3.39. However, the constants associated with

the isoefficiency functions for the IC preconditioner are smaller due to the presence of n (k) in the

78

denominator which is ¢; 4+ 5¢, + (k + 1)(K + 2)c,. As aresult, the rate at which the problem
size should increase to maintain a particular efficiency will be asymptoticaly the same for both
preconditioners, but for the IC preconditioner the same efficiency can be realized for a smaller
problem size than in the case of the diagonal preconditioner. Also, for given p and N, the parale
implementation with the 1C preconditioner will yield a higher efficiency and speedup than onewith
the diagonal preconditioner. Thus, if enough processors are used, a parallel implementation with
the IC preconditioner may execute faster than one with a simple diagona preconditioner even if
the latter was faster in aserial implementation. The reason is that the number of iterations required
to obtain aresidual whose norm satisfies a given constraint does not increase with the number of
processors used. However, the efficiency of execution of each iteration will drop more rapidly in
case of the diagonal preconditioner that in case of the | C preconditioner asthe number of processors
are increased.

It can be shown that the scope of the results of this section is not limited to the type of block-
tridiagonal matrices described in Section 3.3.1 only. The results hold for all symmetric block-
tridiagona matrices where the distance of the two outer diagonals from the principal diagonad is
N" (0 < r < 1). Such amatrix will result from a rectangular N x N finite difference grid
with natural ordering of grid points. Similar scalability results can also be derived for matrices
resulting from three dimensional finite difference grids. These matrices have seven diagonals and
the scalability of theparallel formulationsof an iteration of the PCG a gorithm on ahypercubeor the
CM-5isthe sameasin case of block-tridiagonal matrices. However, for the mesh architecture, the
resultswill be different. On atwo dimensional mesh of processors, the i soefficiency due to matrix-
vector multiplication will be ®(p*?) for the matrices resulting from 3-D finite difference grids.
Thus, unlikethe block-tridiagonal case, here the overheads due to both matrix vector multiplication

and inner-product computation are equally dominant on a mesh.

3.3.3 Scalability Analysis: Unstructured Sparse Matrices

In this section, we consider a more general form of sparse matrices, in which the non-zeros are
distributed randomly and do not form a regular pattern that can be utilized effectively. Such

matrices occur in some applications, notably in linear programming problems. Often, such systems

79

Figure 3.15: Partition of abanded sparse matrix and a vector among the processors.

are encountered where the non-zero elements of matrix A occur only within a band around the
principal diagonal. Even if the non-zero elements are scattered throughout the matrix, it is often
possibleto restrict them to aband through certain re-ordering techniques [45, 48]. Such asystemis
shown in Figure 3.15 in which the non-zero elements of the sparse matrix are randomly distributed
within aband along the principal diagonal. Let thewidth of the band of the N x N matrix be given
by b,and b = SNY, and 0 < y < 1. Suitable values of the constants 8 and y can be selected to
represent the kind of systems being solved. If 8 = 1 and y = 1, we have the case of a totally

unstructured sparse matrix.

Thematrix A isstored inthe Ellpack-Itpack format [121]. In this storage scheme, the non-zero
elements of the matrix are storedinan N x m array while another N x m integer array stores the
column numbers of the matrix elements. It can be shown that co-ordinate and the compressed
sparse column storage formats incur much higher communication overheads, thereby leading to
unscalable parallel formulations. Two other storage schemes, namely jagged diagonal s[121] and

compressed spar se rowsinvol ve communication overheads similar to the Ell pack-1tpack scheme,

80

but the latter isthe easiest to work with when the number of non-zero elementsis almost the same
in each row of the sparse matrix. The matrix A and the vector b are partitioned among p processors
as shown in Figure 3.15. The rows and the columns of the matrix and the elements of the vector
are numbered from 0to N — 1. Processor P, stores (N/p)i to (N/p)(i + 1) — 1 rows of matrix A
and elements with indices from (N/p)i to (N/p)(i + 1) — 1 of vector b. The preconditioner and
all the other vectors used in the computation are partitioned similarly.

We will study the application of only the diagonal preconditioner in this case; hence the seria
execution time is given by Equation 3.21. Often the number of non-zero elements per row of
the matrix A is not constant but increases with N. Let m = «N*, where the constants « and x
(0 < x < 1) can be chosen to describethe kind of systemsbeing solved. A more general expression

for W, therefore, would be as follows:

W = ;N + Gar N, (3.43)

Communication Over heads

For the diagona preconditioner, TP¢~sdv¢ = O as discussed in Section 3.3.2. It can be shown
that TMatrix=Vedtor dominates T/ P4 for most practical cases. Therefore, TMaUx=Vector can pe
considered to represent the overall overhead T, for the case of unstructured sparse matrices.

If thedistribution of non-zero elementsinthematrix isunstructured, each row of thematrix could
contain e ements belonging to any column. Thus, for matrix-vector multiplication, any processor
could need a vector element that belongsto any other processor. Asaresult, each processor hasto
send its portion of the vector of size N/ p to every other processor. If the bandwidth of the matrix A
isb, then the ith row of the matrix can contain e ements belonging to columnsi — b/2toi + b/2.
Since a processor contains N/ p rows of the matrix and N/ p elements of each vector, it will need
the elements of the vector that are distributed among the processors that lie within a distance of
bp/(2N) onitseither side; i.e., processor P, needs to communicate with al the processors P; such
thati —bp/(2N) < j <iandi < j <i+bp/(2N). Thusthetotal number of communication steps
in which each processor can acquire all the data it needs to perform matrix-vector multiplication

will bebp/N. Asaresult, thefollowing expression givesthevalue of T, forb = SNY.

To = (tBpNY 1 +1,8NY) x p. (3.44)

81

It should be noted that this overhead isthe samefor al architectures under consideration in this

section from alinear array to afully connected network.

| soefficiency Analysis

The size W of the problem at hand is given by Equation 3.43, which may be greater than ®(N)
for x > 0. Strictly speaking, the isoefficiency function is defined as the rate at which the problem
size needs to grow as a function of p to maintain a fixed efficiency. However, to simplify the
interpretation of the results, in this section we will measure the scalability in terms of the rate at
which N (the size of the linear system of equationsto be solved) needs to grow with p rather than
rate at which the quantity c;N + c,a N** should grow with respect to p.

According to Equation 2.4, the following condition must be satisfied in order to maintain afixed

efficiency E:
E
ciN + N> = ﬁ(tsﬂPZNyfl + t,BpNY),
CaN*™ + ¢ NY — itw,BpNzy‘l — its,szNzy‘2 =0 (3.45)
1-E 1-E ’
N = fE(p, X, y, o, ,3, tw, ts, C]_, Cz). (346)

From Equation 3.45, it is not possibleto compute the isoefficiency function fg inaclosed form
for general x and y. However, Equation 3.45 can be solved for N for specific valuesof x and y. We,
therefore, compute the isoefficiency functionsfor afew interesting cases that result from assigning
sometypical valuesto the parameters x and y. Table 3.4 givesa summary of the scalability analysis
for these cases. In order to maintain the efficiency at some fixed value E, thesize N of the system
has to grow according to the expression in thethird column of the Table 3.4, wheree = E/(1 — E).

The above analysis shows that a PCG iteration is unscalable for a totally unstructured sparse
matrix of coefficients with a constant number of non-zero e ements in each row. However, it can
be rendered scalable by either increasing the number of non-zero elements per row as a function of
the matrix size, or by restricting the non-zero e ements into a band of width lessthan ®(N) for an
N x N matrix using some re-ordering scheme. Various techniques for re-ordering sparse systems
to yield banded or partialy banded sparse matrices are available [45, 48]. These techniques may
vary in their complexity and effectiveness. By using Equation 3.45 the benefit of a certain degree

of re-ordering can be quantitatively determined in terms of improvement in scalability.

82

Parameter values | soefficiency function Interpretation

in terms of scalability

1 x=0,y=1 Does not exist Unscalable
2. x=0,y=1 N oc p?(sEe)? O(p?) scalability
(moderately scalable)

et,, B+ /€212 B2+A4co0Bets
2C0

3. x=1y=1 N o p Linearly scalable with

a high constant

4, x=0,y=0 N o pyal (1+ 1+ %) Linear scalability

(highly scalable)
5| x=1y=1 N o ps (14 /1+ %) Linear scalability
(highly scalable)

Table 3.4: Scalability of a PCG iteration with unstructured sparse matrices of coefficients. The
average number of entriesin each row of the N x N matrix is o« N* and these entries are located

within aband of width 8NY aong the principal diagonal.

3.34 Experimental Resultsand their Interpretations

The analytical results derived in the earlier sections were verified through experimental data
obtai ned by implementingthe PCG algorithm onthe CM-5. Both block-tridiagonal and unstructured
sparse symmetric positive definite matrices were generated randomly and used as test cases. The
degree of diagonal dominance of the matrices was controlled such that the algorithm performed
enough number of iterations to ensure the accuracy of our timing results. Often, slight variation
in the number of iterations was observed as different number of processors were used. In the
parallel formulation of the PCG agorithm, both matrix-vector multiplication and the inner product
computation involve communication of certain terms among the processors which are added up to
yield a certain quantity. For different values of p, the order in which these terms are added could
be different. Asaresult, dueto limited precision of the data, the resultant sum may have adlightly
different value for different values of p. Therefore, the criterion for convergence might not be

satisfied after exactly the same number of iterations for all p. In our experiments, we normalized

83

N = 40000 <—
200 + N = 25600 —+—
N = 10000 B—

T 150
S 100 i
50
0
0 50 100 150 200 250 300 350 400
p—

Figure 3.16: Speedup curves for block-tridiagonal matrices with diagonal preconditioner.

the parallel execution time with respect to the number of iterations in the serial case in order to
compute the speedups and efficiencies accurately. Sparse linear systems with matrix dimension
varying from 400 to over 64,000 were solved using up to 512 processors. For block-tridiagonal
matrices, we implemented the PCG algorithms using both the diagona and the I C preconditioners.
For unstructured sparse matrices, only the diagona preconditioner was used. The configuration
of the CM-5 used in our experiments had only a SPARC processor on each node which delivered
approximately 1 MFL OPS (double-precision) in our implementation. The message startup timefor
the program was observed to be about 150 microseconds and the per-word transfer time for 8 byte
words was observed to be about 3 microseconds’.

Figure 3.16 shows experimental speedup curves for solving problems of different sizes using
the diagonal preconditioner on block-tridiagonal matrices.

As expected, for a given number of processors, the speedup increases with increasing problem

size. Also, for agiven problem size, the speedup does not continue to increase with the number of

9 These values do not necessarily reflect the communication speed of the hardware but the overheads observed for our
implementation. For instance copying the data in and out of the buffers in the program contributes to the per-word
overhead. Moreover, the machine used in the experiments was still in beta testing phase, hence the performance
obtained in our experiments may not be indicative of the achievable performance of the machine.

m —>

0.2 | | | | | | |

0 50 100 150 200 250 300 350 400
p—

Figure 3.17: Efficiency curvesfor thediagona and the IC preconditioner with a 1600 x 1600 matrix

of coefficients.

processors, but tends to saturate.

Recall that the use of the I C preconditioner invol ves substantially more computation per iteration
of the PCG agorithm over a simple diagonal preconditioner, but it also reduces the number of
iterations significantly. As the approximation of the inverse of the preconditioner matrix is made
more accurate (i.e., k is increased, as discussed in Section 3.3.1), the computation per iteration
continuesto increase, whilethe number of iterationsdecreases. Theoverall performanceisgoverned
by the amount of increase in the computation per iteration and the reduction in the number of
iterations. As discussed in Section 3.3.3, for the same number of processors, an implementation
with the IC preconditioner will obtain a higher efficiency®® (and hence speedup) than one with
the diagonal preconditioner. Even in case of the IC preconditioner, speedups will be higher for
higher values of k. Figure 3.17 shows the efficiency curves for the diagonal preconditioner and
the IC preconditioner for k = 2, 3 and 4 for a given problem size. From this figure it is clear

that one of the IC preconditioning schemes may yield a better overall execution timein a paralle

10 Theefficiency of aparallel formulation is computed with respect to an identical algorithm running on asingle processor.

85

60000

50000

40000

30000 |-

Z —>

20000 E = 0.8 (diag.) <—
E=08(C) +—
10000 | E = 0.7 (diag) &— |
E=07(IC) »—
0 | | | | | | |
0 50 100 150 200 250 300 350 400

p—

Figure 3.18: Isoefficiency curves for the two preconditioning schemes.

implementation due to a better speedup than the diagonal preconditioning scheme, even if the
latter is faster in a serial implementation. For instance, assume that on a seria machine the PCG
algorithm runs 1.2 times faster with a diagona preconditioner than with the IC preconditioner for
acertain system of equations. As shown in Figure 3.17, with 256 processors on the CM-5, the IC
preconditioner implementation with k = 3 executes with an efficiency of about 0.4 for an 80 x 80
finite difference grid, while the diagona preconditioner implementation attains an efficiency of
only about 0.26 on the same system. Therefore, unlike on a serial computer, on a 256 processor
CM-5 the IC preconditioner implementation for this system with k = 3 will be faster by afactor of
0.4/0.26 x 1.0/1.2 ~ 1.3 than adiagona preconditioner implementation.

In Figure 3.18, experimenta isoefficiency curves are plotted for the two preconditioners by
experimentally determining the efficiencies for different values of N and p and then selecting and
plotting the (N, P) pairs with nearly the same efficiencies. As predicted by Equations 3.36, 3.37,
and 3.40, the N versus p curves for afixed efficiency are straight lines. These equations, aswell as
Figure 3.18, suggest that thisisa highly scalable paralel system and requires only alinear growth
of problem size with respect to p to maintain acertain efficiency. Thisfigure also showsthat the IC

86

| |

06 p= 8 @— =

p=16 —+—

05 P=40 &= 4
" 04 - @/ |
E 03 [~ _

0.2 - .

01 - M = —E |

0 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000

N —>

Figure 3.19: Efficiency plots for unstructured sparse matrices with fixed number of non-zero

elements per row.

preconditioner needs a smaller problem size than the diagonal preconditioner to achieve the same
efficiency. For the same problem size, the IC preconditioner can use more processors at the same

efficiency, thereby delivering higher speedups than the diagonal preconditioner.

Figure 3.19 shows plots of efficiency versus problem size for three different values of p for a
totally unstructured sparse matrix with afixed number of non-zero elementsin each row. Thiskind
of a matrix leads to an unscalable parallel formulation of the CG agorithm. This fact is clearly
reflected in Figure 3.19. Not only does the efficiency drop rapidly as the number of processors are
increased, but aso an increase in problem size does not suffice to counter this drop in efficiency.
For instance, using 40 processors, it does not seem possibleto attain the efficiency of 16 processors,

no matter how bhig a problem is being solved.

Figures 3.20 and 3.21 show how the parallel CG agorithm for unstructured sparse matrices can
be made scalable by either confining the non-zero el ements within a band of width < O(N), or
by increasing the number of non-zero elementsin each row asafunction of N. Figure 3.20 shows

the experimental isoefficiency curves for a banded unstructured sparse matrix with a bandwidth of

87

50000 - .
40000 .
T 30000 |- |
N
20000 .
10000 E=08 &
E=07 +
O 1 | | | | | |
0 10000 20000 30000 40000 50000 60000 70000

p2 —

Figure 3.20: Isoefficiency curves for banded unstructured sparse matrices with fixed number of

non-zero e ements per row.

2v/N and 6 non-zero elements per row. The curves were drawn by picking up (N, p) pairs that
yielded nearly the same efficiency on the CM-5 implementation, and then plotting N with respect
to p?. Asshown in Table 3.4, the isoefficiency function is ®(p?) and alinear relation between N
and p? in Figure 3.20 confirms this. Figure 3.21 shows the isoefficiency curve for E = 0.25 for a
totally unstructured N x N sparse matrix with 0.0015N non-zero elementsin each row. As shown
in Table 3.4, the isoefficiency function is linear in this case, although the constant associated with

it is quite large because of the terms 2c,« in the denominator, « being 0.0015.

3.3.5 Summary of Results

We have studied the performance and scalability of an iteration of the Preconditioned Conjugate
Gradient algorithm on avariety of parallel architectures.

It is shown that block-tridiagonal matrices resulting from the discretization of a 2-dimensional
self-adjoint eliptic partia differential equation viafinite differenceslead to highly scalable parallel
formulations of the CG method on a parallel machine like the CM-5 with an appropriate mapping

88

45000 |
40000
35000
30000
25000
20000

Z —>

15000 -
10000 -
5000 |-

p—

Figure 3.21: Anisoefficiency curve for unstructured sparse matrices with the number of non-zero

elements per row increasing with the matrix size.

of dataonto the processors. On thisarchitecture, speedupsproportional to the number of processors
can be achieved by increasing the problem size amost linearly with the number of processors. The
reason isthat on the CM-5, the control network practically eliminates the communication overhead
in computing inner-products of vectors, whereas on more conventional parallel machines with
significant message startup times, it turns out to be the costliest operation in terms of overheads and
affectsthe overall scalability. Theisoefficiency functionfor aPCG iterationwith ablock-tridiagonal
matrix is ®(p) on the CM-5, ®(plog p) on a hypercube, and ®(p,/p) on amesh. In terms of
scal ability, if the number of processorsisincreased from 100 to 1000, the problem size will haveto
increased 32 times on a mesh, 15 times on a hypercube, and only 10 times on the CM-5 to obtain
ten times higher speedups. Also, the effect of message startup time ts on the speedup is much
more significant on atypical hypercube or a mesh than on the CM-5. However, for some iterative
algorithmslike the Jacobi method, linear scalability can be obtained even on these architectures by

performing the convergence check at a suitably reduced frequency.

We have shownthat in case of the block-tridiagona matrices, thetruncated |ncompl ete Chol esky

89

preconditioner can achieve higher efficiencies than a ssmple diagona preconditioner if the data
mapping scheme of Figure 3.11 isused. The use of the IC preconditioner usually significantly
cuts down the number of iterations required for convergence. However, it involves solving alinear
system of equations of the form M z = r in each iteration. This is a computationaly costly
operation and may offset the advantage gained by fewer iterations. Even if thisisthe case for the
seria agorithm, in a parallel implementation the IC preconditioner may outperform the diagonal
preconditioner asthe number of processorsareincreased. Thisisbecause aparallel implementation
with |C preconditioner executes at a higher efficiency than one with a diagonal preconditioner.

If thematrix of coefficientsof thelinear system of equationsto be solvedisarandom unstructured
sparse matrix (such matrices often occur in linear programming problems) with a constant number
of non-zero elementsin each row, a parallel formulation of the PCG method will be unscalable on
any practical massage passing architecture unless some ordering is applied to the sparse matrix.
The efficiency of parallel PCG with an unordered sparse matrix will always drop as the number
of processors is increased and no increase in the problem size is sufficient to counter this drop
in efficiency. The system can be rendered scalable if either the non-zero elements of the N x N
matrix of coefficients can be confined in a band whose width is less than ®(N), or the number of
non-zero elements per row increases with N, where N isthe number of simultaneous equations to
be solved. The scalability increases as the number of non-zero e ements per row in the matrix of
coefficientsisincreased and/or the width of the band containing these elementsisreduced. Both the
number of non-zero elements per row and the width of the band containing these el ements depend
on the characteristics of the system of equations to be solved. In particular, the non-zero e ements
can be organized within a band by using some re-ordering techniques [45, 48]. Such restructuring
techniques can improve the efficiency (for a given number of processors, problem size, machine

architecture, etc.) aswell as the asymptotic scalability of the PCG algorithm.

90

Chapter 4

SCALABLE PARALLEL ALGORITHMSFOR SOLVING SPARSE SYSTEMS OF
LINEAR EQUATIONS

Solving large sparse systems of linear equationsis at the core of many problemsin engineering
and scientific computing. Such systems are typically solved by two different types of methods—
iterative methods and direct methods. The nature of the problem at hand determines which
method is more suitable. A direct method for solving a sparse linear system of theform Ax = b
involves explicit factorization of the sparse coefficient matrix A into the product of lower and upper
triangular matrices L and U. Thisis a highly time and memory consuming step; nevertheless,
direct methods are important because of their generality and robustness. For linear systemsarising
in certain applications, such as linear programming and structural engineering applications, they
are the only feasible solution methods. In many other applications too, direct methods are often
preferred because the effort involved in determining and computing a good preconditioner for
an iterative solution may outweigh the cost of direct factorization. Furthermore, direct methods
provide and effective means for solving multiple systems with the same coefficient matrix and
different right-hand side vectors because the factorizations needs to be performed only once.

Although direct methods are used extensively in practice, their use for solving large sparse
systems has been mostly confined to big vector supercomputers due to their high time and memory
requirements. Paralld processing offers the potential to tackle both these problems; however,
despite intensive research, only limited success had been achieved until recently in developing
scalable paradle formulations of sparse matrix factorization [63, 123, 44, 47, 46, 95, 96, 10, 114,
115, 127, 41, 69, 63, 64, 117, 8, 7, 104, 140, 49, 123, 103]. We have developed a highly parallel
sparse Cholesky factorization agorithm that substantially improves the state of the art in parallel
direct solution of sparse linear systems—both in terms of scalability and overall performance. We
show that our algorithmisjust as scal able as dense matrix factoriztion, which isknown to be highly

scalable. In addition to providing a fast direct solution, this algorithm significantly increases the

91

range of problem sizes that can be solved. It is the only known sparse factorization algorithm
that can deliver speedups in proportion to an increasing number of processors while requiring
almost constant memory per processor. By using this algorithm, large problems that could not be
solved on serial or small parallel computers due to the high memory and time requirement of direct

factorization can now be effectively parallelized to utilize large scale parallel computers.

The performance and scalability analysis of our algorithm is supported by experimenta results
on up to 1024 processors of thenCUBE2 parallel computer. We have been able to achieve speedups
of up to 364 on 1024 processors and 230 on 512 processors over a highly efficient sequential
implementation for moderately sized problems from the Harwell-Boeing collection [30]. In [77],
we have applied this algorithm to obtain a highly scalable parallel formulation of interior point
algorithms and have observed significant speedups in solving linear programming problems. A
variation of this algorithm [53] implemented on a 1024-processor Cray T3D delivers up to 20
GFLOPS on medium-size structural engineering and linear programming problems. To the best of
our knowledge, this is the first parallel implementation of sparse Cholesky factorization that has

delivered speedups of this magnitude and has been able to benefit from several hundred processors.

In this chapter we describe our highly scalable parallel algorithm for sparse matrix factorization.
We analyze its performance and scalability on a few different architectures two important classes
of sparse matrices. We give detailed experimental results of the implementations of our algorithm
on the nCUBE2 and Cray T3D parallel computers. Although our current implementations work
for Cholesky factorization of symmetric positive definite matrices, the a gorithm can be adapted for
solving sparse linear least squares problems and for Gaussian elimination of diagonally dominant
matrices that are almost symmetric in structure. In addition to numerical factorization we also
present efficient parallel algorithms for two of the three other phases of solving a sparse system
of linear equations. These two phases are symbolic factorization and forward and backward
substitutionto solvethetriangular systemsresulting from sparse matrix factorization. We show that
symbolic factorization and triangular solutions, though less computation-intensive than numerical
factorization, can be parallelized sufficiently so that the overall solution processisas scalable asthe

numerical factorization phase.

Although we focus on Cholesky factorization of symmetric positive definite matrices in this

92

chapter, the methodology developed here can be adapted for performing Gaussian elimination on
diagonally dominant matrices that are almost symmetric in structure [32] and for solving sparse

linear least squares problems [99].

4.1 Earlier Research in Sparse Matrix Factorization and Our Contribution

Since sparse matrix factorization is the most time consuming phase in the direct solution of a
sparse system of linear equations, there has been considerable interest in developing its parallée
formulations. It is well known that dense matrix factorization can be implemented efficiently on
distributed-memory parallel computers [40, 109, 42, 81]. However, despite inherent parallelism
in sparse direct methods, not much success has been achieved to date in developing their scalable
parallel formulations[63, 123] and for severa years, it has been a challenge to implement efficient
sparse linear system solvers using direct methods on even moderately paralel computers. Perfor-
mance delivered by most existing parallel sparse matrix factorizations had been quitepoor. In[123],
Schreiber concludesthat it isnot yet clear whether sparse direct solvers can be made competitive at
all for highly (p > 256) and massively (p > 4096) parallel computers.

It is difficult to derive anaytical expressions for the number of arithmetic operations in fac-
torization and for the size (in terms of number of nonzero entries) of the factor for general sparse
matrices. This is because the computation and fill-in during the factorization of a sparse matrix
is a function of the the number and position of nonzeros in the original matrix. With the aid of
Figure 4.1t, we summarize the contribution of our work in the context of Cholesky factorization
of the important class of sparse matrices that are adjacency matrices of graphs whose n-node
subgraphs have ® (,/n)-node separators (this class includes sparse matrices arising out of al two-
dimensional finite difference and finite element problems). The results for the three-dimensional
case are very similar. A simplefan-out algorithm [44] with column-wise partitioningof an N x N
matrix of thistype on p processors resultsin an ® (Nplog N) total communication volume [47]
(box A). The communication volume of the column-based schemes represented in box A has been

improved using smarter ways of mapping the matrix columns onto processors, such as, the subtree-

1In [110], Pan and Reif describe a parallel sparse matrix factorization algorithm for a PRAM type architecture.
This algorithm is not cost-optimal (i.e., the processor-time product exceeds the serial complexity of sparse matrix
factorization) and is not included in the classification given in Figure 4.1.

93

Global Mapping Subtree-to-Subcube Mapping
Columnwise Partitioning: 1-D A Partitioning: 1-D B
Partitioning Mapping: Global Mapping: Subtree-subcube

Communication overhead: | Communication overhead:
Q(Np log(p)) Q(Np)

Scalability: Q ((plog(p))3) | Scalability: Q(p3)

Partitioning: 2-D C Partitioning: 2-D D

Mapping: Global Mapping: Subtree-subcube
Communication overhead: | Communication overhead:
Partitioning Q(Np°* log(p)) O(Np°®)
in Both Scalability: Q (p15(log(p)) 3)| Scalability: ©(pL5)
Dimensions

Figure 4.1: An overview of the performance and scalability of parallel agorithmsfor factorization
of sparse matrices resulting from two-dimensional N-node grid graphs. Box D represents our
algorithm, which is a significant improvement over other known classes of algorithms for this

problem.

to-subcube mapping [46] (box B). A number of column-based parallel factorization algorithms
[95, 96, 10, 114, 115, 127, 44, 47, 41, 69, 63, 64, 117, 123, 103] have alower bound of 2 (Np) on
the total communication volume[47]. Sincethe overall computationisonly ® (N*) [45], theratio
of communicationto computation of column-based schemesisquitehigh. Asaresult, these column-
cased schemes scal e very poorly asthe number of processorsisincreased [123, 120]. In[8], Ashcraft
proposes a fan-both family of parallel Cholesky factorization algorithms that have a total commu-
nication volume of ®(N,/plogN). Although the communication volume is less than the other
column-based partitioning schemes, theisoefficiency function of Ashcraft'salgorithmisstill © (p3)
due to concurrency constraints because the algorithm cannot effectively utilize morethan O(+/N)
processors for matrices arising from two-dimensional constant node-degree graphs. A few schemes
with two-dimensional partitioning of the matrix have been proposed [120, 119, 7, 104, 140, 49],
and the total communication volumein the best of these schemes[120, 119] is®(N,/plog p) (box

94

o).

Most researchers so far have analyzed parallel sparse matrix factorization in terms of the total
communication volume. It isnoteworthy that, on any parallel architecture, the total communication
volumeisonly alower bound on the overall communication overhead. Itisthetotal communication
overhead that actually determinesthe overall efficiency and speedup, and isdefined asthe difference
between the parallel processor-time product and the serial run time [55, 81]. The communication
overhead can be asymptotically higher than the communication volume. For example, a one-to-
all broadcast agorithm based on a binary tree communication pattern has a total communication
volume of m(p — 1) for broadcasting m words of dataamong p processors. However, the broadcast
takes log p steps of ®(m) time each; hence, the total communication overhead is ® (mplog p)
(on a hypercube). In the context of matrix factorization, the experimental study by Ashcraft [10]
serves to demonstrate the importance of studying the total communication overhead rather than
volume. In[10], thefan-in algorithm, which hasalower communication volumethan the distributed
multifrontal algorithm, has a higher overhead (and hence, alower efficiency) than the multifrontal

algorithm for the same distribution of the matrix among the processors.

The isoefficiency function for dense matrix factorization is © (p*®) [81]. It is easy to prove
that © (p*®) isalso thelower bound on the i soefficiency function for factoring the above mentioned
class of sparse matrices. None of the classes of algorithms represented by boxes A, B, and C in
Figure 4.1 achieve this lower bound. Note that the simple parallel agorithm with ®(Nplog p)
communication volume (box A) has been improved along two directions—one by improving the
mapping of matrix columns onto processors (box B) and the other by splitting the matrix along
both rows and columns (box C). Observing the expressions for the communication overhead and
isoefficiency functionsin boxesA, B, and C of Figure 4.1, itisintuitivethat if somehow the benefits
of subtree-to-subcube mapping and a two-dimensional partitioning of the sparse matrix could be
combined, one could obtain an optimally scalable parallel agorithm with an isoefficiency function
of ©(p*®).

Based on the above observations, we devised an agorithm that is indeed optimally scalable
for the class of matrices being studied. The main features of our algorithm are that it is based on

the multifrontal technique, it uses subtree-to-subcube mapping scheme, and it partitions the matrix

95

Phase 2-D complexity 3-D complexity
Reordering: O(N) O(N)
Symbolic Factorization: O(N log N) O(N*?)
Numerical Factorization: O(N*) O(N?)
Triangular Solutions: O(N log N) O(N*)

Figure 4.2: The serial computational complexity of the various phases of solving a sparse system

of linear equations arising from two- and three-dimensional constant node-degree graphs.

in two dimensions aong both rows and columns. In Section 4.4, we describe how the algorithm
integrates all these features to minimize communication overhead. A key to this integration is a
bl ock-cyclic two-dimensional partitioning based on the bits of the binary representation of row and
columnindices of the sparse coefficient matrix. Thetotal communication overhead of our agorithm
isonly ®(N,/p) for factoring an N x N matrix on p processorsif it corresponds to a graph that
satisfies the separator criterion. Our agorithm reduces the communication overhead by afactor of
at least ®(log p) over the best algorithm [120, 119] implemented to date. It is also significantly
simpler in concept as well as in implementation, which helps in keeping the constant factors
associated with the overhead term low. We show in Section 4.6, the reduction in communication
overhead by a factor of ®(log p) resultsin an improvement in the scalability of the agorithm by
afactor of ©((log p)®); i.e., the rate at which the problem size must increase with the number of
processors to maintain a constant efficiency is lower by a factor of ®((log p)*). This can make
the difference between the feasibility and non-feasibility of parallel sparse factorization on highly
parald (p > 256) computers. In addition, our algorithm is the only known sparse factorization
algorithm that can deliver speedups in proportion to an increasing number of processors while

requiring almost constant memory per processor.

4.2 Chapter Outline

The process of obtaining adirect solution of asparse system of linear equations of theform Ax = b

consists of the following four phases: Ordering, which determines permutation of the coefficient

96

matrix A such that the factorization incurslow fill-in and is numericaly stable; Symbolic Factor-
ization, which determinesthe structure of the triangular matrices that would result from factorizing
the coefficient matrix resulting from the ordering step; Numerical Factorization, which is the
actual factorization step that performs arithmetic operations on the coefficient matrix A to produce
alower triangular matrix L and an upper triangular matrix U ; and Solution of Triangular Sys-
tems, which produces the solution vector x by performing forward and backward eliminations on
the triangular matrices resulting from numerical factorization. As shown in Figure 4.2, numerical
factorization is the most time-consuming phase. Karypis and Kumar have proposed an efficient
parallel agorithm for determining fill-reducing orderings for parallel factorization of sparse ma-
trices [76]. In this chapter, we present efficient and scalable parallel algorithms for symbolic

factorization, numerical factorization, and for solving the upper and lower triangular systems.

In Section 4.3, we describe the serial multifrontal algorithm for sparse Cholesky factorization.
Thisalgorithm formsthe basis of our optimally scalable parallel a gorithm described in Section 4.4.
Sections 4.5 and 4.6 present the analysis of communication overhead and scalability of the parallel
sparse Cholesky factorization algorithm for two widely used classes of sparse matrices on mesh
and hypercube architectures. Section 4.7 contains the experimental results of sparse Cholesky
factorization implementations based on the algorithm of Section 4.4 on up to 1024 processors of

NCUBEZ2 and Cray T3D parallel computers.

The experimental results in Section 4.7 show that our agorithm can easily speedup Cholesky
factorization by afactor of at least afew hundred on up to 1024 processors. With such speedups
in numerical factorization, it is imperative that the remaining phases of the solution process be
paralleized effectively in order to scale the performance of the overall solver. Furthermore, without
an overdl paralle solver, the size of the sparse systems that can be solved may be severely
restricted by the amount of memory avail able on a uniprocessor system. In Section 4.8, we address
the problem of performing the final phase of forward and backward substitution in paralel on
a distributed memory multiprocessor. Our anaysis and experiments show that, athough not as
scalable as the best paralle sparse Cholesky factorization agorithms, paralle sparse triangular
solvers can yield reasonable speedups in runtime on hundreds of processors. We also show that

for awide class of problems, the sparse triangular solvers described in this paper are optimal and

97

are asymptotically as scalable as a dense triangular solver. In Section 4.9, we describe and analyze
a paradle formulation of symbolic factorization. In this section, we show that the communication
overhead of parallel symbolic factorization isasymptotically lessthan that of the factorization step;
hence, this step does not impose any constraints on the performance and scalability of a complete
parallel sparselinear system solver.

Theagorithmin [76], while performing the ordering in parallel, also distributesthe data among
the processors in way that the remaining steps can be carried out with minimum data-movement.
At the end of the parallel ordering step, the paralel symbolic factorization algorithm described in
Section 4.9 can proceed without any redistribution. Since numerical factorization is the step with
the highest computational complexity in the entire process, it is critica to have an efficient parallel
algorithm for this step. Our agorithms for symbolic factorization and triangular solutions are
tailored to work in conjunction with the numerical factorization algorithm described in Section 4.4.
Therefore, we describe this algorithm in detail first, before we discuss triangular solution and

symbolic factorization (in that order).

4.3 TheSerial Multifrontal Algorithm for Sparse Matrix Factorization

The multifrontal algorithm for sparse matrix factorization was proposed independently, and in
somewhat different forms, by Speelpening [126] and Duff and Reid [31], and later elucidated in a
tutoria by Liu[92]. In thissection, we briefly describe a condensed version of multifrontal sparse
Cholesky factorization.

Given a sparse matrix and the associated elimination tree, the multifrontal agorithm can be
recursively formulated as shown in Figure 4.3. Consider the Cholesky factorization of an N x N
sparse symmetric positive definite matrix Ainto LLT, where L is alower triangular matrix. The
algorithm performs a postorder traversal of the eliminationtree associated with A. Thereisafrontal
matrix F¥ and an update matrix U* associated with any node k. The row and column indices of FX
correspond to the indices of row and column k of L inincreasing order.

In the beginning, FX isinitialized to an (s + 1) x (s + 1) matrix, where s + 1 is the number
of nonzerosin the lower triangular part of column k of A. Thefirst row and column of thisinitial

FX issimply the upper triangular part of row k and the lower triangular part of columnk of A. The

98

/*
Aisthesparse N x N symmetric positive definite matrix to befactored. L is

the lower triangular matrix suchthat A= LLT after factorization. A = @)

andL = (I;;), where0 <i, j < N. Initidly, |; ; = Oforall i, j.
*/
1. begin function Factor(k)
Ak Ay g o g
agk O o --- 0
2. Fki=|apk O o - 0 |
agk O o --- 0
3. for all i suchthat Parent(i) = k in the elimination tree of A, do
4. begin
5. Factor(i);
6. FX := Extend_add(F*, U');
7. end
Jx

At thisstage, F¥isa(t + 1) x (t + 1) matrix, wheret isthe number of nonzeros
in the sub-diagonal part of columnk of L. UK isat x t matrix. Assumethat an

index i of FX or U¥ correspondsto theindex ¢ of Aand L.

*/

8. fori:=0totdo

9. lq x := F*(i,0)/{/FX(0,0);

10. for j:=1tot do

11. fori:=jtotdo

12. URGL) == FRGL) — g x Mg i

13. end function Factor.

Figure 4.3: An elimination-tree guided recursive formulation of the multifrontal algorithm for
Cholesky factorization of a sparse SPD matrix Ainto LLT. If r is the root of the postordered
elimination tree of A, then acall to Factor(r) factorsthe matrix A.

99

I, atg
I, a I, 9 i, b d
+ . i =
b b d o ho] I, cth e f+j
I, ¢ e f P k I

Figure 4.4: The extend-add operation on two 3 x 3 triangular matrices. Itisassumedthatio < i; <

i2 < i3.

remainder of F¥ isinitialized to al zeros. Line 2 of Figure 4.3 illustratestheinitial FX.

After the algorithm hastraversed all the subtreesrooted at anodek, it endsup witha (t + 1) x
(t + 1) frontal matrix F¥, where t isthe number of nonzerosin the strictly lower triangular part of
columnkin L. Therow and columnindices of thefinal assembled F¥ correspondtot + 1 (possibly)
noncontiguousindices of row and columnk of L inincreasing order. If k isaleaf inthe elimination
tree of A, then the final F¥ isthe same as theinitid F¥. Otherwise, the fina F* for eliminating
node k is obtained by merging theinitial F* with the update matrices obtained from all the subtrees
rooted at k viaan extend-add operation. The extend-add isan associ ative and commutative operator
on two update matrices such the index set of the result is the union of the index sets of the origina
update matrices. Each entry in the original update matrices is mapped onto some location in the
accumulated matrix. If entries from both matrices overlap on alocation, they are added. Empty

entries are assigned a value of zero. Figure 4.4 illustrates the extend-add operation.

After F¥ has been assembled through the steps of lines 3-7 of Figure 4.3, asingle step of the
standard dense Cholesky factorization is performed with node k as the pivot (lines 8-12). At the
end of the elimination step, the column with index k is removed from F¥ and forms the column k
of L. Theremainingt x t matrix is called the update matrix U ¥ and is passed on to the parent of k

in the imination tree.

The multifrontal algorithm is further illustrated in a step-by-step fashion in Figure 4.6 for
factoring the matrix of Figure 4.5(a).

100

o x| |x X | x Level 0 B1234567
1 x| xx s
2 X|X|X X

3 X X X X

4 X|X|X X

5 X|X|X|X|X|X X

6 X 10 X|X|X|X

7 X|X|X X|IX| XX

8 X O X X|O| X | X

9 X X X| X

10 X| X XX

11 XXX X

12 X X X | X

13 X[X|X X

14 XIX|X|IX[X[X]|X

15 X1O X|X|X|X

16 XXX X|IX|X|X

17 X O X X|O|X|X

18 X| X OO0 X| X[X[|O|O|O|X

0123456 7 8 9101112131415161718

€) (b)

Figure 4.5: A symmetric sparse matrix and the associated elimination tree with subtree-to-subcube
mapping onto 8 processors. The nonzeros in the original matrix are denoted by the symbol “ x”

and fill-ins are denoted by the symbol “o”.

44 A Paralle Multifrontal Algorithm

In this section we describe the parallel multifrontal algorithm. We assume a hypercube intercon-
nection network; however, as we will show in a later section, the algorithm aso can be adapted
for a mesh topology without any increase in the asymptotic communication overhead. On other
architectures as well, such asthose of the CM-5, Cray T3D, and IBM SP-2, the asymptotic expres-
sion for the communication overhead remains the same. In this chapter, we use the term relaxed
supernodefor agroup of consecutive nodesin the elimination tree with one child. Henceforth, any
reference to the height, depth, or levels of the tree will be with respect to the relaxed supernodal
tree. For the sake of simplicity, we assume that the relaxed supernodal elimination treeis abinary
tree up to thetop log p relaxed supernodal levels. Any elimination tree can be converted to abinary
relaxed supernodal tree suitablefor parallel multifrontal elimination by asimple preprocessing step.

In order to factorize the sparse matrix in parallel, portions of the elimination tree are assigned to

processors using the standard subtree-to-subcube assignment strategy. Thisassignmentisillustrated

101

0 X 1 X 3 X 4 X 9 X 10 X 12 X 13 X
2 X 2 X 5 X 5 X 11 X 1 X 14 X 14 X
7 X 6 X 8 X 6 X 16 X 15 X 17 X 15 X
8 X 7 X 18 X 18 X 17 X 16 X 18 X 18 X
027 8 1267 3 5 818 4 5 6 18 9 11 16 17 10 11 15 16 12 14 17 18 13 14 15 18
Fo = Fs Fa Fq Fio Fio Fis
(@) Initia frontal matrices
2 X 2 X 5 X 5 X 1 X 1 X 14 X 14 X
7 X X 6 O X 8 X X 6 X X 16 X X 15 O X 17 X X 15 X X
8 O X X 7 X X X 18 X O X 18 X O X 17 O X X 6 X X X 18 X O X 18 X O X
278 267 5 8 18 5 6 18 11 16 17 11 15 16 14 17 18 14 15 18
Uy U, U, U, Ug U U, U,
(b) Update matrices after one step of elimination in each frontal matrix
2 X 1 X
2 X 6 O X 1 X 15 O X
F, = 7 x + Uy + U = 7 xxxX F, = 18X + Uy + Uy = 16 X XX
27 8 O XX 1116 7 0O X X
2678 11 15 16 17
5 X 5 X 14 X 14 X
6 X 6 X X 15 X 15 X X
Fg = 7 X + U3+ U, = 7 X Fiy= 16 X + Up+U;= 16 X
8 X 8 X X 17 X 17 X X
18 X 18 X O O X 18 X 18 X O O X
56 7 818 56 7 818 14 15 16 17 18 14 15 16 17 18
(c) Frontal matrices at the second level of the elimination tree
6 X 15 X
A 8 O X X 70 % X 17 O X X
U, U, 18 000X U, U, 1B8000KX
6 7 8 15 16 17
6 7 8 18 15 16 17 18
(d) Update matrices after elimination of nodes 2, 5, 11, and 14
6 X 15 X
6 X 7 X X 15 X 16 X X
Fe = 7 x + U, + U = 8 O0XxX Fis = 16 X + Uy + U, = 170xXx
6 7 18 O 0 0O X 15 16 18 00 O X
6 7 818 15 16 17 18
7 X 7 X 16 X 16 X
X X 8 X X 8 XX 16 X _ X 17 X X 17 XX
F;=8 x +Ug=8X +o00x 1800 Fg=17 x +Ug=17 X +p00x = 100X
78 78 7 818 78 1617 16 17 16 17 18 16 17 18
X 8 X 17 X 17 X
Fe=8X +U, = 8X + 155y = 130x Fiz =97 X +Ug= Y X + 355 = 130x
8 8 8 18 8 18 1 w 17 18 17 18
Fig = 18X U, + Uy = BX o, 1BX . 18X _ 18X
18 18 18 18 18

(e) Factorization of the remainder of the matrix

Figure 4.6: Stepsin serial multifrontal Cholesky factorization of the matrix shown in Figure 4.5(a).
The symbol “+” denotes an extend-add operation. The nonzeros in the original matrix are denoted

by the symbol “ x” and fill-ins are denoted by the symbol “o”.

102

in Figure 4.5(b) for eight processors. With subtree-to-subcube assignment, al p processorsin the
system cooperate to factorize the frontal matrix associated with the topmost relaxed supernode of
the elimination tree. The two subtrees of the root are assigned to subcubes of p/2 processors each.
Each subtree is further partitioned recursively using the same strategy. Thus, the p subtrees at a
depth of log p relaxed supernodal levels are each assigned to individual processors. Each processor
can work onthispart of thetree completely independently without any communication overhead. A
call to the function Factor given in Figure 4.3 with the root of a subtree as the argument generates
the update matrix associated with that subtree. This update matrix containsall the information that

needs to be communicated from the subtree in question to other columns of the matrix.

After the independent factorization phase, pairs of processors (P,; and P,j,1for0 < j < p/2)
perform a parallel extend-add on their update matrices, say Q and R, respectively. At the end of
this parallel extend-add operation, P,; and P,;,; roughly equally share Q + R. Here, and in the
remainder of this chapter, thesign “+" in the context of matrices denotes an extend-add operation.
More precisely, al even columnsof Q + Rgoto P,; and al odd columnsof Q + R go to Pyj,;.
At the next level, subcubes of two processors each perform a paralel extend-add. Each subcube
initially has one update matrix. The matrix resulting from the extend-add on these two update
matrices is now merged and split among four processors. To effect this split, all even rows are
moved to the subcube with the lower processor labels, and al odd rows are moved to the subcube
with the higher processor labels. During this process, each processor needs to communicate only
once with its counterpart in the other subcube. After this (second) parallel extend-add each of the
processors has a block of the update matrix roughly one-fourth the size of the whole update matrix.
Note that, both the rows and the columns of the update matrix are distributed among the processors
inacyclic fashion. Similarly, in subsequent parallel extend-add operations, the update matrices are

alternatingly split along the columns and rows.

Assumethat thelevels of the binary relaxed supernodal eliminationtree arelabeled starting with
0 at the top as shown in Figure 4.5(b). In genera, at level | of the relaxed supernodal elimination
tree, 2'°9P~! processors work on asingle frontal or update matrix. These processors form alogical
2l(ogp=0/2) » 2rdogp=1/21 megh, All update and frontal matrices at this level are distributed on this

mesh of processors. The cyclic distribution of rows and columns of these matrices among the

2 X o 2 X 5 X o 5 X 1 X ‘>11 X 14 X
7 XX =— 6 0OX 8 XX =— 6 XX 6 X X =15 O X 17 X X
8 O X X 7 X X X 18 X O X 18 X O X 17 O X X 6 X X X 18 X O X
27 8 267 5 8 18 5 6 18 11 16 17 11 15 16 14 17 18
F)O ‘UO F)l ‘Ul P2 ‘UB P3 ‘U4 P4 ‘UQ P5 ‘Ulo PG ‘Ulz
(8 Update matrices before thefirst parallel extend-add operation
2 X 5 X 11 X 14 X
6 O X 6 X 6 X 15 O X 15 X
7 X X 7 X 8 X 8 X 16 X 16 X X 17 X
8 O X 8 X 18 0 O X 18 X 17 X 7 0 X 18 X X
2 6 8 7 6 8 18 5 16 11 15 17 14 18
PolUpg+U; P [Ug+ U PolUs+ U, PglUs+ U, PyJUg+ Uy PglUg+ Uy PglUp+Upg
(b) Update matrices after the first parallel extend-add operation
6 X
6 X 17X T X _ 16X 15 X
7 X =— 8 0OX 7 X =— 8 X 6 X =— 17 X 16 X
8 O X 18 O O X 8 X 18 O 17 X 18 O X 17 O X
6 8 6 8 18 7 7 16 16 18 15 17
PO‘UZ PZ‘US Pl‘UZ PB‘US P4‘U11 PG‘U14 PS‘Ull
(c) Update matrices before the second parallel extend-add operation
6 X
8 O X 8 X 16 X 16 X
18 O O X 7 X 18 O 7 X 18 O X 17 X 18 00
6 8 18 6 7 7 16 18 16 15 17
PolUz+Us PplU;+Us Pi|Up+Us PglUp+Us PyUp+ Uy PglUp+Uy, PslUpt Uy
(d) Update matrices after the second parallel extend-add operation
18 X —_— 18 X
18 18
PO‘US P4‘U17 Pl F)5 PZ PG P3
(e) Update matrices before the third parallel extend-add operation
18 X
18
Po P,|Ug+ Uy Py Ps P, Ps Ps

(f) Update matrices after the third parallel extend-add operation

103

14 X

— 15X X

18X O X
1415 18

P7 ‘ U13

15 X
17 X
18 OO

1517

P7|Up+Ugs

15
16
17
18 O O

15 17
F)7 ‘Ul4

O X x

15 X
17 O X

1517
P7|Up+ Uy

Figure 4.7: Extend-add operations on the update matrices during parallel multifrontal factorization

of the matrix shown in Figure 4.5(a) on eight processors. P;|M denotes the part of the matrix M

that resides on processor number i. M may be an update matrix or the result of performing an

extend-add on two update matrices. The shaded portions of a matrix are sent out by a processor to

its communication partner in that step.

104

processors helps maintain load-balance. The distribution also ensures that a paralel extend-add
operation can be performed with each processor exchanging roughly half of its data only with its
counterpart processor in the other subcube. This distributionisfairly straightforward to maintain.
For example, during the first two parallel extend-add operations, columns and rows of the update
matrices are distributed depending on whether their least significant bit (LSB) isOor 1. Indiceswith
LSB = 0 goto thelower subcube and those with LSB = 1 go to the higher subcube. Similarly, inthe
next two parallel extend-add operations, columns and rows of the update matrices are exchanged

among the processors depending on the second LSB of their indices.

Figure 4.7 illustrates all the parale extend-add operations that take place during pardle
multifrontal factorization of the matrix shown in Figure 4.5. The portion of an update matrix that
is sent out by its origina owner processor is shown in grey. Hence, if processors P; and P; with
respective update matrices Q and R perform a parallel extend-add, then thefinal result at P, will be
the add-extension of the white portion of Q and the grey portion of R. Similarly, the final result at
P, will be the add-extension of the grey portion of Q and the white portion of R. Figure 4.8 further
illustratesthis processes by showing four consecutive extend-add operations on hypothetical update

matrices to distribute the result among 16 processors.

Between two successive paralel extend-add operations, severa steps of dense Cholesky elimi-
nation may be performed. The number of such successive elimination stepsisequal to the number of
nodesin the relaxed supernode being processed. The communication that takes place in this phase
is the standard communication in pipelined grid-based dense Cholesky factorization [109, 81]. If
the average size of the frontal matricesist x t during the processing of a relaxed supernode with
m nodes on a g-processor subcube, then ® (M) messages of size O(t/,/q) are passed through the
grid in a pipelined fashion. Figure 4.9 shows the communication for one step of dense Cholesky
factorization of a hypothetical frontal matrix for g = 16. It is shown in [82] that although this
communication does not take place between the nearest neighbors on a subcube, the paths of al
communications on any subcube are conflict free with e-cube routing [107, 81] and cut-through or
worm-hole flow control. Thisisadirect consequence of the fact that a circular shift is conflict free
on ahypercube with e-cube routing. Thus, acommunication pipeline can be maintained among the

processors of a subcube during the dense Chol esky factorization of frontal matrices.

105

00 - 21 6 2 — 63 0 4 — 35 76 = 47
100 311 7 2 2 7 3 3 14 4 4 55 8 6 6 577
2000 4111 8222 103 3 3 344 4 5555 966 6 6777
30000 51111 92222 11 3 3 3 3 4 4 4 4 4 6 55 55 106 6 6 6 7T7T 777
0123 2345 6789 6 7 1011 0134 3456 78910 4567
A B C D E F G H
6 8 —_— 79 0 10 —_— 311 012 —_— 413 2 14 —_— 615
8 8 8 89 9 4 10 10 4 1111 11212 5 1313 31414 7 1515
9 8 8 8 99 9 9 7 1010 10 5111111 3121212 6 1313 13 6 14 14 14 10 15 15 15
11 8 8 8 8 109 9 9 9 9 101010 10 6 11111111 4 12121212 7 13131313 7 14141414 1115151515
68 911 78910 0479 3456 0134 4567 2367 6 7 1011
| J K L M N (0] P
(a) Update matrices before first parallel extend-add
4 6
00 6 2 0 4 5 6 7
1 01 7 23 1 45 6 6 7 6
2 010 8 232 3 455 7 6767
3 0101 9 2323 4 455 4 8 67676
4 01010 10 23232 5 45545 9 67676
5 010101 1 2 32 3 2 3 6 455 45 4 10 6 7 6 7 6 7 6
012345 6 7 8 91011 013456 456 7 8 910
A+B C+D E+F G+H
0 10 0 12
6 8 3 1011 1 1213 2 14
7 8 9 - 4 1011 10 3 121313 - 3 1415
8 898 I 5 10111011 4 12131312 I 6 141514
9 8 9 89 6 1011101110 5 1213131213 7 14151415
10 8 9 8 9 8 7 101110111011 6 121313121312 10 14151415 14
1 8 9 8 9 8 9 9 10111011101111 7 12131312131213 11 141514151415
6 7 8 91011 03456709 0134567 236 71011
1+J K+L M +N O+P
00 (b) Update matrices before second parallel extend-add
12 3
2010 0 4 0 8 0 12
32323 1 6 7 3 1011 1 1415
401010 3 677 4 8938 2 121312
5232323 4 455 4 5 10111011 3 14151415
60101010 5 67767 6 8980938 4 1213121312
723232323 6 455 45 4 7 101110111011 5 141514151415
8010101010 7 6776767 8 8980980938 6 121312131213 12
92323232323 8 455 45 45 4 9 1011101110111011 7 141514 1514151415
001010101010 9 67767676 10 898989380938 10 121312131213121312
112 32323232323 10 4 55 45 45 45 4 11 10111011101110111011 11 14151415141514151415
0123456789101 013456782910 034567891011 01234567101
A+B+C+D E+F+G+H I+J+K+L M+N+O+P
(c) Update matrices before third parallel extend-add
0 0 08 0 0
123 1 1011 123
2 014 2 8 912 2 8 912
3 2367 3 10111415 3 10111415
4 01450 4 8 91213 8 4 01450
5 2367 23 5 101114151011 5 2367 23
6 01450014 6 8 912138 9 12 6 8 912138 9 12
7 2367 2367 7 101114151011 1415 7 101114151011 1415
8 014501450 8 8 912138 91213 8 8 014501450
9 2367 236723 9 101114151011 14 1510 11 9 2367236723
10 014501450014 10 8 912138 912138 9 12 10 8 912138 912138 9 12
11 2 36 7 2367 2367 11 101114151011 14 1510 11 14 15 11 10111415101114151011 1415
0123456789101 0123456789101 0123456789101
A+B+C+D+E+F+G+H 1+J+K+L+M+N+O+P A+ ... +P

(d) Update matrices before fourth parallel extend-add

(e) Final distribution on 16 processors

Figure 4.8: Four successive parallel extend-add operations (denoted by “+") on hypothetical update

matrices for multifrontal factorization on 16 processors.

106

Horizontal comunication

00
123
2 8912 0 1
3 10111415 4 0——= 1 —=4 —= 5 5 2——= 3 —= 6 —= 7
4 01450 8 9
5 236723 0 0
6 8 912138 9 12 3 3
7 1011141510111415
8 014501250 6 § ——= 9 —= 12 ——= 13 7 10— 11 ——= 14 ——= 15
9 2367236723~ 100 110
10 8 91213 8 9 1213 8 9 12 <= Processor numbers
11 101114 1510 11 14 15 10 11 14 15 <~ . -
- Verti mmunication
0123456 7 8 9 1011 < Matrixindices —ertcalco unicatio

4 00— 2 —= 8 —= 10 5 33— 9 —= 11 ——= 1

Horizontal subcubes

8 9
(0,1,4,5), (2,3,6,7), (8,9,12,13), (10,11,14,15) 0 0
3 3
Vertical subcubes 6 12——=14—= 4 ——= 6 7 15— 5 —= 7 —= 13
- 10 11
(0,2,8,10), (1,3,9,11), (4,6,12,14), (5,7,13,15) 0 0

Figure 4.9: The two communication operationsinvolved in asingle elimination step (index of pivot

= 0 here) of Cholesky factorization on a12 x 12 frontal matrix distributed over 16 processors.

441 Block-Cyclic Mapping of Matrices onto Processors

In the parallel multifrontal algorithm described in this section, the rows and columns of frontal
and update matrices are distributed among the processors of a subcube in a cyclic manner. For
example, the distribution of amatrix with indicesfrom 0to 11 on a 16-processor subcubeis shown
in Figure 4.8(e). The 16 processors form alogica mesh. The arrangement of the processors in
the logical mesh is shown in Figure 4.10(a). In the distribution of Figure 4.8(€), consecutive rows
and columns of the matrix are mapped onto neighboring processors of the logical mesh. If there
are more rows and columns in the matrix than the number of processorsin arow or column of the
processor mesh, then the rows and columns of the matrix are wrapped around on the mesh.
Although the mapping shown in Figure 4.8(e) results in a very good load balance among the
processors, it has a disadvantage. Notice that while performing the steps of Cholesky factorization
on the matrix shown in Figure 4.8(¢), the computation corresponding to consecutive pivots starts
on different processors. For example, pivot O on processor O, pivot 1 on processor 3, pivot 2 on
processor 12, pivot 3 on processor 15, and so on. If the message startup timeishigh, thismay lead to
significant delays between the stages of the pipeline. Furthermore, on cache-based processors, the
use of BLAS-3 for eliminating multiple columns simultaneously yields much higher performance

than the use of BLAS-2 for eliminating one column at atime. Figure 4.10(b) shows a variation of

107

00

100

2 223

3 2233

4 889 912

5 8 89 91212
Sl B 6 1010111114 1415 Processor numbers
>l 3|6 | 7 7 101011111414 1515

8 001144550 4 ;'
8 | 9 | 12|13 9 0011445500 v

10 2 233667722314
10111 | 14 | 15 11 2233667722 3 3

012345678 91011 < Marixindices
(@) A logical mesh of 16 processors (b) Block-cyclic mapping with 2 X 2 blocks

Figure 4.10: Block-cyclic mapping of a12 x 12 matrix onalogical processor mesh of 16 processors.

the cyclic mapping, called block-cyclic mapping [81], that can alleviate these problems at the cost
of some added load imbal ance.

Recall that in the mapping of Figure 4.8(e), the least significant [log p/2] bits of a row or
column index of the matrix determine the processor to which that row or column belongs. Now
if we disregard the least significant bit, and determine the distribution of rows and columns by the
[log p/2] bits starting with the second | east significant bit, then the mapping of Figure 4.10(b) will
result. In general, we can disregard the first k least significant bits, and arrive at a block-cyclic
mapping with ablock size of 2¢x 2. Theoptimal val ue of k depends on theratio of computationtime
and the communication latency of the parallel computer in use and may vary from one computer to
another for the same problem. In addition, increasing the block size too much may cause too much

load imbalance during the dense Cholesky steps and may offset the advantage of using BLAS-3.

4.4.2 Subtree-to-Submesh Mapping for the 2-D Mesh Architecture

The mapping of rows and columns described so far works fine for the hypercube network. At
each level, the update and frontal matrices are distributed on a logical mesh of processors (e.g.,
Figure 4.10(a)) such that each row and column of this mesh is a subcube of the hypercube.
However, if the underlying architecture is a mesh, then a row or a column of the logical mesh
may not correspond to a row or a column of the physical mesh. This will lead to contention for

communication channels during the pipelined dense Cholesky steps of Figure 4.9 on a physical

108

(b) Subtree-submesh assignment of level-4 subtrees and the corresponding logical mesh for level-0 supernode

Figure 4.11: Labeling of subtreesin subtree-to-subcube (a) and subtree-to-submesh (b) mappings.

mesh. To avoid this contention for communication channels, we define a subtree-to-submesh
mapping in this subsection. The subtree-to-subcube mapping described in Figure 4.5(b) ensures
that any subtree of the relaxed supernodal elimination tree is mapped onto a subcube of the physical
hypercube. This helpsin localizing communication at each stage of factorization among groups of
as few processors as possible. Similarly, the subtree-to-submesh mapping ensures that a subtreeis
mapped entirely within a submesh of the physical mesh.

Notethat in subtree-to-subcube mapping for a29-processor hypercube, al level-d subtreesof the
relaxed supernodal eliminationtree are numbered inincreasing order from left to right and a subtree
labeled i is mapped onto processor i. For example, the subtree labeling of Figure 4.11(a) results
in the update and frontal matrices for the supernodes in the topmost (level-0) relaxed supernode to

be distributed among 16 processors as shown in Figure4.10(a). The subtree-to-submesh mapping

109

starts with a different initial labeling of the level-d subtrees. Figure4.11(b) shows this labeling for
16 processors, which will result in the update and frontal matrices of the topmost relaxed supernode
being partitioned on a4 x 4 array of processors labeled in arow-major fashion.

We now define a function map such that replacing every reference to processor i in subtree-to-
subcube mapping by areference to processor map(i, m, n) resultsin a subtree-to-submesh mapping
onan mx n mesh. We assumethat both m and n are powersof two. Weal so assumethat eitherm=n
or m = n/2 (this configuration maximizes the cross-section width and minimizes the diameter of

an mn-processor mesh). The function map(i, m, n) is given by the following recurrence:

map(, m.n) = i, ifi <2

map(i, m,n) = map(, 3, n), ifm=n, i< .
map(i,m,n) = T+ map(i — 3, 3, n), ifm=n,i>"m
map@i, m,n) = m{map(, m, E)/mj + map(i, m, 3), ifm=3, i <5,
map(i, m,n) = m(lmap(i — 5, m, 5)/m| + 1)+ mapi — . m, 5, ifm=23 i>15

The above recurrence aways maps alevel-l relaxed supernode of a binary relaxed supernoda

elimination tree onto an (mn/2')-processor submesh of the mn-processor two-dimensional mesh.

45 Analysisof Communication Overhead

In this section, we derive expressions for the communication overhead of our agorithm for sparse
matrices resulting from a finite difference operator on regular two- and three-dimensional grids.
Within constant factors, theseexpressions can begeneralized to al sparse matricesthat are adjacency
matricesof all graphswhosenode-degreeisbounded by aconstant. Such two- and three-dimensional
graphshavetheproperty that their n-node subgraphshave © (,/n)-nodeand ® (n*?3)-node separators,
respectively. All two- and three-dimensiona finite-element graphs belong to this class. The
properties of separators can be generalized from gridsto al such graphs within the same order of
magnitude bounds[91, 90, 45].

The parallel multifrontal algorithm described in Section 4.4 incurstwo types of communication
overhead: one during parallel extend-add operations (Figure 4.8) and the other during the steps of
dense Cholesky factorization while processing the supernodes (Figure 4.9). Crucial to estimating

the communication overhead is estimating the sizes of frontal and update matrices at any level of

110

the supernodal elimination tree.

Consider a+/N x +/N regular finite difference grid. We analyze the communi cation overhead
for factorizingthe N x N sparse matrix associated with thisgrid on p processors. Inorder to simplify
the analysis, we assume a somewhat different form of nested-dissection than the one used in the
actual implementation. Thismethod of analyzing the communication complexity of sparse Chol esky
factorization has been used in [47] in the context of a column-based subtree-to-subcube scheme.
Within very small constant factors, the analysis holdsfor the standard nested dissection [43] of grid
graphs. We consider a cross-shaped separator (described in [47]) consisting of 2+/N — 1 nodesthat
partitionsthe N-node square grid into four square subgridsof size (v/N —1)/2 x (v/N — 1)/2. We
call thisthe level-0 separator that partitions the original grid (or the level-0 grid) into four level-1
grids. Thenodesinthe separator are numbered after the nodesin each subgrid have been numbered.
To number the nodes in the subgrids, they are further partitioned in the same way, and the process
isapplied recursively until al nodes of the original grid are numbered. The supernodal elimination
tree corresponding to this ordering is such that each non-leaf supernode has four children. The
topmost supernodehas 2+/N — 1 (=~ 2+/N) nodes, and the size of the supernodes at each subsequent
level of thetreeishalf of the supernode size at the previouslevel. Clearly, the number of supernodes

increases by afactor of four at each level, starting with one at the top (level 0).

The nested dissection scheme described above has the following properties: (1) the size of
level-l subgridsis approximately +/N/2 x +/N/2', (2) the number of nodesin alevel-l separator
is approximately 2+/N/2', and hence, the length of a supernode at level | of the supernodal
elimination tree is approximately 2+/N/2'. It has been proved in [47] that the number of nonzeros
that ani x i subgrid can contributeto the nodes of its bordering separatorsisbounded by ki 2, where
k = 341/12. Hence, alevel-l subgrid can contribute at most kN /4' nonzerosto its bordering nodes.
These nonzeros are in the form of the triangular update matrix that is passed along from the root
of the subtree corresponding to the subgrid to its parent in the elimination tree. The dimensions of
amatrix with a dense triangular part containing kN/4' entries is roughly +/2kN/2' x v/2kN /2.
Thus, the size of an update matrix passed on to level | — 1 of the supernodal elimination tree from

level | isroughly upper-bounded by +/2kN /2" x +/2kN /2 for| > 1.

The size of alevel-l supernode is 2¢/N/2'; hence, atotal of 2¢/N/2' elimination steps take

111

place while the computation proceeds from the bottom of a level-l supernode to itstop. A single
elimination step on a frontal matrix of size (t + 1) x (t + 1) produces an update matrix of size
t x t. Since the size of an update matrix at the top of a level-l supernodeis a most v/2kN/2' x
V2kN /2", the size of the frontal matrix at the bottom of the same supernode is upper-bounded by
(V2k + 2)v/N/2" x (v/2k + 2)/N/2'. Hence, the average size of a frontal matrix at level | of
the supernodal eimination tree is upper-bounded by (v/2k + 1)v/N/2' x (v/2k + 1)+/N/2'. Let
V2k —1=a. Thena+/N/2' x av/N/2 isan upper bound on the average size of afrontal matrix
at level I.

We are now ready to derive expressions for the communication overhead due to the pardle

extend-add operations and the elimination steps of dense Cholesky on the frontal matrices.

451 Overheadin Parallel Extend-Add

Before the computation corresponding to level | — 1 of the supernodal elimination tree starts, a
parallel extend-add operation is performed on lower triangular portions of the update matrices of
size v/2kN/2 x +/2kN/2', each of which is distributed on a ./p/2' x ./p/2 logica mesh of
processors. Thus, each processor holds roughly (kN/4') = (p/4') = kN/p elements of an update
matrix. Assuming that each processor exchanges roughly half of its data with the corresponding
processor of another subcube, ts + t,KN/(2p) time is spent in communication, where ts is the
message startup time and t,, is the per-word transfer time. Note that this time is independent
of I. Since there are (log p)/2 levels a which paralldl extend-add operations take place, the total
communicationtimefor theseoperationsis® (N/p) log p onahypercube. Thetotal communication

overhead dueto the parallel extend-add operationsis ® (N log p) on a hypercube.

45.2 Overhead in Factorization Steps

We have shown earlier that the average size of afrontal matrix at level | of the supernodal elimination
tree is bounded by a+/N/2' x a+/N/2', where o = /341/6 — 1. This matrix is distributed on a
VP/2 x /P/2 logical mesh of processors. Asshownin Figure 4.9, there are two communication
operations involved with each elimination step of dense Cholesky. The average size of a message
is (@v/N/2) + (/P/2") = a/N/p. It can be shown [109, 81] that in a pipelined implementation

112

ona.,/q x ,/q mesh of processors, the communicationtime for s elimination steps with an average
messagesizeof mis®(ms). Thereasonisthat although each message must goto © (,/q) processors,
messages corresponding to ®© (,/q) elimination steps are active smultaneously in different parts of
the mesh. Hence, each message effectively contributesonly ® (m) to thetotal communication time.
In our case, at level | of the supernoda elimination tree, the number of steps of dense Cholesky is
2V/N/2'. Thusthetotal communicationtimeat level | isa/N/p x 2¢/N/2 =@ ((N//P)(1/2)).
The total communicationtimefor the elimination steps at thetop (log p)/2 levelsof the supernodal
%% P~1(1/2')). Thishas an upper bound of ®(N/./P). Hence, the

dimination treeis©((N/,/P) %

total communication overhead due to the elimination stepsis ©(p x N//P) = (N /P).

The paralel multifrontal algorithm incurs an additional overhead of emptying the pipelinelog p
times (once before each parallel extend-add) and then refilling it. 1t can be easily shown that this
overhead is® (N) each time the pipelinerestarts. Hence, the overall overhead due to restarting the
pipelinelog p timeis® (N log p), whichissmaller in magnitudethanthe ® (N ,/p) communication
overhead of the dense Cholesky elimination steps.

45.3 Communication Overhead for 3-D Problems

The analysis of the communication complexity for the sparse matrices arising out of three-
dimensional finite element problems can be performed a ong thelines of the anaysisfor the case of
two-dimensiona grids. Consider an N2 x N3 x N/3 grid that isrecursively partitionedinto eight
subgridsby aseparator that consistsof three orthogonal N/ x N/3 planes. The number of nonzeros
that ani x i x i subgrid contributesto the nodes of itsbordering separatorsis © (i) [47]. Atlevel |,
dueto| bisections, i isno morethan N/3/2'. Asaresult, an update or afrontal matrix at level | of
the supernodal eliminationtree will contain ® (N#/3/24) entries distributed among p/8 processors.
Thus, the communication time for the parallel extend-add operation at level | is ® (N¥3/(2 p)).
Thetotal communication timefor all parallel extend-add operationsis ® (N%3/p) %% P 1(1/2)),
which is ®(N*3/p). For the dense Cholesky elimination steps at any level, the message size is
©(N?3/./p). Since there are 3N%3/4' nodesin alevel-l separator, the total communication time
for the elimination stepsis O (N*3/,/P) =, " *(1/4)), whichis ©(N*3/ . /P).

Hence, the total communication overhead due to parallel extend-add operationsis ® (N#/3) and

113

that dueto the dense Cholesky eliminationstepsis® (N*2,/p). Asinthe2-D case, theseasymptotic
expressions can be generalized to sparse matrices resulting from three-dimensiona graphs whose
n-node subgraphs have ® (n?/3)-node separators. This class includes the linear systems arising out

of three-dimensional finite e ement problems.

454 Communication Overhead on a M esh

The communication overhead due the dense Cholesky elimination steps is the same on both the
mesh and the hypercube architectures because the frontal matrices are distributed on alogical mesh
of processors. However, the parallel extend operations use the entire cross-section bandwidth of a
hypercube, and the communication overhead due to them will increase on a mesh due to channel
contention.

Recall that the communication time for parallel extend-add at any level is ®(N/p) on a
hypercube. The extend-add is performed among groups of p/4' processors at level | of the
supernodal elimination tree. Therefore, at level |, the communication time for paralel extend-
add ona ,/p/2' x /p/2 submeshis ©®(N/(2 ./p)). The total communication time for &l the
levelsis ©((N//P) =% P (1/2')). This has an upper bound of ©(N/,/P), and the upper bound
on the corresponding communication overhead term is ®(N,/p). This is the same as the total
communication overhead for the elimination steps. Hence, for two-dimensiona problems, the
overall asymptotic communication overhead isthe samefor both mesh and hypercube architectures.

The communication time on a hypercube for the paralel extend-add operation at level | is
O (N43/(2' p)) for three-dimensiona problems. The corresponding communicationtimeon amesh
wouldbe®(N*3/(4',/p). Thetotal communicationtimefor all theparallel extend-add operationsis
O((N*3//P)=, 2P *(1/4))), whichis ®(N*3//P). Asinthecase of two-dimensional problems,
thisis asymptotically equal to the communication time for the elimination steps.

46 Scalability Analysis

It iswell known [45] that the total work involved in factoring the adjacency matrix of an N-node
graph with an ©(+/N)-node separator using nested dissection ordering of nodes is ©(N%). We
have shown in Section 4.5 that the overall communication overhead of our scheme is © (N /p).

114

From Equation 2.4, afixed efficiency can be maintainedif and only if N** oc N/p, or /N o /P,
or N*®* = W oc p*®. In other words, the problem size must be increased as ® (p'®) to maintain a
constant efficiency as p isincreased. In comparison, alower bound on the isoefficiency function of
Rothberg and Gupta's scheme [120] with a communication overhead of at least © (N /plog p) is
O (p*°(log p)®). Theisoefficiency function of any column-based schemeisat least © (p®) because
the total communication overhead has a lower bound of ®(Np). Thus, the scalability of our

algorithm is superior to that of the other schemes.

It is easy to show that the scalability of our algorithm is ® (p*°) even for the sparse matrices
arising out of three-dimensional finite element grids. The problem sizeinthecaseof an N x N
sparse matrix resulting from athree-dimensional gridis ® (N?) [47]. We have shownin Section 4.5
that the overall communication overhead inthis caseis © (N*2,/p). To maintain afixed efficiency,
N2 oc N*3,/p, or N?® o /P, or N2 = W o< p'/°.

A lower bound on the isoefficiency function for dense matrix factorization is © (p*°) [81, 82]
if the number of rank-1 updates performed by the serial agorithm is proportional to the rank of
the matrix. The factorization of a sparse matrix derived from an N-node graph with an S(N)-node
separator involves a dense S(N) x S(N) matrix factorization. S(N) is ®(+/N) and ®(N23) for
two- and three-dimensional constant node-degree graphs, respectively. Thus, the complexity of the
dense portion of factorization for these two types of matricesis © (N*°) and ® (N?), respectively,
which is of the same order as the computation required to factor the entire sparse matrix [45, 47].
Therefore, theisoefficiency function of sparse factorization of such matricesis bounded from below
by the isoefficiency function of dense matrix factorization, which is © (p*®). Aswe have shown
earlier in thissection, our algorithm achieves thislower bound for both two- and three-dimensional

cases.

4.6.1 Scalability with Respect to M emory Requirement

We have shown that the problem size must increasein proportionto p® for our algorithm to achieve
afixed efficiency. Asthe overal problem size increases, so does the overall memory requirement.
For an N-node two-dimensional constant node-degree graphs, the size of the lower triangular factor

L is ®(NlogN) [45]. For a fixed efficiency, W = N® o p®, which implies N « p and

115

NlogN o plogp. As aresult, if we increase the number of processors while solving bigger
problems to maintain a fixed efficiency, the overall memory requirement increases at the rate of
®(plog p) and the memory requirement per processor increase logarithmically with respect to the
number of processors.

In the three-dimensional case, size of the lower triangular factor L is © (N#3) [45]. For afixed
efficiency, W = N2 o p'®, which implies N o« p¥“ and N*® o p. Hence, in this case, the
overal memory requirement increases linearly with the number of processors and the per-processor
memory requirement is constant for maintaining a fixed efficiency. 1t can be easily shown that for
the three-dimensional case, the isoefficiency function should not be of a higher order than © (p*®)
if speedups proportiona to the number of processors are desired without increasing the memory
requirement per processor. To the best of our knowledge, the algorithm described in Section 4.4 is

the only parallel algorithm for sparse Cholesky factorization that satisfies this condition.

4.7 Experimental Resultsof Sparse Cholesky Factorization

Weimplemented theparallel multifrontal algorithm describedinthischapter onthenCUBE2 pardle
computer. We have gathered some preliminary speedup results for two classes of sparse matrices,
which are summarized in Tables 4.1 and 4.2. The entire code is written in the C programming
language augmented with the message passing primitives for n"CUBE and compiled using the ncc
compiler with the -O optimization option. The results for 64 processors or less were obtained on
the 64-processor nNCUBE2 (with 16 MB memory per node) at the CIS department of University
of Florida at Gainsville. The results for 128 to 1024 processors were obtained on the 1024-
processor NCUBE2 (with 4 MB memory per node) at Sandia National Labs. All timings are for
numerical factorization with single precision arithmetic. From an independent set of experiments,
we determined the time for a floating point operation to be roughly 0.5us, the message startup time
to be roughly 180us, and the communication rate with no channel conflicts to be roughly 2 bytes
per us.

We conducted one set of experiments on sparse matrices associated with a 9-point difference
operator on rectangular grids. The purpose of these experiments was to compare their results with

the scalability analysis in Section 4.6. The dimensions of the grids were chosen such that the

116

elimination trees were as balanced as possible. The standard nested dissection ordering [43] was
used for these matrices. Nested dissection has been shown to have optimal fill-in in the case of
regular grids [45]. The results of our implementation for some of these grids are summarized in
Table 4.1. Matrix GRIDixj inthetable refers to the sparse matrix obtained fromani x j 9-point

finite difference grid.

From our experiments on the 2-D grids, we selected afew points of equal efficiency and plotted
the W versus p curve, which is shown by the solid linein Figure 4.12 for E ~ 0.31. The problem
size W is measured in terms of the total number of floating point arithmetic operations performed
during factorization; for example, for GRID63x63, W = 4.1684 x 106. The dotted curve below
the experimental curve corresponds to an isoefficiency function of © (p*°) and the dashed curve at
the top corresponds to an isoefficiency function of ®(p*°(log p)*). The first point on each curve
is that for the matrix GRID63x63 on 64 processors. To obtain the dotted curve, W was increased
by a factor of 24/2 every time the number of processors p was doubled. To obtain the dashed
curve, a constant was defined to be 4.1684 x 10°/(64 x 8 x 6%) ~ 37.7. Then, for any p > 64,
W = 37.7p(log p)3. Giventhat for p = 64, an efficiency of roughly 31% is obtained for problem
size 4.1684 x 106, the dotted and dashed curves indicate the problem sizes that will yield the same
efficiency for p = 128, 256, and 512 if the isoefficiency function is ® (p*®) and ®(p*°(log p)?),
respectively.

Figure 4.12 shows that the experimental isoefficiency curve is considerably better than
O (p*°(log p)®), whichisalower bound on the isoefficiency function of the previously best known
(in terms of total communication volume) parallel agorithm [120] for sparse matrix factorization.
However, it is worse than © (p*®), which is the asymptotic isoefficiency function derived in Sec-
tion 4.6. There are two main reasons for this. First, the ® (p*®) isoefficiency function does not
take load imbalance into account. It has been shown in [96] that even if a grid graph is perfectly
partitioned in terms of the number of nodes, the work load associated with each partition varies.
The partitions closer to the center of the grid require more computation than the ones on or closer
to the periphery. Another reason that the experimental isoefficiency function appears worse than
the prediction isthat the efficiencies of the parallel implementation are computed with respect to a

very efficient serial implementation. This can be judged from the run times on a single nCUBE2

Matrix: GRID63x63; N =3969; NNZ = 99.45 thousand; FLOP = 4.1684 million
p 1 2 4 8 16 32 64 128
Time 827 4.22 222 1.41 904 594 411 315
Speedup 1.00 1.96 373 5.87 9.15 13.9 20.1 26.2
Efficiency 100.0% 98.0% 93.1% 73.3% 57.2% 43.5% 31.4% 20.5%
Matrix: GRID103x95; N =9785; NNZ = 288.04 thousand; FLOP = 16.599 million
p 1 4 8 16 32 64 128 256
Time 28.92 7.500 4.493 2.699 1.596 1.017 7301 5516
Speedup 1.00 3.86 6.44 10.7 18.1 28.4 306 524
Efficiency 100.0% 96.4% 80.5% 66.9% 56.6% 44.4% 31.0% 20.5%
Matrix: GRID127x127; N =16129; NNZ = 518.58 thousand; FLOP = 36.682 million
p 1 4 8 16 32 64 128 256
Time 58.86 15.07 8.878 5.155 2971 1.783 1171 .8546
Speedup 100 3.90 6.63 11.4 19.8 33.0 50.3 68.9
Efficiency 100.0% 97.6% 82.8% 71.0% 61.9% 51.6% 39.3% 26.9%
Matrix: GRID175x127; N =22225: NNZ = 731.86 thousand; FLOP = 56.125 million
p 1 8 16 32 64 128 256 512
Time 87.38 12.74 7.420 4.164 2.468 1.570 1.092 8529
Speedup 1.00 6.86 11.8 21.0 354 55.7 80.0 102.4
Efficiency 100.0% 85.7% 73.6% 65.6% 55.3% 43.5% 31.3% 20.0%
Matrix: GRID255x127; N =32385; NNZ = 1140.6 thousand; FLOP = 100.55 million
p 1 16 32 64 128 256 512 1024
Time 149.15 12.22 6.651 3.861 2.349 1.557 1.091 8357
Speedup 100 12.2 224 38.6 63.5 95.8 136.7 1785
Efficiency 100.0% 76.3% 70.1% 60.4% 49.6% 37.4% 26.7% 17.4%
Matrix: GRID223x207; N =46161; NNZ = 1498.7 thousand; FLOP = 179.87 million
p 1 16 32 64 128 256 512 1024
Time 254.70 20.21 10.85 6.161 3751 2.380 1.634 1.237
Speedup 100 12.6 235 41.3 67.9 107.0 155.9 205.9
Efficiency 100.0% 78.8% 73.4% 64.6% 53.0% 41.8% 30.5% 20.1%

with a 9-point difference operator on rectangular grids. All timesare in seconds.

117

Table4.1: Experimental resultsfor factoring sparse symmetric positive definite matrices associ ated

118

350 — | | | :
15 o s

s00 - O (0g(p)d - 7
Experimental —+— /

250 — O(pls) - /// B

W
(in million
floating
point ops)

Figure 4.12: Comparison of our experimenta isoefficiency curves with ® (p*®) curve (theoretical
asymptoticisoefficiency function of our agorithm due to communication overhead on ahypercube)
and with ®(p'°(log p)®) curve (the lower bound on the isoefficiency function of the best known
paralle sparse factorization algorithm until now). The four data points on the curves correspond to

the matrices GRID63x63, GRID103x95, GRID175x127, and GRID223x207.

processor whose peak performanceisrated at roughly 2.5 MFL OPS (doubl e precision) and 8 MIPS.
I'n our implementation, the computati on associ ated with the subtrees below level log p in therelaxed
supernodal elimination tree is handled by the serial code. However, the computation above this
level ishandled by a separate code. In our preliminary implementation, this part of the code isless
efficient than the serial code (disregarding communication) due to additional bookkeeping, which
has apotential for optimization. For example, thetotal time spent by all the processors participating
in a parallel extend-add operation besides message passing is more than the time taken to perform
extend-add on the same update matrices on a single processor. The same is true for the dense
factorization stepstoo. However, despite these inefficiencies, our implementation is more scalable
than a hypothetical ideal implementation (with perfect load balance) of the previously best known
paralld agorithm for sparse Cholesky factorization.

In Table 4.2 we summarize the results of factoring some matrices from the Harwell-Boeing
collection of sparse matrices[30]. The purpose of these experiments wasto to demonstrate that our

algorithm can deliver good speedups on hundreds of processors for practical problems. Spectral

119

Matrix: BCSSTK15; N =3948; NNZ =488.8 thousand; FLOP = 85.55 million

P 1 2 4 8 16 32 64 128 256 512 1024
Time 103.73 52.63 26.66 14.88 8.29 4.98 3.20 2.156 1.530
Speedup 1.00 197 3.89 6.97 125 20.8 324 48.1 67.8
Efficiency 100.0% 98.5% 97.3% 87.1% 78.2% 65.1% 50.7% 37.6% 26.5%
Load balance 100% 99% 98% 91% 91% 87% 87% 84% 84%

Matrix: BCSSTK25; N =15439; NNZ = 1940.3 thousand; FLOP =512.88 million

p 1 2 4 8 16 32 64 128 256 512 1024
Time 5885 301.23 184.84 74.71 52.29 30.01 16.66 10.38 6.64 4.53
Speedup 1.00 1.95 3.18 6.21 11.3 196 353 56.7 88.6 129.9

Efficiency 100.0% 97.7% 79.6% 77.7% 70.3% 61.3% 57.0% 44.3% 34.6% 25.4%
Load balance 100% 98% 80% 78% 71% 63% 62% 62% 62% 61%

Matrix: BCSSTK29; N =13992; NNZ = 2174.46 thousand; FLOP = 609.08 million

P 1 2 4 8 16 32 64 128 256 512 1024
Time 704.0 359.7 2129 110.45 55.06 31.36 19.22 12.17 7.667 4.631 3.119
Speedup 1.00 1.96 331 6.37 12.8 225 36.6 57.9 91.8 152.6 225.6

Efficiency 100.0% 97.9% 82.7% 79.7% 79.9% 70.2% 57.2% 45.2% 35.9% 29.8% 22.0%
Load balance 100% 98% 83% 82% 84% 82% 77% 72% 68% 72% 72%

Matrix: BCSSTK30; N =28924; NNZ =5893.59 thousand; FLOP =2246.0 million

p 1 2 4 8 16 32 64 128 256 512 1024

Time 2599.0+ 14935 1050.8 537.4 256.6 1345 79.93 43.67 24.73 14616 11.078
Speedup 1.00 1.74 2.47 4.84 10.1 193 325 59.5 105.0 177.8 234.6
Efficiency 100.0% 87.0% 61.8% 60.5% 63.3% 60.4% 50.8% 46.5% 41.0% 34.7% 22.9%

Matrix: BCSSTK31; N =35588; NNZ = 6458.34 thousand; FLOP = 2583.6 million

p 1 2 4 8 16 32 64 128 256 512 1024
Time 3358.0* 1690.7 924.6 503.0 262.0 134.3 73.57 42.02 24.58 14.627 9.226
Speedup 1.00 1.99 3.63 6.68 12.8 25.0 45.6 79.9 136.6 229.6 364.2

Efficiency 100.0% 99.3% 90.8% 83.4% 80.1% 78.1% 71.3% 62.4% 53.4% 44.8% 35.6%

Matrix: BCSSTK32; N =44609; NNZ = 8943.91 thousand; FLOP = 4209.0 million

p 1 2 4 8 16 32 64 128 256 512 1024

Time 5215.0# 276.17 153.23 46.24 271.25 16.40
Speedup 1.00 18.9 34.0 112.8 191.4 318.0
Efficiency 100.0% 59.0% 53.2% 44.1% 37.4% 31.1%

Table 4.2 Experimenta results for factoring some sparse symmetric positive definite matrices
resulting from 3-D problems in structural engineering. All times are in seconds. The single
processor run timessuffixed by “*” and “#” were estimated by timing different parts of factorization

on two and 32 processors, respectively.

120

An elimination tree Equivalent binary tree four processors

(@) Converting an elimination tree to abinary tree

Nodes with
potential for

An imbalanced elimination tree Balanced for four processors

(b) Balancing an elimination tree

Figure 4.13: Thetwo functions performed by the tree balancing agorithm.

nested dissection (SND) [111, 112, 113] was used to order the matricesin Table 4.2. Thischoice of
the ordering scheme was prompted by two factors. First, there isincreasing evidence that spectral
orderings offer a good balance between generality of application and the quality of ordering—
both in terms of load balance and fill reduction [20]. Second, the SND algorithm itself can be
paralleized efficiently, whereas most other ordering schemes do not appear to be as well-suited
for parallelization. Although, at the present time we compute the ordering on a seria compulter,
SND isour ordering algorithm of choice in a prospective completely parallel implementation of a
sparse linear system solver based on our parallel multifrontal algorithm. A drawback of using a
serial implementation of SND isthat its run timeistoo high. However, variations of SND such as

multilevel SND [14, 113] run much faster without compromising on the quality of ordering.

121

From the experimental resultsin Tables 4.1 and 4.2, we can infer that our a gorithm can deliver
substantia speedups, even on moderate problem sizes. These speedups are computed with respect
to avery efficient serial implementation of the multifrontal algorithm. To lend credibility to our
speedup figures, we compared the run times of our program on a single processor with the single
processor run times given for iPSC/2 in [114] and [127]. The nCUBE2 processors are about 2
to 3 times faster than iPSC/2 processors and our serial implementation, with respect to which the
speedups are computed, is 4 to 5 times faster than the onein [114] and [127]. Our single processor
run times are four times less than the single processor run times on iPSC/2 reported in [9]. We
also found that for some matrices (e.g., that from a 127 x 127 9-point finite difference grid), our
implementation on eight N"CUBE2 processors (8.9 seconds) isfaster than the 16-processor i PSC/860
implementation (9.7 seconds) reported in [141], athough iPSC/860 has much higher computation
Speeds.

4.7.1 Load Balancing for Factorization

The factorization algorithm as described in this chapter requires a binary relaxed supernodal elim-
ination trees that are fairly balanced. After obtaining the ordered matrix and the corresponding
elimination tree, we run the elimination tree through a very fast tree balancing heuristic. This
heuristic performs a single pass of depth-first search on the elimination tree and accomplishes two
tasks. First, it convertsagenera treeinto abinary tree required by the subtree to subcube mapping.
Second, it performs limited reordering of the subtrees within the elimination tree to ensure that the
load imbalance at a given level does not exceed a predefined tolerance. The functionaity of this
algorithm is briefly described in Figure 4.13. If elimination of a column is regarded as a basic
subtask in Cholesky factorization, then the elimination tree gives apartia ordering of these subtask
for correct factorization [92]. Our tree balancing algorithm is based on the fact that a modified
elimination tree that does not violate the partial order specified by the original tree still leads to
correct factorization. This agorithm generally improves the load-balance significantly in paralle

factorization at the cost of very small increase in fill.

Table 4.2 aso gives the percentage load balance for different values of p for BCSSTK15,
BCSSTK 25, and BCSSTK 29 matrices. To evaluate theload bal ance, wewrote asequential program

122

that simulates the parallel multifrontal agorithm and reports the maximum achievable efficiency
for a given number of processors in the absence of communication overhead. The simulator takes
as input the same binary relaxed supernodal eimination tree as the the paralel algorithm. Now
the paralel run time to factorize the part of the matrix corresponding to a subtree rooted at level
| of the binary relaxed supernodal elimination tree is given by the sum of the parallel run time to
process the root of the subtree and the paralld run time to eliminate the subtrees of theroot. The
paralle run time to processes the root is computed by dividing the serial run timeto processes the
root by p/2™, wherem =1if0<| <logpandm =logpifl > log p. The paralld run timeto
eliminate the subtrees is computed as the maximum of the paralel run times for the two subtrees
if 0 < | < log p and as the sum of the run times of the subtreesif | > log p. Thus, by timing the
work associated with individua subtrees in the recursive serial implementation of the multifrontal
algorithm, the simulator can easily estimate the parallel run timein the absence of communication
overhead for agiven p. The load balance or the maximum achievable efficiency is then estimated
by dividing the serial run time with the product of p and the estimated parallel run time. Note that
the inefficiency dueto load imbalance of subtree-to-subcube mapping does not continue to increase

with the number of processors, but tends to saturate at 64—128 processors.

It is evident from the load balance values given in Table 4.2 that a combination of spectra
nested dissection with our tree balancing algorithm results in very respectable load balances for
up to 1024 processors. The number of nonzeros in the triangular factor (NNZ) and the number of
floating point operations (FLOP) reported in Table 4.2 are for the single processor case. As the
number of processors is increased, the tree balancing algorithm is applied to more levels (log p)
of the relaxed supernoda elimination tree, and consequently, the total NNZ and FLOP increase.
Thus, an efficiency of x% in Table 4.2 indicates that there is a (100 — x)% loss, which includes
three factors: communication, load imbalance, and extra work. For example, the efficiency for
BCSSTK25 on 64 processorsis 57%; i.e., thereis a 43% overhead. However, only 5% overhead is

due to communication and extrawork. The remaining 38% overhead is due to load imbal ance.

Although we have observed through our experiments that the upper bound on efficiency due
to load imbalance does not fall below 60-70% for hundreds of processors, even this bound can

be improved further. The subtree-to-subcube mapping can be relaxed [53, 78] to a subforest-to-

123

Number of Processors

Problem n [Al IL| OPC 32 | 64 | 128 | 256 | 512 | 1024
PILOT87 2030 122550 504060 240M 044 | 0.73 | 1.05
MAROS-R7 | 3136 330472 1345241 720M 0.83 | 141 | 214 | 3.02 | 4.07 4.48

FLAP 51537 | 479620 | 4192304 940M 075 | 127 | 1.8 | 287 | 383 | 425
BCSSTK33 | 8738 | 291583 | 2295377 | 1000M 076 | 1.30 | 194 | 290 | 436 | 6.02
BCSSTK30 | 28924 | 1007284 | 5796797 | 2400M 148 | 242 | 359 | 556 | 754
BCSSTK31 | 35588 | 572914 | 6415883 | 3100M 080 | 145 | 248 | 397 | 626 | 7.93
BCSSTK32 | 44609 | 985046 | 8582414 | 4200M 151 | 263 | 416 | 691 | 890

COPTER2 55476 | 352238 | 12681357 | 9200M 110 | 194 | 331 | 576 | 955 | 1478
CUBE35 42875 | 124950 | 11427033 | 10300M || 1.27 | 2.26 | 3.92 | 6.46 | 10.33 | 15.70
NUG15 6330 | 186075 | 10771554 | 29670M 432 | 754 | 1253 | 19.92

Table 4.3: The performance of sparse Cholesky factorization on Cray T3D (from [53, 78]). For
each problem the table contains the number of equationsn of the matrix A, the original number of
nonzeros in A, the nonzeros in the Cholesky factor L, the number of operations required to factor

the nodes, and the performance in gigaflopsfor different number of processors.

subcube mapping, which reduces|oad imbalancesat thecost of alittleincreasein communication. A
preliminary implementation of thisvariation yields up to 20 GFL OPS on medium-size problemson
a1024-processor Cray T3D. Table 4.3 and Figure 4.14 show the performance of thisimplementation

on some sel ected matrices.

4.8 Paralld Algorithms for Forward Elimination and Backward Substitution in

Direct Solution of Sparse Linear Systems

A few pardlel agorithms for solving triangular systems resulting from parallel factorization of
sparse linear systems have been proposed and implemented recently. We present adetailed analysis
of the parallel complexity and scalability of paralel algorithm described briefly in [64] to obtain
a solution to the system of sparse linear equations of the forms LY = BandU X =Y, where L
isalower triangular matrix and U is an upper triangular matrix. Here L and U are obtained from

the numerical factorization of a sparse coefficient matrix A of the original system AX = B to be

20 T T T T T
PILOT87

18 .
BCSSTK30

16 BCSSTK31
BCSSTK32 -0~
COPTER2-~

1| CUBE35 &~

12

10

GigaFlops

-~ NUGL5

3264 128 256 512
Processors

45 B T T T

1024

40 friy

MFlops/Processor

PILOT87 —<—
MAROS-R7 4+
FLAP -5--
BCSSTK33 -
BCSSTK30 = -
BCSSTK31 -
BCSSTK32 o~
COPTER2 -+
CUBE35 - -
NUG15 —~— |

3264 128 256 512
Processors

1024

124

Figure 4.14: Plot of the performance of the parallel sparse multifrontal algorithm for various
problems on Cray T3D (from [53, 78]). The first plot shows total Gigaflops obtained and the

second one shows M egaflops per processor.

125

solved. If A, L,andU are N x N matrices, then X, Y, and B are N x m matrices, where m isthe
number of right-hand side vectors for which the solution to the sparse linear system with A asthe
coefficient matrix isdesired. Our analysisand experiments show that, although not as scalable asthe
best parallel sparse Cholesky factorization agorithms, parallel sparse triangular solvers can yield
reasonable speedups in runtime on hundreds of processors. We also show that for a wide class of
problems, the sparse triangular solvers described in this chapter are optimal and are asymptotically

as scalable as a dense triangular solver.

For asingleright-hand side (m = 1), our experiments show a 256-processor performance of up
to 435 MFLOPS on a Cray T3D, on which the single-processor performance for the same problem
is~ 8.6 MFLOPS. With m = 30, the maximum single-processor and 256-processor performance
observed in our experiments is &~ 30 MFLOPS and ~ 3050 MFLOPS, respectively. To the best
of our knowledge, thisis the highest performance and speedup for this problem reported on any

massively parallel computer.

In addition to the performance and scalability analysis of parallel sparse triangular solvers, we
discuss the redistribution of the triangular factor matrix among the processors between numerical
factorization and triangular solution, and its impact on performance. In [53], we describe an
optimal data-distribution scheme for Cholesky factorization of sparse matrices. This distribution
leaves groups of consecutive columns of L with identical pattern of non-zeros (henceforth called
supernodes) with a two-dimensiona partitioning among groups of processors. However, this
distributionis not suitablefor thetriangular solvers, which are scalable only with aone-dimensional
partitioning of the supernodal blocks of L. We show that if the supernodes are distributed in a
subtree-to-subcube manner [46] then the cost of converting the two-dimensional distribution to a
one-dimensiona distribution is only a constant times the cost of solving the triangular systems.
From our experiments, we observed that this constant is fairly small on the Cray T3D—at most
0.9 for a single right-hand side vector among the test cases used in our experiments. Of course,
if more than one systems need to be solved with the same coefficient matrix, then the one-time

redistribution cost is amortized.

126

4.8.1 Algorithm Description

In this section, we describe parallel agorithmsfor sparse forward elimination and backward substi-
tution, which have been discussed briefly in [64]. The description in this section assumes a single
right-hand side vector; however, the algorithm can easily be generalized to multipleright-hand sides

by replacing all vector operations by the corresponding matrix operations.

Forward Elimination

The basic approach to forward elimination is very similar to that of multifrontal numerical factor-
ization [92] guided by an elimination tree[93, 81] with the distribution of computation determined
by a subtree-to-subcube mapping [46]. A symmetric sparse matrix, its lower triangular Cholesky
factor, and the corresponding elimination tree with subtree-to-subcube mapping onto 8 processors
isshown in Figure 4.5. The computation in forward elimination starts with the leaf supernodes of
the elimination tree and progresses upwards to terminate at the root supernode. A supernode is a
set of columnsiy, iy, .. ., iy Of the sparse matrix such that all of them have non-zeros in identical
locationsand i, ; istheparent of i; intheeliminationtreefor 1 < j < t. For example, in Figure4.5,
nodes 6, 7, and 8 form a supernode. The portion of the lower triangular matrix L corresponding
to a supernode is a dense trapezoidal block of width t and maximum height n, where t is the
number of nodes in the supernode and n is the number of non-zeros in the leftmost column of the
supernode. Figure 4.15 outlinesthe forward elimination process across three levels of the left half
of the elimination tree of Figure 4.5. One of the blocks of L shown in Figure 4.15 is the dense
trapezoida supernode consisting of nodes 6, 7, and 8. For this supernode,n = 4andt = 3.

As in the case of multifrontal numerical factorization [92], the computation in forward and
backward triangular solvers can aso be organized in terms of dense matrix operations. In forward
elimination (see Figure 4.15), before the computation starts at a supernode, the elements of the
right-hand side vector with the same indices as the nodes of the supernode are collected in the first
t contiguous locationsin avector of length n. The remainingn — t entries of this vector are filled
with zeros. The computation corresponding to a trapezoidal supernode, which starts at the leaves,
consists of two parts. The first computation step isto solve the dense triangul ar system at the top of

the trapezoid (above the dotted line in Figure 4.15). The second step is to subtract the product of

127

(top half from 2,
RHS pottom half from 5)

L RHS RHS
_2 . | (left half from O, o o
right half from 1)
(I€ft half from 3,
right half from 4)
L RHS L RHS L RHS L RHS

Figure 4.15: Pictorial representation of forward elimination along three levels of an eimination
tree. The color of an RHS box is determined by the color(s) of the box(es) at the next lower level

that contributeto its value.

the vector of lengtht (above the dotted line) with the (n — t) x t submatrix of L (below the dotted
line) from the vector of lengthn —t (below the dotted line). After these two computation steps, the
entriesin thelower part of thevector of length n —t are subtracted from the corresponding (i.e., with
the sameindex in the original matrix) entries of the vector accompanying the parent supernode. The
computation at any supernode in the tree can commence after the contributionsfrom al itschildren
have been collected. The algorithm terminates after the computation at the triangular supernode at

the root of the elimination tree.

In aparalel implementation on p processors, a supernode at level | (see Figure 4.5) from the

128

top is distributed among p/2' processors. The computation at alevel greater than or equal to log p
is performed sequentially on a single processor assigned to that subtree. However, the computation
steps mentioned above must be performed in paralel on p/2' processors for a supernode with
0<I <logp.

In [65], Heath and Romine describe efficient pipelined or wavefront algorithms for solving
densetriangular systemswith block-cyclic row-wise and column-wise partitioning of thetriangular
matrices. We use variations of the same agorithms on the dense trapezoidal supernodes at each
of the parallel levels of the elimination tree. the number of processors among which a supernode
is partitioned varies with its level in the tree, but the same basic paralel algorithm is used for
each supernode. Figure 4.16(a) shows hypothetical forward elimination on a supernode with an
unlimited number of processors on an EREW-PRAM. From this figure, it is clear that, due to
data dependencies, at atime only max(t, n/2) processors can remain busy. Since the computation
proceeds along a diagona wave from the upper-left to the lower-right corner of the supernode, at
any given time, only one block per row and one e ement per columnisactive. From thisobservation,
it can be shown that an efficient parallel agorithm (an agorithm capable of delivering a speedup
of ®(p) using p processors) for forward elimination must employ a one-dimensional row-wise or
column-wise partitioning of the supernode so that al processor can be busy at al times (or most
of the time). From a practical perspective, we chose a row-wise block-cyclic partitioning because
n > t and amore uniform partitioning with reasonable block sizes can be obtained if the rows are
partitioned. Figures 4.16(b) and (c) illustrate two variations of the pipelined forward elimination
with block-cyclic row-wise partitioning of the supernode. Each box in the figure can be regarded
asab x b square block of the supernode (note that the diagonal boxes represent lower triangular
blocks). In the column-priority agorithm, the computation along a column of the supernode is
finished before anew columnis started. In the row-priority agorithm, the computation along a row

is finished before a new row is started.

4.8.2 Backward Substitution

The algorithm for parallel backward substitution is very similar. Since an upper triangular system

is being solved, the supernodes are organized as dense trapezoidal matrices of height t and width n

129

t
ot b Po o 1 Po o 1
1 2 3 ! Pl 1 2 3 Pl 1 2 6
2 3 4|5 ¢ P, 5 3 4|5 P, o 3 7|11
3 4 5|6|7 Py 3 4 5|6|7 P; 3 4 8|12|16
4 5 67|89 Po 4 5 6|/7]8]9 Po 4 2 9]13]17|20
5 6 7/8|9|10[11 P, 5 6 7/8]9|10/11 P, 5 3 7)14/18/21|24
6 7 8|9]10/11]12)13 P, g 7 8|9|10/11]12|13 P, g 4 8|12]19|22|25/28
n 7 8 9]10(11]12|13|14|15| | Py 7 8 9)10]11|12|13]14|15) | Ps 7 5 9)13]17|23|26|29/32|
g 9 10]11|12|13]|14/15|16 Py g 10 11|12/13|14/15/16|17 Po g 3 10/14/18|21|27|30|33
g 10 11/12|13/14/15/16|17 P, g 12 13|14/15/16|17|18|19 P, o 4 8|15/19|22|25/31|34
10 11 12|13|14/15|16|17|18 P, 10 14 15/16|17|18|19|20|21 P, 10 5 913/20/23|26|29|35
11 12 13]14|15|16|17|18|19 P3 11 16 17/18/19|20|21|22|23 P3 17 6 10/14/18/24/27|30|33
12 13 14|15|16|17|18|19|20 Po 12 18 19]20|21|22|22|24|25 Po 12 4 11]15]19|22|28|31|34
13 14 15/16|17|18|19|20|21 P, 13 20 21|22|23|24|2526|27 Py 13 5 916]20|23]26|32|35
14 15 16|17|18|19|20|21|22 P, 14 22 23|24|25|26|27|28(29 P, 14 6 10]14|21|24|27|30|36
15 16 17]18|19|20|21|22|23 P3 15 24 25/26|27|28|29|30|31 Ps 15 7 11|15]19|25|28|31|34
(a) Pipelined computation on an (b) Row-priority pipelined computation (c) Column-priority pipelined compu-
EREW-PRAM with unlimited with cyclic mapping of rows onto tation with cyclic mapping of rows
number of processors. four processors. onto four processors.

Figure 4.16: Progression of computation consistent with data dependencies in parallel pipelined
forward elimination in a hypothetica supernode of the lower-triangular factor matrix L. The
number in each box of L represents the time step in which the corresponding element of L isused
in the computation. Communication delays are ignored in this figure and the computation time for
each box is assumed to be identical. In parts (b) and (c), the supernode is partitioned among the
processors using a cyclic mapping. A block-cyclic mapping can be visualized by regarding each

box asab x b block (the diagonal boxes will represent triangular blocks).

130

t -

PoP1P,P3PoP1P,PaPaPP,P3PoPP,P5

31(30(29|28|27|26|25(24|19|18|17(16|11|10| 9 | 8
29|28(27(26|25|24123|18|17|16|15/10(9 |8 | 7
27|26|25|24|23|22|17(16|15|14|9 |8 |7 | 6

t 25(24123122|21|16|15(14(13|8 |7 |6 |5
23|22(21|20|15|14|13(12| 7|6 |5 | 4

']21/20|19|14/13]12|11/6 |54 |3

‘b 19(18|13|12|11|10{5 |4 |3 | 2

17(12|11|10{9 |4 |3 |2 |1

Figure 4.17: Column-priority pipelined backward substitution on a hypothetical supernode dis-

tributed among 4 processors using column-wise cyclic mapping.

(n > t) and acolumn-wiseblock-cyclic partitioningis used at thetop log p levelsof the elimination
tree. In backward substitution, the computation starts at the root of the elimination tree and
progresses down to the leaves. First, the entries from the right-hand side vector with the same
indices as the nodes of a supernode are collected in the first t contiguous locations of a vector of
length n. Theremaining n —t entries of thisvector are copied from the entrieswith sameindicesin
the vector accompanying the parent supernode. This step is not performed for the root supernode,
which does not have a parent and for which n = t. The computation at a supernode consists of
two steps and can proceed only after the computation at its parent supernode is finished. The first
computation step isto subtract the product of thet x (n — t) rectangular portion of the supernode
with the lower part of the vector of sizen —t from the upper part of the vector of sizet. The second
stepisto solvethetriangular system formed by thet x t triangle of the trapezoidal supernode and the
upper part of the vector of sizet. Just like forward elimination, these steps are carried out serialy
for supernodes at levels greater than or equal to log p in the elimination tree. For the supernodes
a levels 0 through log p — 1, the computation is performed using a pipelined parallel agorithm.
Figure 4.17 illustratesthe pipelined a gorithm on four processors with column-wisecyclic mapping.
The agorithm with a block-cyclic mapping can be visualized by regarding each box in Figure 4.17

as asquare block (the blocks along the diagona of the trapezoid are triangular) of sizeb x b.

131

In both forward and backward triangular solvers described in this section, if the system needs
to be solved with respect to more than one, say m, right-hand sides, then the vectors of length n
are replaced by rectangular n x m matrices. The overall algorithms remain identical except that all
vector operations are replaced by the corresponding matrix operations, the size of the matrix being

the length of the vector times the number of vectors.

483 Analysis

In this section we derive expressionsfor the communi cation overheads and analyze the scal ability of
the sparse supernodal multifrontal triangular solversdescribed in Section 4.8.1. Wewill present the
analysisfor the forward elimination phase only; however, the reader can verify that the expressions

for the communication overhead are identical for backward substitution.

Communication Over heads

It is difficult to derive analytica expressions for general sparse matrices because the location and
amount of fill-in, and hence, the distribution and the number if non-zerosin L, isafunction of thethe
number and position of nonzeros in the original matrix. Therefore, we will focus on the problems
in which the original matrix is the adjacency matrix of atwo- or three-dimensional graph in which
the degree of each nodeis bounded by a constant. These classes of matrices include the coefficient
matrices generated in all two- and three-dimensiona finite element and finite difference problems.
We also assume as that a nested-dissection based fill-reducing ordering is used, which resultsin
an amost balanced elimination tree. The subtree-to-subcube assignment of the elimination tree to
the processors relies heavily on a balanced tree. Although there are bound to be overheads due to
unequal distribution of work, it is not possible to model such overheads analytically because the
extent of such overheads is data-dependent. From our experience with actual implementations of
paralle triangular solvers as well as paralel factorization codes [53], we have observed that such
overheads are usually not excessive. Moreover, the overhead dueto load imbalancein most practical
cases tends to saturate at 32 to 64 processors for most problems and does not continue to increase
as the number of processors are increased. In the remainder of this section, we will concentrate on

overheads due to inter-processor communication only.

132

Consider the column-priority pipelined agorithm for forward elimination shown in Fig-
ure 4.16(c). Let b be the block size in the block-cyclic mapping. A piece of the vector of
size b is transferred from a processor to its neighbor in each step of the agorithm until the com-
putation moves below the upper triangular part of the trapezoidal supernode. If a supernode is
distributed among g processors, then during the entire computation at a supernode, q +t/b — 1
such communication steps are performed; g — 1 steps are required for the computation to reach the
last processor in the pipelineand t /b stepsto passthe entire data (of length t) through the pipeline.
Thus, thetotal communicationtimeisproportional to b(q— 1) +t,whichis®(q) + ®(t), assuming
that b isa constant.

Besides the communication involved in the pipelined processing over a supernode, there is
some more communication involved in collecting the contributions of the vectors associated with
the children of a supernode into the vector associated with the parent supernode. If the two child
supernodes are each distributed among g processors, then this communication is equivaent to an
all-to-all personalized communication [81] among 2q processors with a data size of roughly t/q
on each processor. This communication can be accomplished in time proportiona tot/q, whichis
asymptotically smaller than the ®(q) + ®(t) time spent during the pipelined computation phase at
the child supernodes. Therefore, inthe remainder of thissection, we will ignore the communication
required to transfer the contributions of the vector across the supernodes at different levels of the

eimination tree.

So far we have established that atime proportional to b(q — 1) 4 t (or roughly, bg + t) is spent
while processing an n x t trapezoida supernode on g processors with ablock-cyclic mapping that
uses blocks of sizeb. We can now derive an expression for the overall communication time for the
entire parallel forward elimination process by substituting for g and t in the expression bq + t for

asupernode at level | and summing up the resulting expression over all levels.

Let usfirst consider a sparse linear system of N equations resulting from a two-dimensional
finite element problem being solved on p processors. As aresult of using the subtree-to-subcube
mapping, q at alevel | is p/2'. If anested-dissection based ordering scheme s used to number the
nodes of the graph corresponding to the coefficient matrix, then the number of nodest in asupernode

alevel | isay/N/2', where « isasmall constant [91, 90, 45, 53]. Thusthe overall communication

133

timeis proportional to %,°2"*(bp/2) + £,°" *(ay/N/2'), whichis©(p) + O(V/N).

The overall computation is proportional to the number of non-zerosin L, whichis®(N log N)
for an N x N sparse coefficient matrix resulting from a two-dimensiona finite element problem
[45] with a nested-dissection based ordering. Assuming that the computation is divided uniformly
among the processors, each processor spends ©((NlogN)/p) time in computation. Hence, the
paralel runtime for forward elimination algorithm described in Section 4.8.1 is as follows?:

N log N

p

If the underlying graph corresponding to the coefficient matrix is athree-dimensional constant-

Tr = O()+ O(N) + O(p). (4.1)

degree graph (as is the case in three-dimensiona finite element and finite difference problems),
then the value of t at level | is roughly a(N/2')?3, where o is a small constant [45, 53]. The
valueof q at level | is p/2'. Thus, the total communication time is proportional to ;%P *(bp/2")
+ 2%9P M (N/2)%3, which is ©(p) + ©(N%3). Assuming that the overall computation of
O (N#3) [45] is uniformly distributed among the processors, the paralel runtime is given by the
following eguation:

4/3

Tp = O(o) +O(N*®) + O(p). (4.2)

If more than one (say m) right-hand side vectors are present in the system, then each term in

Equations 4.1 and 4.2 is multiplied with m.

Scalability Analysis

Recall that for a triangular system resulting from the factorization of an N x N sparse matrix

corresponding to atwo-dimensiona constant-degree graph,
W = ©(NlogN). 4.3)

If we assume that only the last two termsin Equation 4.1 contribute to the overhead, then from the

relation T, = pTp — Ts, itiseasy to seethat

To = O(p%) + O(pvV'N). (4.4)

2 Depending on the way the pipelining is implemented for processing a supernode, there may be @ (t) and/or ©(q) steps
of pipeline delay (one step performs 2b? operations) at each supernode. However, the aggregate of such terms does not
exceed the asymptotic communication complexity of @(p) + ©(+/N)

134

Balancing W against the first term in the expression for T, yields the following (see Appendix D
for details):

W p?, (4.5)
and balancing it against the second term in the expression for T, yields

p2
logp’

W

(4.6)

Since p? is the dominant term in the two isoefficiency expressions, the overal rate at which the
problem size must increase with the number of processors to maintain afixed efficiency is © (p?),
as given by Equation 4.5.

For atriangular system resulting from thefactorization of an N x N sparsematrix corresponding

to athree-dimensional constant-degree graph,
W = ©(NY3) 4.7)

and

To = O(P?) + O(PN3). (4.8)

Balancing W against each term in the expression for T, yields the following isoefficiency function

(see Chapter 2 for details):
W o p?. 4.9

In this section, we have shown that the isoefficiency function for solving sparse triangular
systems resulting from the factorization of a wide class of sparse matrices is ®(p?). In [53],
we described parallel algorithms for sparse Cholesky factorization of the same class of matrices
with an isoefficiency function of © (p*®), which is better than the ® (p?) isoefficiency function of
the corresponding triangular solver. However, the amount of computation involved in numerical
factorization is much higher than that in a triangular solver. Therefore, as we experimentally
demonstrate in Section 4.8.5, despite being less efficient than parallel numerical factorization,
triangular solvers can till be speeded up enough n parallel so as to claim only a fraction of the

factorization time on the same number of processors.

135

Comparison with the Scalability of Dense Triangular Solvers

The communication time for solving a dense N x N triangular system using a row-wise block-
cyclic mapping onto p processors with block size b is proportional to b(p — 1) + N, which
is O(p) + O(N). The problem size W is ®(N?) and the total communication overhead T,
is O(p?) + ©(Np) (note that the total communication overhead or the overhead function is the
product of p and thecommunicationtime). Itiseasy to see W must grow in proportionto p? in order
to satisfy therelation W oc T, for maintaining aconstant efficiency. Thus, theisoefficiency function
of aparald dense triangular solver is ®(p?), indicating that the parallel algorithms described in
Section 4.8.1 for sparse forward and backward triangular solvers are asymptotically as scalable as
their dense counterparts. From this observation, we can argue that the sparse algorithms, at least
in the case of matrices associated with three-dimensiona constant-degree graphs are optimal. The
topmost supernode in such amatrix isan N#3 x N?/3 dense triangle. Solving atriangular system
corresponding to this supernode invol ves asymptotically a computation of the same complexity as
solving the entire sparse triangular system. Thus, the overall scalability cannot be better than that

of solving the topmost N2/® x N#? dense triangular systemin paralel, whichis © (p?).

4.8.4 DataDistribution for Efficient Triangular Solution

In Section 4.8.1 and in [81], we discuss that in order to implement the steps of dense triangular
solution efficiently, the matrix must be partitioned among the processors along the rows or aong
the columns. However, as we have shown in [53], the dense supernodes must be partitioned a ong
both dimensions for the numerical factorization phase to be efficient. The table in Figure 4.18
shows the communication overheads and the isoefficiency functions for parallel dense and sparse
factorization and triangular solution using one- and two-dimensiona partitioning schemes. The
most efficient scheme in each category is denoted by a shaded box in the table. The last column of
the table shows the overall isoefficiency function of the combination of factorization and triangular
solvers. Notethat thetriangular solvers are unscal able by themselvesif the dense supernodal blocks
of thetriangular factor are partitioned in two dimensions. However, the asymptotic communication
overhead of the unscalable formulation of thetriangular solvers does not exceed the communication

overhead of the factorization process. As aresult, the overall isoefficiency function is dominated

136

) o Factorization, no Pivoting | Forward/Backward Solution | Overall
Matrix Type Partitioning fici
Communication Isoefficiency | Communication Isoefficiency Isoefficiency
Overhead Function Overhead Function Function
One-dimensional O(N?p) O(p3) O(p2) + O(Np)| O(p2) O(p?)
Dense
Two-dimensional | O(N?pY2) O(p32) O(N?pY2) | Unscalable | O(p372)
One-dimensional O(p?) +
Sparse with O(Np) O(p3) U2 O(p?) O(p3)
. subtree-subcube O(N““p)
(resulting from - -
2-D graphs) | Two-dimensional
with O(Npv2) O(p32) O(Npv2) Unscalable | O(p3/2)
subtree-subcube
One-dimensional O(p?) +
Sparse with O(N**p) O(p3) 23 O(p?) O(p3)
. subtree-subcube O(N“*p)
(resulting from - -
3-D graphs) | Two-dimensional
with O(N¥3pv2) O(p32) O(N*3pY2) | Unscaable | O(p32)
subtree-subcube

Figure4.18: A tableof communication overheads and i soefficiency functionsfor sparsefactorization

and triangul ar solution with different partitioning schemes.

by that of factorization. Hence, for a solving a system with a single right-hand side vectors (or a
small constant number of them), the unscalability of the triangular solvers should not be of much
concern. However, if solutions with respect to a number of right-hand side vectors are required,
then for both the factorization and triangular solution to be efficient together, each supernode must
be redistributed among the processors that share it. This redistribution must convert the origina
two-dimensional block-cyclic partitioning into a one-dimensional block-cyclic partitioning. In this
section we show that the time spent in this redistribution is not asymptoticaly higher than the
parallel runtime of thetriangular solvers.

Consider ann x t dense supernode mapped ontoa , /q x ,/q logical grid of processorsusing atwo
dimensional partitioning. Asshownin Figure4.19, theredistributionisequivalent to atransposition
of each (n/,/q) x t rectangular block of the supernode among the ,/q processor on which it is
horizontally partitioned. Thisis an all-to-all personalized communication operation [81] among
/9 processors with each processor holding nt/q words of data. Although Figure 4.19 illustrates
redistributionwith aplainblock partitioning, both the procedure and the cost of redistributionarethe

samewith block-cyclic partitioningaswell. The communicationtimefor thisall-to-all personalized

137

S0
finv]
U
w0

~0
fev)
)
0

o)

)

5‘0

K-U
5]

B

N

w

i

»—\-U »—\-U »—\-U »—\-U H-U H-U WU |00 | U |50 |0 | LU |30 |50 |50 | SO

o

Figure 4.19: Converting the two-dimensional partitioning of a supernode into one-dimensional

partitioning.

operation is ®(nt/q) [81]. Note that for solving atriangular system with asingle right-hand side,
each processor performs ® (nt /q) computationwhile processing an n x t supernodeon g processors.
Thus, the total overhead for redistribution is of the same order as the time spent by the paralle
triangular solver whileworking onthetoplog p levelsof the elimination tree, which islessthan the
total parale runtime. The actua ratio of the redistribution time and the parallel triangular solution
time will depend on the relative communication and computation speeds of the parallel computer
being used. In Section 4.8.5, we show that on a Cray T3D, the redistribution time is at most 0.9
times (0.6 times on an average) the parallel triangular solution time with a single right-hand side
vector. |f more than one right-hand side vectors are used, then the cost of redistribution can be

amortized further because the redistribution needs to be done only once.

138

485 Experimental Results

We implemented the algorithms described in Section 4.8.1 and integrated them with our sparse
Cholesky factorization algorithms described in Section 4.4. Table 4.4° and Figure 4.20 show the

performance of the parallel triangular solvers on aCray T3D.

In Table 4.4, we show the time in seconds and the performance in MFLOPS on a selected
number of processorsfor five test matrices with the number of right-hand side vectors varying from
1to0 30. Tofacilitateacomparison of thetimesfor various phases of the sol ution processes, thetable
also contains the factorization run time and MFLOPS, as well as the time to redistribute the factor
matrix to convert the supernodes from a two-dimensional to a one-dimensional partitioning among
the processors. As shown in Table 4.4, for a singleright-hand side vector, the highest performance
achieved on a 256-processor Cray T3D is approximately 435 MFLOPS, which increases to over
3 GFLOPS if a solution with 30 right-hand side vectors is obtained. Comparing with the single-
processor performance for BCSSTK15, this represents roughly 50- and 100-fold enhancement
in performance on 256 processors for 1 and 30 right-hand side vectors, respectively. There are
two other important observations to be made from the table in Table 4.4. First, despite a highly
scalable implementation of sparse Cholesky factorization, parallelization of the relatively less
scalable triangular solvers can speed them enough so that their runtimeis still a small fraction of
the factorization time. Second, although efficient implementations of factorization and triangular
solvers use different data partitioning schemes, the redistribution of the data, on an average, takes
much less time than the triangular solvers for a single right-hand side vector on the T3D.

Figure 4.20 shows the plots of MFLOPS versus number of processors of the Cray T3D for
triangular solutionswith different number of right-hand side vectors. The curves for these four test
matrices show that both theoverall performance and the speedupsare much higher if ablock of right-
hand side vectorsisavailablefor solution. The use of multipleright-hand side vectors enhances the
single processor performance due to effective use of BLAS-3 routines. It aso improves speedups

because the cost of certain index computations required in the parallel implementation can be

3 Thefactorization megafl ops, operation count, and number of nonzerosare different for some matrices between Tables4.3
and 4.4 because Table 4.3 gives the results of an implementation that modifies the subtree-subcube mapping to reduce
load imbalance [53]. On the other hand, Table 4.4 [57] implements a strict subtree-subcube mapping and also uses
somewhat different parametersin spectral nested dissection to order the matrices.

139

BCSSTK15: N = 3948; Factorization Opcount = 85.5 Million; Nonzeros in factor = 0.49 Million

Factorization time = 2.46 sec. NRHS 1 2 5 10 20 30
p=1 Factorization MFLOPS = 34.8 FBsolve time (sec.) .228 .284 452 740 133 1.92
TimetoredistributeL =0.0sec. |FBsolve MFOLPS 86 137 215 265 294 300
Factorization time = .107 sec. NRHS 1 2 5 10 20 30
p=64 Factorization MFLOPS = 800 FBsolve time (sec.) .024 .027 .034 .048 .074 .100
Timetoredistribute L =.009 sec. | FBsolve MFOLPS 815 145 285 405 527 583

BCSSTK31: N = 35588; Factorization

Opcount = 2791 Million; Nonzeros in factor = 6.64 Million

Factorization time = 5.59 sec. NRHS 1 2 5 10 20 30
p=16 Factorization MFLOPS = 499 FBsolve time (sec.) .227 274 398 614 105 151
Timeto redistribute L = .071 sec. | FBsolve MFOLPS 115 194 330 427 498 523
Factorization time = .721 sec. NRHS 1 2 5 10 20 30
p =256 Factorization MFLOPS=3871 |FBsolve time (sec.) .073 .082 .107 .152 242 334
Timeto redistribute L = .035 sec. | FBsolve MFOLPS 363 646 1240 1738 2199 2385

HSCT21954:N = 21954; Factorization

Opcount = 2822 Million; Nonzeros in factor = 5.84 Million

Factorization time = 2.48 sec. NRHS 1 2 5 10 20 30
p =32 Factorization MFLOPS=1138 |FBsolve time (sec.) .113 .133 189 284 472 .672
Timeto redistribute L = .10 sec. |FBsolve MFOLPS 203 347 609 809 973 1025
Factorization time = .619 sec. NRHS 1 2 5 10 20 30
p =256 Factorization MFLOPS=4560 |FBsolve time (sec.) .091 .099 .122 .161 .234 .312
Timetoredistribute L = .067 sec. | FBsolve MFOLPS 255 471 953 1452 1991 2244

CUBE35: N =42875; Factorization Opcount = 7912 Million; Nonzeros in factor = 9.95 Million
Factorization time = 7.528 sec. NRHS 1 2 5 10 20 30

p=32 Factorization MFLOPS=1051 |FBsolve time (sec.) .245 296 436 .681 121 1.72
Timetoredistribute L =.13sec. |FBsolve MFOLPS 162 269 456 583 660 693
Factorization time = 1.43 sec. NRHS 1 2 5 10 20 30

p =256 Factorization MFLOPS=5527 |FBsolve time (sec.) .108 .120 .154 .216 .340 .468
TimetoredistributeL =.08 sec. |FBsolve MFOLPS 369 665 1289 1838 2345 2548

COPTER2: N =55476; Factorization

Opcount = 8905 Million; Nonzeros in factor = 12.77 Million

Factorizationtime=5.764sec. |NRHS 1 2 5 10 20 30
p=64 Factorization MFLOPS=1545 |FBsolve time (sec.) .186 .220 .320 .492 .832 1.10
TimetoredistributeL = .11 sec. |FBsolve MFOLPS 274 463 795 1036 1226 1277
Factorizationtime=1.846 sec. |NRHS 1 2 5 10 20 30
p =256 Factorization MFLOPS=4825 |FBsolve time (sec.) .117 .130 167 .232 .364 .500
Timeto redistribute L = .07 sec. |FBsolve MFOLPS 434 785 1526 2195 2805 3053

Table 4.4: A table of experimental results for sparse forward and backward substitution on a Cray

T3D (from [57]). In the above table, “NRHS’ denotes the number of right-hand side vectors,

“FBsolve time” denotes the tota time spent in both the forward and the backward solvers, and

“FBsolve MFLOPS’ denotes the average performance of the solvers in million floating point

operations per second. See footnotein the text.

BCSSTK15
| | |

600
|

CUBE35
3000 - | \
2500 - L
2000%* v ./';;?/"/(/_v
w2
e

p —=
NRHS =1 NRHS =2 NRHS =5

!

MFLOPS

T

MFLOPS

140

BCSSTK31
2500 | | hl
| .
| . S
2000 ©- T -
| .7
1500‘!’ /// -
| ST
| s
| L7 Jp—
1000 © L -
v
H A T
500 T e -
v
OL ,,,,, d______ Lo ____ d______ | d_____ I
0 50 100 150 200 250 300
p——=
COPTER2
3500 | | | A
3000 - e
2500 ~ LT -
2000 — »»/./",’/’//'HH__,-»"""777
B0~ T e
w000~ T -
500 —- - ST _
0L,,,L,,J,,,J,,,J,,,J,,,J,,,i,,,L,,,L,,J
60 80 100 120 140 160 180 200 220 240 260
p——
NRHS =10 NRHS =20 NRHS = 30

Figure 4.20: Performance versus number of processorson a Cray T3D for parallel sparsetriangular

solutions with different number of right-hand side vectors (from [57]).

amortized over al the right-hand side vectors.

49 Paralld Symbolic Factorization

The symbolic factorization step determines the structure of the lower triangular factor matrix L and

sets up the data structures in which to store the origina SPD matrix A and the nonzero entries of

L to be created during numerical factorization. Symbolic factorization is the least time consuming

of al the four steps involved in the direct solution of a sparse linear system. However, it is

important to parallelize this step for two important reasons. First, thedata (i.e., the origina matrix)

is already distributed among the processors before the symbolic factorization phase [76] and it

would be expensive (very often impossible too due to memory constraints) to gather the data for

141

seria symbolic factorization and then redistributeit. Second, since the other three phases are quite
scalablein parallel, symbolic factorization will become a serial bottleneck despiteitssmall run time
if it isleft unparallelized.

In this section we briefly describe a method for performing symbolic factorization in paralel
provided that the original matrix is already distributed among the processors according to the
subtree-to-subcube mapping. We then analyze the asymptotic communication overhead involved

in the process for sparse matrices arising from two- and three- dimensional constant-degree graphs.

49.1 The Serial Algorithm

Figure 4.21 outlines a recursive seria algorithm for symbolic factorization. Just like numerical
factorization and triangul ar solver algorithms, symbolicfactorization tooisguided by theelimination
tree. Note that the agorithm of Figure 4.21 requires the knowledge of the elimination tree.
Elimination tree generation has traditionally been coupled with symbolic factorization [93, 63]. In
this chapter, we are relying on nested-dissection based ordering strategies that can be computed in
parallel and a so render theremaining phases of the sol ution processamenabl eto parallelization [76].
The elimination tree can be constructed easily (and cheaply) while performing a nested-dissection
based ordering. Assumethat abisection agorithm isbeing used for ordering; i.e., the separator of a
subgraph of nested dissection divides the subgraph into two disconnected components. In such an
ordering the nodes of a separator are numbered consecutively. These separator nodes are also the
consecutive nodes of a relaxed supernode (as defined in Section 4.4) in the elimination tree. The
separator node with the smallest index isthe onethat has two children in the elimination tree (other
separator nodes have only one child). Thesetwo child nodes are the nodes with the highest index in
each of the two disconnected components. This process, when carried out recursively, determines

the entire elimination tree.

Assuming that the elimination tree is available, the algorithm in Figure 4.21 determines the
structure of each column of L. A call to Symbolic(k) computes Struct; for ali < k. clearly, if kis
the root of the elimination tree, Symbolic(k) performsthe entire symbolic factorization. At the end

of symbolic factorization, Structy isthe set of indices {j, |; « # 0O}.

142

[*
Aisthesparse N x N symmetric matrix to be symbolically factored.
A= (a;),where0<i,j < N.
*/
begin function Symbolic(k)
Structy :={j,a«#0,] >K};
for al i such that Parent(i) = k in the elimination tree, do
begin
Symbolic(i);
Structy := Struct, U Struct; — {i};
end

© N o g & w N -

end function Symbolic.

Figure 4.21: An elimination-tree guided recursive agorithm for symbolic factorization

49.2 Parallel Formulation

A parallel formulation of symbolic factorization must generate data structures suitable for parallel
numerical factorization. Refer to the parallel multifrontal algorithm described in Section 4.4. The
role of symbolic factorization in the context of this agorithm is to generate the structure or the
index set associated with each frontal matrix. Since we are dealing with symmetric matrices, ssmply
generating the column (or row) indicesis sufficient to carry out sequential numerical factorization.
However, the frontal matrices are partitioned among processors in two dimensionsin our parallel
numerical factorization algorithm, each processor must have a list of both row and column indices
of its portion of each frontal matrix. A simple modification of the algorithm shown in Figure 4.21
suffices to achieve this.

Recall from Section 4.4 that the subtrees of the eliminationtreerooted at level log p isprocessed
sequentialy on a single processor. The agorithm of Figure 4.21 can be applied to this subtree
without modification. If k isthe root of thissubtree, then Struct, iscopied into two data structures,

Local _Col _Struct, and Local _Row_Struct,. For processing levelsOto log p — 1, the flow of the

143

parallel symbolic factorization agorithm is very similar to that of parallel Cholesky factorization.
Instead of performing the factorization steps, a processor simply drops those indices from its local
sets that correspond to the columns to be eliminated in that step; and, instead of performing the
parallel extend-add steps, the row and column indices are exchanged and merged, and indicesfrom
A are added whenever required. The criterion for the selection of indices to keep or send to the
corresponding processor of the partner subcube is identical to the one used in paralel numerical
factorization. Thetotal communication is much lessthan that in the extend-add steps because only

the indices (instead of an entire update matrix) are communicated between pairs of processors.

4.9.3 Overhead and Scalability

From Section 4.5 we know that while processing level | of the elimination tree associated with atwo-
dimensional N-node constant-degree graph, an © (+v/N /2 x +/N/2') frontal matrix isdistributed on
a./p/2 x /p/2 logica mesh of processors. During symbolic factorization, in order to determine
the set of indices associated with this frontal matrix, each processor must store ® (/N/p) indices.
Thusthetime spent in communi cating and merging therow and columnindex setsby each processors
at each of thetop | levels of the elimination tree is ® (,/N/p). Since there are log p such levels,
the total time spent in communication by each processor while performing symbolic factorization
on thetop log p levels of the elimination treeis © ((/N/p) log p).

The overhead function, T, (see Section 2.1 for definition), in thiscase is © ((+/Np) log p). The
problem size, W, or the serial complexity of the symbolicfactorization of sparse matricesassociated
with an N-node two-dimensional constant-degree graph is of the same order as the total number of
nonzerosin the factor matrix L, whichis®(N log N). Using these expressionsin Equation 2.4, the
isoefficiency function can be derived to be ® (plog p).

In the case of three-dimensional constant-degree graphs, the number of indices per processor
at level | are ®(,/N*3/24/,/p/8), which is ©(N?%3/((v/2)'/P)). The overhead function is
O(N23 /px, = *P*(v/2™), which is ®(N?3/./P). When balanced against a problem size of
© (N*3), this overhead function yields an isoefficiency function of @ (p).

Thus, in this section, we have shown that the already efficient symbolic factorization algorithm
can be paralelized with low overheads and the parallel formulation is quite scalable.

144

4.10 A Complete Scalable Direct Solver for Sparse SPD Systems

Despite more inherent parallelism that dense linear systems, it has been a chalenge to develop
scalableparalel direct solversfor sparselinear systems. The processof obtaining adirect solutionto
asparse system of linear equationsusually consistsof four phases: ordering, symbolicfactorization,
numerical factorization, and forward elimination and backward substitution. A scalable parale
solver for sparse linear systems must implement all these phases effectively in parallel. In [76],
Karypisand Kumar present an efficient parallel algorithm for anested-di ssection based fill-reducing
ordering for such sparse matrices. In Section 4.4, weintroduced a highly scalable parallel algorithm
for sparse Cholesky factorization, which isthe most time consuming phase of solving asparselinear
system with s symmetric positive definite (SPD) matrix of coefficients. In Section 4.8, we have
shown that the forward and backward substitution steps can obtain sufficient speedup on hundreds
of processors so that numerical factorization still dominates the overal time taken to solve the
system in paralel. In addition, we show that, athough efficient implementations of factorization
and triangular solvers use different data partitioning schemes, the time spent in redistributing the
data to change the partitioning schemes is not a bottleneck when compared to the time spent in
factorization and triangular solutions. In Section 4.9, we describe an agorithm for computing the
symbolicfactorization of asymmetric sparse matrix in paralel. We show that theparallel algorithms
for all three phases can work in conjunction with each other, and for awide class of sparse matrices,
the combined overall asymptotic scalahility (as measured by theisoefficiency metric) of these steps

is the same as that of dense matrix factorization.

Figure 4.22 shows another way of appreciating the fact that the work presented in this chapter
makes it possible to develop complete balanced paralldl sparse direct solvers. This figure shows
the parallel complexity, or the asymptotic complexity of the parallel run timeof each phase of such
a solver provided a sufficient number of processors. For example, in the case of two-dimensional
constant node-degree graphs, the serial complexity of factorizationis ® (N1°) and theisoefficiency
function is ®(p'®). Thus, W = ©(N®) = O(p'®); i.e, afixed efficiency can be maintained if
N and p are of the same order. Thus up to ®(N) processors can be used to potentially reduce
the complexity of sparse Cholesky factorization from ©(N*°) to ®(+/N). Similarly, we compute

the best parallel complexities of the other phase for both two- and three-dimensional constant

145

Phase 2-D complexity 3-D complexity
Reordering: O(N) O(N)
Parallel Ordering: O(N¥?) O(N*?)
Symbolic Factorization: O(N log N) O(N™)
Parallel Symbolic Factorization: O(NY?) O(N??)
Numerical Factorization: O(N*?) O(N?)
Parallel Cholesky Factorization: O(NY?) O(N??)
Triangular Solutions: O(N log N) O(N™)
Parallel Triangular Solvers: O((N log N)+2) O(N?®

Figure 4.22: The serial and parallel complexities of the various phases of solving a sparse system

of linear equations arising from two- and three-dimensional constant node-degree graphs.

node-degree graphs. For both these types of graphs, the number of processors required to yield the
parallel complexity expressions given in Figure 4.22 for any phase does not exceed the number of
processors used in the factorization phase. With a dlight exception in the case of two-dimensional
triangular solvers, Figure 4.22 shows that there will be no bottlenecksin a sparse direct solver that
paralldizes all the four phases of the solution process. We therefore hope that the work presented in
thischapter will enableefficient paralel solutionsof abroad range of scientific computing problems.
In Section 4.11, we show how similar algorithms can be devel oped for some other forms of sparse

matrix factorization.

411 Application to Gaussan Elimination and QR Factorization

Although we have focussed on sparse Cholesky factorization in this chapter, the serial algorithm

of Figure 4.3 can be generalized to Gaussian elimination without pivoting for nearly structurally

symmetric sparse matrices [32] and for solving sparse linear least squares problems[99].
Gaussian elimination without pivoting is numerically stable for diagonally dominant matrices;

i.e., the matrices in which the sum of the absolute values of al the non-diagonal elements of arow

146

or a column is less than the absolute value of the diagonal element of the same row or column. If
the matrix A to befactored is not perfectly symmetricin structure, it can be treated as a symmetric
structure matrix by explicitly storing a zero element a;; if & ; is nonzero. The multifrontal
factorization can then be guided by an elimination tree constructed from this symmetric pattern
matrix. For such matrices, the dense Cholesky factorization steps of F* (lines 8-12) are replaced
by steps of dense Gaussian elimination. The parallel algorithm aso works similarly, except that the
frontal and update matrices are now full square matrices rather than triangular matrices as in the
case of Cholesky factorization.

The least square problem (LSP) min,||Ax — bj||, is commonly solved [50] by factoring the
m x n matrix A (m > n) into the product QR, where Q isan m x n orthogonal matrix and R
isan n x n upper triangular matrix. Matstoms [99, 100] has recently developed a multifrontal
algorithm for QR factorization for sparse A. Matstoms approach avoids storing Q explicitly
and is based on the observation that the matrix R is a Cholesky factor of the n x n symmetric
positive definite matrix AT A. The LSP is solved from the semi-normal equation RTRx = A'b
with afew steps of iterative refinement. The elimination tree and symbolic factorization of AT A
are used to guide the multifrontal QR factorization. The frontal matrices corresponding to the
leaves of the elimination tree are derived from the original matrix as in the algorithm of Figure 4.3.
The steps of dense QR factorization are then performed on these frontal matrices to obtain the
corresponding update matrices. The process of forming the frontal matrix corresponding to a
node higher up in the tree involves assembling the contributions from the update matrices of the
node’s children in the tree and nonzeros from the row and column corresponding to the node in
the matrix A viaextend-add operations. The difference between the multifrontal Q R factorization
and the algorithm of Figure 4.3 is that the frontal matrices can be sgquare or rectangular and steps
of dense QR factorization are performed in lines 8-12. Some parallel formulations of sparse QR
factorization have been proposed in the literature [117, 128, 129]. These algorithms are based
on a one-dimensional partitioning and their isoefficiency function has a lower bound of Q(p3).
The paralel multifrontal algorithm described in this chapter can be modified to aong the lines
of [99, 100] to develop amore scalable parallel formulation of sparse QR factorization.

147

Chapter 5

CONCLUDING REMARKSAND FUTURE WORK

Inthisdissertation, wehave presented theresults of our research on scal ability analysisof paralle
algorithmsfor avariety of numeric computationsand on the design of some new parallel algorithms
for sparse matrix computations that are more scalable than the previously known agorithms for
solving the same problems.

We have surveyed anumber of techniquesand formalismsthat have been devel oped for studying
the scalability issues, and discuss their interrelationships. It is clear that a single metric is not
sufficient to analyze parallel systems. Different metrics are useful depending on whether the
number of processors, the run time, the problem size, or the efficiency is kept constant. However,
we show some interesting rel ationships between the technique of isoefficiency analysis and many
other methods for scalability analysis. For example, we show that instances of a problem with
increasing size can be solved in a constant parallel run time by employing an increasing number of
processors if and only if the isoefficiency function of the parallel system is ®(p). We show that
for awide class of parallel systems, the relationship between the problem size and the number of
processors that minimizethe run time for that problem sizeis given by an isoefficiency curve.

The analytical power of isoefficiency anadysis is demonstrated in Chapter 3. We have used
this technique to analyze a variety of agorithms that have applications in scientific computing,
and have often derived interesting conclusions. In Chapter 4, we have demonstrated that the this
method of analysis can aso guide the development of better parallel agorithms. An important
feature of isoefficiency analysisisthat in a single expression, it succinctly captures the effects of
characteristics of aparallel algorithmaswell asthe paralel architecture on whichitisimplemented.
In can help identify the scalability bottlenecksin a parallel system and thus aid in eliminating or
reducing the impact of these bottlenecks. By anayzing the known parallel formulations of sparse
and dense matrix factorization, welearned that atwo dimensional partitioning of the matrix reduces

the isoefficiency function by a factor of p'®. Also, a smart assignment of processors to process

148

different parts of the elimination tree improves the isoefficiency function by a factor of (log p)*
over a simple assignment. These observations lead us to attempt to devise a parallel formulation
of sparse matrix formulation that includes the benefits of both kinds of optimizations. Our analysis
had shown that achieving this would make parallel factorization of awide class of sparse matrices

optimally scalable.

Having developed an optimally scalable parallel algorithm for the most time consuming step
of numerical factorization in solving a sparse system of linear equations, we looked at symbolic
factorization and solution of sparsetriangular systemsresulting from the factorization of the coeffi-
cient matrix. In Section 4.8, we have shown that although individually | ess scalabl e than numerical
factorization, the symbolic factorization and forward and backward substitution steps do not effect
the overal asymptotic scalability of a parallel sparse direct solver. In addition, we show that,
although efficient implementations of factorization and triangular solvers use different data parti-
tioning schemes, the time spent in redistributing the data to change the partitioning schemes is not
a bottleneck when compared to the time spent in factorization and triangular solutions. Along with
some recently developed parallel ordering algorithms, the algorithms presented in this thesis make

it possibleto develop complete scalable parallel direct solvers for sparse linear systems.

Our implementations of sparse matrix factorization described in Chapter 4, in their current
form apply to symmetric positive definite matrices. However, the algorithm is applicable to a
somewhat broader class of problems. With minor modifications, it can be used to factor those
symmetric pattern sparse matrices for which the ordering can be computed prior to factorization.
This can be done for matrices whose numericaly stable factorization does not require pivoting
(row and/or column interchanges to ensure that the diagona element of a pivot column is not
much smaller than the elements that it divides). SPD matrices constitute a subclass of this class
of matrices. Another subclass contains matrices that are diagonally dominant but are not positive
definite. AnN x N sparsematrix Aisdiagonaly dominantif and onlyif | A[i, i]| > ZEJ-N:BHA[L ill
and |Ali,i]] > 255 Alj,i]| for 0 <i < N. An LU decomposition of diagonally dominant
matrices using Gaussian elimination is numerically stable in the absence of pivoting. It is quite

straightforward to adapt the algorithm of Section 4.4 for such matrices. The only modification
required in the algorithm of Section 4.4 is to perform steps of Gaussian elimination instead of

149

Cholesky factorization on the frontal matrices.

There is aclass of sparse matrices that require pivoting in order to ensure numerical stability.
It would be interesting to investigate if the algorithms discussed in this thesis can be extended to
support limited pivoting that would provide numerical stability in such problemswithout incurring
excessive overheads. Consider the class of symmetric matrices for which stable factorization
requires pivoting. In the multifrontal algorithm, processing an m-node supernode of the elimination
treeisequivaent to arank-m update. If al them pivotscan befound by permuting these m rows and
columns among themselves, then incorporating pivoting in the algorithm of Section 4.4 is not too
difficult. Asdescribedin Section 4.4, alevel-l supernodeis processed by agroup of p/2' processors.
Theinformationregarding any changein theindicesdueto pivoting at thelevel-l supernode needsto
be shared among only p/2' processorsto affect the exchange and to update theindicesin the already
factored part of the matrix. If renumbering nodes within a supernode is not sufficient for numerical
stability, then an interchange may be required between alevel-I supernode and another node from
its parent supernode at level-(I — 1). This interchange requires communication among the p/2'-*
processors that share the level-(I — 1) supernode. In particular, it introduces extra synchronization
points, as the computation at the remainder of the children supernodes has to finish (and the update
matrices have to be added into the frontal matrix of the parent node) before pivot exchange can be
performed. An additional complication accompanied with renumbering the nodes during numerical

factorization is that the exact location and amount of fill-in cannot be determined apriori.

Anadlternative to Gaussian eliminationwith pivotingis QR factorization. QR factorizationisnu-
merically stablewithout pivoting; however, it requires more computation than Gaussian elimination
or Cholesky factorization. Asdiscussedin Section 4.11, our parallel sparse Cholesky algorithm can
be modified to devise a scalable paralel formulation of QR factorization. It would be worthwhile
to compare Gaussian elimination with pivoting (whose scalability will be limited by the amount
of pivoting required) or QR factorization (which is costlier, but more scalable) for sparse matrix

factorization on large parallel computers.

Some possibleinteresting applications of scalable parallel direct solvers could bein developing
parallel hybrid and multigrid solvers and in preconditioning parallel iterative solvers. For example,

in afinite-element application, a direct solution over a coarse mesh can often be effective in finding

150

afast iterative solution over afiner mesh. Besidesthe applications requiring the solution of alinear
system of equations, there are numerous other interesting scientific computing problems that can
benefit significantly from scalable parallel agorithms, some examples are, N-body simulations,
solving integral equations, singular value decomposition, etc. It isimportant to analyze these prob-
lems, determine lower-bounds on the scalability of solving these problems on parallel computers,

and to attempt to develop parallel algorithmsmatching or close to the lower bounds.

[1]

(2]

(3]

[4]

(3]

6]

[7]

(8]

(9]

[10]

[11]

151

BIBLIOGRAPHY

S. Abraham and K. Padmanabhan. Performance of multicomputer networks under pin-out
constraints. Journal of Parallel and Distributed Computing, pages 237-248, July 1991.

Anant Agarwal. Limits on interconnection network performance. |EEE Transactions on
Parallel and Distributed Systems, 2:398-412, October 1991.

Alok Aggarwal, Ashok K. Chandra, and Mark Snir. Communication complexity of PRAMSs.
Technical Report RC 14998 (No. 64644), IBM T. J. Watson Research Center, Yorktown
Heights, NY, Yorktown Heights, NY, 1989.

A. V. Aho, John E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA, 1974.

S. G. Akl. The Design and Analysis of Parallel Algorithms. Prentice-Hall, Englewood
Cliffs, NJ, 1989.

Edward Anderson. Parallel implementation of preconditioned conjugate gradient methodsfor
solving sparse systemsof linear equations. Technical Report 805, Center for Supercomputing
Research and Development, University of Illinois, Urbana, IL, 1988.

Cleve Ashcraft. The domain/segment partition for the factorization of sparse symmetric pos-
itive definite matrices. Technical Report ECA-TR-148, Boeing Computer Services, Sesttle,
WA, 1990.

Cleve Ashcraft. The fan-both family of column-based distributed cholesky factorization
agorithms. In A. George, John R. Gilbert, and J. W.-H. Liu, editors, Graph Theory and
Sparse Matrix Computations. Springer-Verlag, New York, NY, 1993.

Cleve Ashcraft, S. C. Eisenstat, and J. W.-H. Liu. A fan-in algorithm for distributed sparse
numerical factorization. S/AM Journal on Scientific and Statistical Computing, 11:593—
599, 1990.

Cleve Ashcraft, S. C. Eisenstat, J. W.-H. Liu, and A. H. Sherman. A comparison of three
column based distributed sparse factorization schemes. Technical Report YALEU/DCSRR-
810, Yale University, New Haven, CT, 1990. Also appears in Proceedings of the Fifth
SIAM Conference on Parallel Processing for Scientific Computing, 1991.

A. Averbuch, E. Gabber, B. Gordissky, and Y. Medan. A paralel FFT onan MIMD machine.
Parallel Computing, 15:61-74, 1990.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

152

Cevdet Aykanat, Fusun Ozguner, Fikret Ercal, and Ponnuswamy Sadayappan. Iterative
algorithms for solution of large sparse systems of linear equations on hypercubes. |EEE
Transactions on Computers, 37(12):1554-1567, 1988.

David H. Bailey. FFTsin externa or hierarchical memory. The Jour nal of Supercomputing,
4:23-35, 1990.

Stephen T. Barnard and Horst D. Simon. A fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems. Technical Report RNR-92-033,
NASA Ames Research Center, Moffett Field, CA, 1992.

M. L. Barton and G. R. Withers. Computing performance as afunction of the speed, quantity,
and the cost of processors. In Supercomputing ' 89 Proceedings, pages 759764, 1989.

Jarle Berntsen. Communication efficient matrix multiplication on hypercubes. Parallel
Computing, 12:335-342, 1989.

S. Bershader, T. Kraay, and J. Holland. The giant-Fourier-transform. In Proceedings of the
Fourth Conference on Hypercubes, Concurrent Computers, and Applications. Volume
|, pages 387-389, 1989.

D. P Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Englewood Cliffs, NJ, 1989.

Edward C. Bronson, Thomas L. Casavant, and L. H. Jamieson. Experimental application-
driven architecture analysis of an SIMD/MIMD parallel processing system. |EEE Transac-
tionson Parallel and Distributed Systems, 1(2):195-205, 1990.

W.J. Camp, S. J. Plimpton, B. A. Hendrickson, and R. W. Leland. Massively parallel methods
for engineering and science problems. Communications of the ACM, 37(4):31-41, April
1994.

L. E. Cannon. A cellular computer to implement the Kalman Filter Algorithm. PhD
thesis, Montana State University, Bozman, M T, 1969.

S. Chandran and Larry S. Davis. An approach to paralel vision algorithms. In R. Porth,
editor, Parallel Processing. SIAM, Philadelphia, PA, 1987.

V. Cherkassky and R. Smith. Efficient mapping and implementations of matrix algorithms
on a hypercube. The Journal of Supercomputing, 2:7-27, 1988.

N. P. Chrisopchoides, M. Aboelaze, E. N. Houstis, and C. E. Houstis. The paralelization
of some level 2 and 3 BLAS operations on distributed-memory machines. In Proceedings
of the First International Conference of the Austrian Center of Parallel Computation.
Springer-Verlag Series Lecture Notes in Computer Science, 1991.

[25]

153

Z. Cvetanovic. Performance analysis of the FFT agorithm on a shared-memory parallel
architecture. IBM Journal of Research and Devel opment, 31(4):435-451, 1987.

[26] William J. Dally. Wire-efficienct VLS| multiprocessor communication network. In Stanford

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Conference on Advanced Research in VLS Networks, pages 391-415, 1987.

Eric F. Van de Velde. Multicomputer matrix computations. Theory and practice. In Pro-
ceedings of the Fourth Conference on Hypercubes, Concurrent Computers, and Ap-
plications, pages 1303-1308, 1989.

Eliezer Dekel, David Nassimi, and Sartaj Sahni. Parallel matrix and graph agorithms. SAM
Journal on Computing, 10:657—673, 1981.

Laurent Desbat and Denis Trystram. Implementing the discrete Fourier transform on ahyper-
cube vector-parallel computer. In Proceedings of the Fourth Conference on Hypercubes,
Concurrent Computers, and Applications. Volume I, pages 407410, 1989.

lain S. Duff, R. G. Grimes, and J. G. Lewis. Usars' guide for the Harwell-Boeing sparse
matrix collection (release). Technical Report TR/PA/92/86, Research and Technology
Division, Boeing Computer Services, Seattle, WA, 1992.

lain S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear
eguations. ACM Transactions on Mathematical Software, 9:302—325, 1983.

lain S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of linear equations.
SIAM Journal on Scientific and Statistical Computing, 5(3):633-641, 1984.

Shantanu Dutt and Nam Trinh. Analysisof k-ary n-cubesfor the class of parallel divide-and-
conquer algorithms. Technical report, Department of Electrical Engineering, University of
Minnesota, Minneapolis, MN, 1995.

D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus efficiency in paralel systems.
|EEE Transactions on Computers, 38(3):408-423, 1989.

Horace P. FHatt. Further applications of the overhead model for parallel systems. Technical
Report G320-3540, IBM Corporation, Palo Alto Scientific Center, Palo Alto, CA, 1990.

Horace P. Flatt and Ken Kennedy. Performance of parallel processors. Parallel Computing,
12:1-20, 1989.

G. C. Fox, M. Johnson, G. Lyzenga, S. W. Otto, J. Salmon, and D. Walker. Solving Problems
on Concurrent Processors. Volume 1. Prentice-Hall, Englewood Cliffs, NJ, 1988.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

154

G. C. Fox, M. Johnson, G. Lyzenga, S. W. Otto, J. Salmon, and D. Walker. Solving Problems
on Concurrent Processors. Volume 1. Prentice-Hall, Englewood Cliffs, NJ, 1988.

G. C. Fox, S. W. Otto, and A. J. G. Hey. Matrix agorithms on a hypercube I: Matrix
multiplication. Parallel Computing, 4:17-31, 1987.

K. A. Gdlivan, R. J. Plemmons, and A. H. Sameh. Parallel agorithms for dense linear
algebra computations. SIAM Review, 32(1):54-135, March 1990. Also appearsin K. A.
Gallivan et a. Parallel Algorithms for Matrix Computations. SIAM, Philadelphia, PA,
1990.

G. A. Geist and E. G.-Y. Ng. Task scheduling for parallel sparse Cholesky factorization.
International Journal of Parallel Programming, 18(4):291-314, 1989.

G. A. Geistand C. H. Romine. LU factorization algorithms on distributed-memory multipro-
cessor architectures. SSAM Journal on Scientific and Statistical Computing, 9(4):639—
649, 1988. Also available as Technica Report ORNL/TM-10383, Oak Ridge National
Laboratory, Oak Ridge, TN, 1987.

A. George. Nested dissectionof aregular finite-element mesh. S AM Journal on Numerical
Ananlysis, 10:345-363, 1973.

A. George, M. T. Heath, J. W.-H. Liu, and E. G.-Y. Ng. Sparse Cholesky factorization on
alocal memory multiprocessor. SSAM Journal on Scientific and Statistical Computing,
9:327-340, 1988.

A. George and J. W.-H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

A. George, J. W.-H. Liu, and E. G.-Y. Ng. Communication reduction in paralel sparse
Cholesky factorization on ahypercube. In M. T. Heath, editor, Hypercube Multiprocessors
1987, pages 576-586. SIAM, Philadelphia, PA, 1987.

A. George, J. W.-H. Liu, and E. G.-Y. Ng. Communicationresultsfor parallel sparse Cholesky
factorization on a hypercube. Parallel Computing, 10(3):287-298, May 1989.

N. E. Gibbs, W. G. Poole, and P. K. Stockmeyer. A comparison of several bandwidth and
profile reduction algorithms. ACM Transactions on Mathematical Software, 2:322-330,
1976.

John R. Gilbert and Robert Schreiber. Highly parallel sparse Cholesky factorization. SAM
Journal on Scientific and Statistical Computing, 13:1151-1172, 1992.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

155

GeneH. Golub and Charles Van Loan. Matrix Computations. Second Edition. The Johns
Hopkins University Press, Baltimore, MD, 1989.

Ananth Grama, Anshul Gupta, and Vipin Kumar. Isoefficiency: Measuring the scalability
of paralel algorithms and architectures. |EEE Parallel and Distributed Technology,
1(3):12-21, August, 1993. Also available as Technica Report TR 93-24, Department of
Computer Science, University of Minnesota, Minneapolis, MN.

Ananth Grama, Vipin Kumar, and V. Nageshwara Rao. Experimental evaluation of load
balancing techniques for the hypercube. In Proceedings of the Parallel Computing '91
Conference, pages 497-514, 1991.

Anshul Gupta, George Karypis, and Vipin Kumar. Highly scalable parallel agorithms
for sparse matrix factorization. Technical Report 94-63, Department of Computer Science,
University of Minnesota, Minneapolis, MN, 1994. Submitted for publicationin IEEE Trans-
actionson Parallel and Distributed Computing. Postscript file available in user/kumar
at anonymous FTP site ftp.cs.umn.edu.

Anshul Gupta and Vipin Kumar. The scalability of matrix multiplication agorithms on
parallel computers. Technical Report TR 91-54, Department of Computer Science, University
of Minnesota, Minneapolis, MN, 1991. A short version appears in Proceedings of 1993
International Conference on Parallel Processing, pages I11-115-111-119, 1993.

Anshul Gupta and Vipin Kumar. Performance properties of large scale paralld systems.
Journal of Parallel and Distributed Computing, 19:234-244, 1993. Also available as
Technical Report TR 92-32, Department of Computer Science, University of Minnesota,
Minneapolis, MN.

Anshul Gupta and Vipin Kumar. The scaability of FFT on parallel computers. |EEE
Transactionson Parallel and Distributed Systems, 4(8):922-932, August 1993. A detailed
version availableas Technical Report TR 90-53, Department of Computer Science, University
of Minnesota, Minneapolis, MN.

Anshul Gupta and Vipin Kumar. Paralel agorithms for forward and back substitution in
direct solution of sparse linear systems. In Proceedings of Supercomputing’95, December
1995.

Anshul Gupta, Vipin Kumar, and A. H. Sameh. Performance and scal ability of preconditioned
conjugate gradient methods on paralel computers. IEEE Transactions on Parallel and
Distributed Systems, 6(5):455-469, 1995. Also available as Technica Report TR 92-
64, Department of Computer Science, University of Minnesota, Minneapolis, MN. A short
version appears in Proceedings of the Sxth SSAM Conference on Parallel Processing
for Scientific Computing, pages 664—674, 1993.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

156

John L. Gustafson. Reevaluating Amdahl’s law. Communicationsof the ACM, 31(5):532—
533, 1988.

John L. Gustafson. The consequences of fixed time performance measurement. In Proceed-
ings of the 25th Hawaii International Conference on System Sciences: Volume I,
pages 113-124, 1992.

John L. Gustafson, Gary R. Montry, and Robert E. Benner. Devel opment of parallel methods
for a 1024-processor hypercube. SSAM Journal on Scientific and Statistical Computing,
9(4):609-638, 1988.

S. W. Hammond and Robert Schreiber. Efficient ICCG on a shared-memory multiprocessor.
International Journal of High Speed Computing, 4(1):1-22, March 1992.

M. T. Heath, E. G.-Y. Ng, and Barry W. Peyton. Paralldl algorithmsfor sparse linear systems.
SIAM Review, 33:420-460, 1991. Also appearsinK. A. Galivanet al. Parallel Algorithms
for Matrix Computations. SIAM, Philadelphia, PA, 1990.

M. T. Heath and Padma Raghavan. Distributed solution of sparse linear systems. Technical
Report 93-1793, Department of Computer Science, University of 1llinois, Urbana, IL, 1993.

M. T. Heathand C. H. Romine. Paralldl solution of triangular systemson distributed-memory
multiprocessors. SAM Journal on Scientific and Statistical Computing, 9(3):558-588,
1988.

Mark D. Hill. What is scalability? Computer Architecture News, 18(4), 1990.

Paul G. Hipes. Matrix multiplication on the JPL/Caltech Mark 111fp hypercube. Technical
Report C3P 746, Concurrent Computation Program, California Institute of Technology,
Pasadena, CA, 1989.

C.-T. Ho, S. L. Johnsson, and Alan Edelman. Matrix multiplication on hypercubes using full
bandwidth and constant storage. In Proceedings of the 1991 International Conference
on Parallel Processing, pages 447-451, 1991.

Laurie Hulbert and Earl Zmijewski. Limiting communication in parallel sparse Cholesky
factorization. S/ AM Journal on Scientific and Statistical Computing, 12(5):1184-1197,
September 1991.

Ka Hwang. Advanced Computer Architecture: Parallelism, Scalability, Programma-
bility. McGraw-Hill, New York, NY, 1993.

S. L. Johnsson and C.-T. Ho. Optimum broadcasting and personalized communication in
hypercubes. |EEE Transactions on Computers, 38(9):1249-1268, September 1989.

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

157

S. L. Johnsson, R. Krawitz, R. Frye, and D. McDonald. A radix-2 FFT on the connection
machine. Technica report, Thinking Machines Corporation, Cambridge, MA, 1989.

C. Kamathand A. H. Sameh. The preconditioned conjugate gradient al gorithm on amultipro-
cessor. In R. Vichnevetsky and R. S. Stepleman, editors, Advances in Computer Methods
for Partial Differential Equations. IMACS, 1984.

Ray A. Kamin and George B. Adams. Fast Fourier transform a gorithm design and tradeoffs.
Technical Report RIACS TR 88.18, NASA Ames Research Center, Moffet Field, CA, 1988.

Alan H. Karp and Horace P. Flatt. Measuring parallel processor performance. Communica-
tions of the ACM, 33(5):539-543, 1990.

G. Karypis and V. Kumar. Paralld multilevel graph partitioning. Technica Report TR
95-036, Department of Computer Science, University of Minnesota, 1995.

George Karypis, Anshul Gupta, and Vipin Kumar. Parale formulation of interior point
algorithms. Technical Report 94-20, Department of Computer Science, University of Min-
nesota, Minneapolis, MN, April 1994. A short version appears in Supercomputing ' 94
Proceedings.

George Karypis and Vipin Kumar. A high performance sparse Cholesky factorization a go-
rithm for scalable parallel computers. Technical Report TR 94-41, Department of Computer
Science, University of Minnesota, Minneapolis, MN, 1994. Submitted to the Eighth Sym-
posium on the Frontiers of Massively Parallel Computation, 1995.

S. K. Kimand A. T. Chronopoulos. A class of Lanczos-like agorithms implemented on
parallel computers. Parallel Computing, 17:763-777, 1991.

Clyde P. Kruskal, Larry Rudolph, and Marc Snir. A complexity theory of efficient parallel
algorithms. Technical Report RC13572, IBM T. J. Watson Research Center, Yorktown
Heights, N, 1988.

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introductionto Parallel
Computing: Design and Analysis of Algorithms. Benjamin/Cummings, Redwood City,
CA, 1994.

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Solutions Manual for
Introduction to Parallel Computing. Benjamin/Cummings, Redwood City, CA, 1994.

Vipin Kumar, Ananth Grama, and V. Nageshwara Rao. Scalable load balancing techniques
for parallel computers. Technical Report 91-55, Computer Science Department, University
of Minnesota, 1991. To appear in Journal of Distributed and Parallel Computing, 1994.

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

158

Vipin Kumar and Anshul Gupta. Anayzing scalability of parallel agorithms and archi-
tectures. Journal of Parallel and Distributed Computing, 22(3):379-391, 1994. Also
available as Technical Report TR 91-18, Department of Computer Science Department,
University of Minnesota, Minneapolis, MN.

Vipin Kumar and V. N. Rao. Paralel depth-first search, part II: Anaysis. International
Journal of Parallel Programming, 16(6):501-519, 1987.

Vipin Kumar and V. N. Rao. Load balancing on the hypercube architecture. In Proceedings
of the Fourth Conference on Hypercubes, Concurrent Computers, and Applications,
pages 603608, 1989.

Vipin Kumar and V. N. Rao. Scalable paralel formulations of depth-first search. In Vipin
Kumar, P. S. Gopaakrishnan, and Laveen N. Kanal, editors, Parallel Algorithms for
Machine Intelligence and Vision. Springer-Verlag, New York, NY, 1990.

Vipin Kumar and Vineet Singh. Scalability of parallel algorithms for the all-pairs shortest
path problem. Journal of Parallel and Distributed Computing, 13(2):124-138, October
1991. A short version appears in the Proceedings of the International Conference on
Parallel Processing, 1990.

C. E. Leiserson. Fat-trees: Universal networks for hardware efficient supercomputing. In
Proceedings of the 1985 International Conference on Parallel Processing, pages 393—
402, 1985.

R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SAM Journal on
Numerical Analysis, 16:346-358, 1979.

R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SSAM Journal on
Applied Mathematics, 36:177-189, 1979.

J. W.-H. Liu. The multifrontal method for sparse matrix solution: Theory and practice.
Technical Report CS-90-04, York University, Ontario, Canada, 1990. Also appearsin SAM
Review, 34:82-109, 1992.

J.W.-H. Liu. Therole of elimination treesin sparse factorization. S AM Journal on Matrix
Analysis and Applications, 11:134-172, 1990.

Charles Van Loan. Computational Frameworks for the Fast Fourier Transform. SIAM,
Philadelphia, PA, 1992.

Robert F. Lucas. Solving planar systems of equationson distributed-memory multipro-
cessors. PhD thesis, Department of Electrical Engineering, Stanford University, Palo Alto,
CA, 1987.

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

159

Robert F. Lucas, Tom Blank, and Jerome J. Tiemann. A paralel solution method for large
sparse systems of equations. |EEE Transactions on Computer Aided Design, CAD-
6(6):981-991, November 1987.

Y. W. E. Ma and Denis G. Shea. Downward scalability of parallel architectures. In Pro-
ceedings of the 1988 International Conference on Supercomputing, pages 109-120,
1988.

Dan C. Marinescu and John R. Rice. On high level characterization of parallelism. Technical
Report CSD-TR-1011, CAPO Report CER-90-32, Computer Science Department, Purdue
University, West Lafayette, IN, Revised June 1991. To appear in Journal of Parallel and
Distributed Computing, 1993.

Pontus Matstoms. The multifrontal solution of sparse linear least squares problems.
PhD thesis, Department of Mathematics, Linkoping University, S-581 83 Linkoping, Sweden,
March 1992.

Pontus Matstoms. Sparse QR factorization in MATLAB. Technical Report LiTH-MAT-R-
1992-05, Department of Mathematics, Linkoping University, S-581 83 Linkoping, Sweden,
March 1993.

Rami Melhem. Toward efficient implementation of preconditioned conjugate gradient meth-
ods on vector supercomputers. International Journal of Supercomputer Applications,
1(1):70-97, 1987.

Cleve Moler. Another look at Amdahl’s law. Technical Report TN-02-0587-0288, Intel
Scientific Computers, 1987.

Mo Mu and John R. Rice. A grid-based subtree-subcube assignment strategy for solving
partial differential equations on hypercubes. SAM Journal on Scientific and Satistical
Computing, 13(3):826-839, May 1992.

Vijay K. Naik and M. Patrick. Data traffic reduction schemes Cholesky factorization on
aynchronous multiprocessor systems. In Supercomputing 89 Proceedings, 1989. Also
available as Technica Report RC 14500, IBM T. J. Watson Research Center, Yorktown
Heights, NY.

David M. Nicol and Frank H. Willard. Problem size, parallel architecture, and optimal
speedup. Journal of Parallel and Distributed Computing, 5:404-420, 1988.

A. Nortonand A. J. Silberger. Paralldlization and performance analysis of the Cooley-Tukey
FFT agorithm for shared memory architectures. |EEE Transactions on Computers, C-
36(5):581-591, 1987.

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

160

S. F. Nugent. The iPSC/2 direct-connect communications technology. In Proceedings of
the Third Conference on Hypercubes, Concurrent Computers, and Applications, pages
51-60, 1988.

Daniel Nussbaum and Anant Agarwal. Scalability of parallel machines. Communications
of the ACM, 34(3):57—61, 1991.

DianneP. O'Leary and G. W. Stewart. Assignment and scheduling in parallel matrix factor-
ization. Linear Algebra and its Applications, 77:275-299, 1986.

V. Pan and J. H. Reif. Efficient parallel solution of linear systems. In 17th Annual ACM
Symposiumon Theory of Computing, pages 143-152, 1985.

Alex Pothen, H. D. Simon, and K.-P. Liou. Partioning sparce matrices with eigenvectors
of graphs. SSAM Journal of Mathematical Analysis and Applications, 11(3):430-452,
1990.

Alex Pothen, H. D. Simon, and Lie Wang. Spectral nested dissection. Technica Report
92-01, Computer Science Department, Pennsylvania State University, University Park, PA,
1992.

Alex Pothen, H. D. Simon, Lie Wang, and Stephen T. Bernard. Towardsafastimplementation
of spectral nested dissection. In Supercomputing ' 92 Proceedings, pages 42-51, 1992.

Alex Pothen and Chunguang Sun. Distributed multifrontal factorization using clique trees.
In Proceedings of the Fifth SAM Conference on Parallel Processing for Scientific
Computing, pages 3440, 1991.

Roland Pozo and Sharon L. Smith. Performanceeval uation of theparallel multifrontal method
in a distributed-memory environment. In Proceedings of the Sxth SAM Conference on
Parallel Processing for Scientific Computing, pages 453456, 1993.

Michael J. Quinn. Designing Efficient Algorithmsfor Parallel Computers. McGraw-Hill,
New York, NY, 1987.

Padma Raghavan. Distributed sparse matrix factorization: QR and Cholesky factor-
izations. PhD thesis, Pennsylvania State University, University Park, PA, 1991.

S. Ranka and S. Sahni. Hypercube Algorithms for Image Processing and Pattern
Recognition. Springer-Verlag, New York, NY, 1990.

Edward Rothberg. Performance of panel and block approaches to sparse Cholesky factoriza-
tion on the iPSC/860 and Paragon multicomputers. In Proceedings of the 1994 Scalable
High Performance Computing Conference, May 1994.

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

161

Edward Rothberg and Anoop Gupta. An efficient block-oriented approach to parallel sparse
Cholesky factorization. In Supercomputing’ 92 Proceedings, 1992.

Youcef Saad. SPARSKIT: A basictool kit for sparse matrix computations. Technical Report
90-20, Research Institute for Advanced Computer Science, NASA Ames Research Center,
Moffet Field, CA, 1990.

Youcef Saad and M. H. Schultz. Pardlel implementations of preconditioned conjugate
gradient methods. Technical Report YALEU/DCSRR-425, Yale University, Department of
Computer Science, New Haven, CT, 1985.

Robert Schreiber. Scalability of sparse direct solvers. Technical Report RIACS TR 92.13,
NASA AmesResearch Center, Moffet Field, CA, May 1992. Also appearsinA. George, John
R. Gilbert, and J. W.-H. Liu, editors, Sparse Matrix Computations. Graph Theory Issues
and Algorithms (An IMA Workshop Volume). Springer-Verlag, New York, NY, 1993.

S. L. Scott and J. R. Goodman. The impact of pipelined channels on k-ary n-cube networks.
|EEE Transactions on Parallel and Distributed Systems, pages 2-16, January 1994.

Vineet Singh, Vipin Kumar, Gul Agha, and Chris Tomlinson. Scalability of parallel sorting
on mesh multicomputers. International Journal of Parallel Programming, 20(2), 1991.

B. Speelpening. The generalized element method. Technical Report UITUCDCS-R-78-946,
Department of Computer Science, University of Illinois, Urbana, IL, November 1978.

Chunguang Sun. Efficient parallel solutions of large sparse SPD systems on distributed-
memory multiprocessors. Technical Report CTC92TR102, Advanced Computing Research
Institute, Center for Theory and Simulation in Science and Engineering, Cornell University,
Ithaca, NY, August 1992.

Chunguang Sun. Paralel sparse orthogona factorization on distributed-memory multipro-
cessors. Technical Report CTC93TR162, Advanced Computing Research Institute, Center
for Theory and Smulation in Science and Engineering, Cornell University, Ithaca, NY,
December 1993.

Chunguang Sun. Parallel multifrontal solution of sparse linear least squares problems on
distributed-memory multiprocessors. Technical Report CTC94TR185, Advanced Computing
Research Institute, Center for Theory and Simulation in Science and Engineering, Cornell
University, Ithaca, NY, July 1994.

Xian-He Sun and John L. Gustafson. Toward a better parallel performance metric. Parallel
Computing, 17:1093-1109, December 1991. Also available as Technical Report 1S-5053,
UC-32, Ames Laboratory, lowa State University, Ames, IA.

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

162

Xian-He Sun and L. M. Ni. Another view of parallel speedup. In Supercomputing 90
Proceedings, pages 324333, 1990.

Xian-He Sun and Diane Thiede Rover. Scalability of parallel agorithm-machine combina-
tions. Technical Report 1S-5057, Ames Laboratory, lowa State University, Ames, 1A, 1991.
To appear in |EEE Transactions on Parallel and Distributed Systems.

P.N. Swarztrauber. Multiprocessor FFTs. Parallel Computing, 5:197-210, 1987.

Zhimin Tang and Guo-JieLi. Optimal granularity of griditeration problems. In Proceedings
of the 1990 International Conference on Parallel Processing, pages 1111-1118, 1990.

Clark D. Thompson. Fourier transformsin VLS. IBM Journal of Research and Devel-
opment, C-32(11):1047-1057, 1983.

Walter F. Tichy. Parallel matrix multiplication on the connection machine. Technical Report
RIACSTR88.41, Research Ingtitutefor Advanced Computer Science, NASA AmesResearch
Center, Moffet Field, CA, 1988.

Fredric A. Van-Catledge. Towardsagenera model for evaluating the rel ative performance of
computer systems. International Journal of Supercomputer Applications, 3(2):100-108,
1989.

Henk A. van der Vorst. A vectorizable variant of some ICCG methods. SSAM Journal on
Scientific and Statistical Computing, I11(3):350-356, 1982.

Henk A. van der Vorst. Largetridiagona and block tridiagonal linear systems on vector and
parallel computers. Parallel Computing, 5:45-54, 1987.

Sesh Venugopal and Vijay K. Naik. Effects of partitioning and scheduling sparse matrix
factorization on communication and load balance. In Supercomputing '91 Proceedings,
pages 866875, 1991.

Sesh Venugopal and Vijay K. Naik. SHAPE: A parallelization tool for sparse matrix computa-
tions. Technical Report DCS-TR-290, Department of Computer Science, Rutgers University,
New Brunswick, NJ, June 1992.

Jeffrey Scott Vitter and Roger A. Simons. New classes for parallel complexity: A study of
unification and other complete problems for P. |EEE Transactions on Computers, May
1986.

Jinwoon Woo and Sartaj Sahni. Hypercube computing: Connected components. Journal
of Supercomputing, 1991. Also available as TR 88-50 from the Department of Computer
Science, University of Minnesota, Minneapolis, MN.

[144]

[145]

[146]

[147]

[148]

[149]

163

Jinwoon Woo and Sartgj Sahni. Computing biconnected componentson ahypercube. Journal
of Supercomputing, June 1991. Also available as Technica Report TR 89-7 from the
Department of Computer Science, University of Minnesota, Minneapolis, MN.

Patrick H. Worley. Information Requirements and the Implications for Parallel Com-
putation. PhD thesis, Stanford University, Department of Computer Science, Palo Alto, CA,
1988.

Patrick H. Worley. The effect of time constraints on scaled speedup. SAM Journal on
Scientific and Statistical Computing, 11(5):838-858, 1990.

Patrick H. Worley. Limits on parallelism in the numerica solution of linear PDEs. SAM
Journal on Scientific and Statistical Computing, 12:1-35, January 1991.

Xiaofeng Zhou. Bridging the gap between Amdahl’s law and Sandia laboratory’s result.
Communications of the ACM, 32(8):1014-5, 1989.

J.R. Zorbas, D. J. Reble, and R. E. VanKooten. M easuring the scal ability of parallel computer
systems. In Supercomputing ' 89 Proceedings, pages 832841, 1989.

164

Appendix A

COMPLEXITY OF FUNCTIONS AND ORDER ANALYSIS

Order anaysis and the asymptotic complexity of functions are used extensively in thisthesisto

analyze the performance of algorithms.

A.1 Complexity of Functions

When analyzing parallel algorithmsin thisthesis, we use the following three types of functions:

1. Exponential functions: A function f fromrealstoreasiscalled an exponential function
in X if it can be expressed in the form f (x) = a* for x, a € N (the set of real numbers) and

a > 1. Examplesof exponential functions are 2%, 1.5**2, and 3%,

2. Polynomial functions: A function f fromreastoredsiscalled apolynomial function of
degreebinx if it can be expressed intheform f (x) = x"for x, b € %t andb > 0. A linear
function is a polynomial function of degree one and a quadr atic function is a polynomial

function of degree two. Examples of polynomial functionsare 2, 5x, and 5.5x23,

A function f that isasum of two polynomial functions g and h isaso apolynomia function
whose degree is equal to the maximum of the degrees of g and h. For example, 2x + x?isa

polynomial function of degree two.

3. Logarithmicfunctions. A function f from realsto reasthat can be expressed in theform
f(x) = log,x forb € % and b > 1islogarithmicin x. In this expression, b is called
the base of the logarithm. Examples of logarithmic functionsarelog, x and log, x. Unless
stated otherwise, all logarithms in thisthesis are of base two. We use log x to denote log, X,

and log® x to denote (log,).

165

Most functionsin thisthesis can be expressed as sumsof two or morefunctions. A function f is
said to dominate afunction gif f (x) growsat afaster rate than g(x). Thus, function f dominates
function g if and only if f (x)/g(x) isamonotonically increasing functionin x. In other words, f
dominates g if and only if for any constant ¢ > 0, there exists a value X, such that f (x) > cg(x)
for x > Xo. An exponentia function dominates a polynomial function and a polynomia function
dominates a logarithmic function. The relation dominatesis transitive. If function f dominates
function g, and function g dominates function h, then function f also dominatesfunction h. Thus,

an exponentia function also dominates alogarithmic function.

A.2 Order Analysisof Functions

In the analysis of agorithms, it is often cumbersome or impossible to derive exact expressions for
parameters such as run time, speedup, and efficiency. In many cases, an approximation of the exact
expression is adequate. The approximation may indeed be more illustrative of the behavior of the
function because it focuses on the critical factorsinfluencing the parameter.

Consider three cars A, B, and C. Assume that we start monitoring the cars at timet = 0. At
t = 0, car Aismoving at a velocity of 1000 feet per second and maintains a constant velocity. At
t = 0, car B's velocity is 100 feet per second and it is accelerating at a rate of 20 feet per second
per second. Car C starts from a standstill at t = 0 and accelerates at a rate of 25 feet per second
per second. Let Da(t), Dg(t), and D¢ (1) represent the distancestraveled in t seconds by cars A,

B, and C. From elementary physics, we know that

DA(t) = 1000,
Dg(t) = 100t 4 20t2

Dc(t) = 25t2

Now, we compare the cars according to the distance they travel inagiventime. For t > 45 seconds,
car B outperformscar A. Similarly, for t > 20 seconds, car C outperforms car B, and for t > 40
seconds, car C outperforms car A. Furthermore, Dc(t) < 1.25Dg(t) and Dg(t) < Dc(t) for
t > 20, which impliesthat after a certain time, the difference in the performance of cars B and C

is bounded by the other scaled by a constant multiplicative factor. All these facts can be captured

166

by the order analysis of the expressions.

The ® Notation: From the above example, Dc(t) < 1.25Dg(t) and Dg(t) < Dc(t) for
t > 20; that is, the difference in the performance of cars B and C after t = 0isbounded by the other
scaled by a constant multiplicative factor. Such an equivalence in performance is often significant
when analyzing performance. The ® notation capturesthe relationship between thesetwo functions.
The functions D¢ (t) and Dg(t) can be expressed by using the ® notation as D¢ (1) = ©(Dg(t))
and Dg(t) = ®(Dc¢(t)). Furthermore, both functions are equal to O (t?).

Formally, the ® notation is defined as follows: given afunction g(x), f(x) = ©(g(x)) if and
only if for any constants ¢,, ¢, > 0, there existsan x, > 0, such that c;g(x) < f(x) < c,g(x) for
al x > X,.

The O Notation: Often, we would like to bound the growth of a particular parameter by a
simpler functions. From the example given earlier in this appendix, we have seen that for t > 45,
Dg(t) isawaysgreater than DA(t). Thisrelation between D 4(t) and Dg(t) isexpressed using the
O (big-oh) notation as D(t) = O(Dg(t)).

Formally, the O notation is defined as follows: given afunction g(x), f(x) = O(g(x)) if and
only if for any constant ¢ > 0, their existsan Xo > 0, such that f (x) < cg(x) for all X > Xo. From
this definition we deduce that DA(t) = O(t?) and Dg(t) = O(t?). Furthermore, Da(t) = O(t)
also satisfies the conditions of the O notation.

The © Notation: The O notation sets an upper bound on the rate of growth of a function.
The © notation is the converse of O notation; that is, it sets a lower bound on the rate of growth
of afunction. From the example given earlier in this appendix, Da(t) < Dc(t) fort > 40. This
relationship can be expressed using the 2 notation as D¢ (t) = Q2 (Da(t)).

Formally, given afunction g(x), f(x) = Q(g(x)) if and only if for any constant ¢ > 0, there

existsan xo > 0, such that f (x) > cg(x) for dl x > X,.

Properties of Functions Expressed in Order Notation

The order notationsfor expressions have anumber of propertiesthat are useful when anayzing the

performance of algorithms. Some of the important properties are as follows:

1. x2 = O(xP)if and only if a < b.

~

©

. log,(x) = ®(log,(x)) for al a and b.

a*= 0O ifandonlyif a <b.

For any constant ¢, c = O(1).

If f =0(g)then f +g= 0O(g).

If f =0() then f +g=0(g) =6(f).

f = O(g) ifandonly if g = Q(f).

f =0 ifandonlyif f = Q(g)and f = O(Q).

167

168

Appendix B

PROOF OF CASE | IN SECTION 2.3.1

Here we give abrief proof of E = 1 — 1/x; for amore genera form of T, than the one givenin
Section 2.3.1. Here x; isthe exponent of p in the dominant term of T,
Let To(W, p) = == W (logW)" p* (log p)* , wherec;’sareconstantsand x; > Oand y; > 0

forl <i <n,andu;’sand z'sare0’'sor 1's. Now let us compute dipTo(W, p).

To(W, p) = Z=NcW¥(logW)“ p* (log p)?,

d |
ap oW P = ZaW (logW)® (xip* dlog p)* + 2 p*log p* .

If al z’sare either O or 1, then the above equations can be rewritten as follows:

d _
g e W = EZGW (ogW)* (P 0% log) +2).
dip o(W, p) ~ X/=cx WY (logW)“x p* L.

Equating dipTo(W, p) to Tp according to Equation 2.10, we get

W + Zi=1c W (log W) p* (log p)?

p
W = ZZc(xq — DWYdogW)* pilogp)*. (B.1)

TG WY logW) x pX =

The above equation determines the relation between W and p for which the parallel execution
timeisminimized. The equation determining the i soefficiency function for the paralel system with
the overhead function under consideration will be as follows (see discussion in Section 2.3.2):

W= %Equ W (logW)" p* (log p)* . (B.2)

Comparing EquationsB.1 and B.2, if the jthtermin T, isthe dominant term and x; > 1, then

the efficiency at the point of minimum parallel execution timewill be givenby Eq ~ 1 — 1/x;.

169

Appendix C

PROOF OF CASE Il IN SECTION 2.3.1

Here we show that the speedup Sismaximum for p, = © (W%/%), where x; isthe exponent
of p inthe dominant term of T,,.

From Equation 2.11, the relation between W and py is given by the solution for p from the
following eguation:

W = Z/=06 (6 — HWY p*.

If the jth term on R.H.S. of the above is the dominant term according to the condition described
in Section 2.3.1, then we take po ~ (WY /(c;(x; — 1)))Y/% as the approximate solution. Now we
show that the speedup isindeed (asymptotically) maximum for this value of p,. We know that

Wp

S= —
W + To(W, p)

Since the maximum speedup condition is true in asymptotics, we will drop the constants and write

order expressionsonly onthe R.H.S..

/]
W x W

S = ®(1—yj)’
W+ E{Z0 (W x W)

W

S = O)-

) i A
W+ 2;:?wY|+TX4
The summation =/ =0W¥+3=%%/% in the denominator on the RH.S. is at least (W), because

fori = j, WY+@=wWx/% — W, So we can ignore the first W in the denominator. Rewriting the

expression for speedup, we get

WHl;jyj
S = 0O
Elfi]wyi+ X Xi
1
S = 0O

170

Clearly, the above expression will be maximum when the denominator is minimum, which will

happen for the minimum possible value of (1 — y;)/X;.

Appendix D

DERIVATION OF THE ISOEFFICIENCY FUNCTION FOR PARALLEL

TRIANGULAR SOLVERS

171

Consider solving the triangular systems resulting from the factorization of a sparse matrix

associated with a two-dimensional neighborhood graph. From Equation 4.3, W = O(N log N and

from Equation 4.4, T, = O(p?) + O(p+/N). Inorder to maintain afixed efficiency, W o Ty i.€.,

the following two conditions must be satisfied:
W o p?
and
W p\/ﬁ.

Equation D.1 clearly suggests an isoefficiency function of O(p?). From Equation D.2,
NlogN o pv'N,

VNlogN « p,
logN + loglogN o log p.

Discarding the lower order term loglog N from Equation D.4, we get
logN o log p.

From EquationsD.3and D.5,

IN o P2
log p

P 2
X (_Iog p) ,
P2

NlogN o9 p’

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

172

p2
logp’
Thus, we have derived Equation 4.6. Similarly, we can derive the isoefficiency function for

W

(D.6)

the triangular systems resulting from the factorization os sparse matrices associated with three-
dimensional neighborhood graphs. Recall from Chapter 4 that for such systems, W = O(N*#?3) and
To = O(p?) + O(pN?3). If W o T,, then W o p? (the first term of T,) and W o« pN%3. The
second condition yields

N3 o pN%3,
N2 o p,
N3 o p2,
W o p?, (D.7)

which is same as Equation 4.9.

