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ABSTRACT

This dissertation presents a methodology for understanding the performance and scalability of

algorithms on parallel computers and the scalability analysis of a variety of numerical algorithms.

We demonstrate the analytical power of this technique and show how it can guide the development

of better parallel algorithms. We present some new highly scalable parallel algorithms for sparse

matrix computations that were widely considered to be poorly suitable for large scale parallel

computers.

We present some laws governing the performance and scalability properties that apply to all

parallel systems. We show that our results generalize or extend a range of earlier research results

concerning the performance of parallel systems. Our scalability analysis of algorithms such as

fast Fourier transform (FFT), dense matrix multiplication, sparse matrix-vector multiplication, and

the preconditioned conjugate gradient (PCG) provides many interesting insights into their behavior

on parallel computers. For example, we show that a commonly used parallel FFT algorithm that

was thought to be ideally suited for hypercubes has a limit on the achievable efficiency that is

determined by the ratio of CPU speed and communication bandwidth of the hypercube channels.

Efficiencies higher than this threshold value can be obtained if the problem size is increased very

rapidly. In the case of parallel PCG algorithm, we found that the use of a truncated Incomplete

Cholesky (IC) preconditioner, which was considered unsuitable for parallel computers, can actually

improve the scalability over a parallel CG with diagonal or no preconditioning. As a result, a

parallel formulation of the PCG algorithm with this IC preconditioner may execute faster than that

with a simple diagonal preconditioner even if the latter runs faster in a serial implementation for a

given problem.

We have developed a highly parallel sparse Cholesky factorization algorithm that substantially

improves the state of the art in parallel direct solution of sparse linear systems—both in terms of

scalability and overall performance. It is a well known fact that dense matrix factorization scales

well and can be implemented efficiently on parallel computers. However, it had been a challenge
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to developing efficient and scalable parallel formulations of sparse matrix factorization. Our new

parallel sparse factorization algorithm is asymptotically as scalable as the best dense matrix factor-

ization algorithms for a wide class of problems that include all two- and three-dimensional finite

element problems. This algorithm incurs less communication overhead than any previously known

parallel formulation of sparse matrix factorization. It is equally scalable on parallel architectures

based on 2-D mesh, hypercube, fat-tree, and multistage networks. In addition, it is the only known

sparse factorization algorithm that can deliver speedups in proportion to an increasing number of

processors while requiring almost constant memory per processor.

We have successfully implemented this algorithm for Cholesky factorization on nCUBE2 and

Cray T3D parallel computers. An implementation of this algorithm on the T3D delivers up to

20 GFlops on 1024 processors for medium-size structural engineering and linear programming

problems. To the best of our knowledge, this is the highest performance ever obtained for sparse

Cholesky factorization on any supercomputer.

Numerical factorization is the most time consuming of the four phases involved in obtaining

a direct solution of a sparse system of linear equations. In addition to Cholesky factorization, we

present efficient parallel algorithms for two other phases—symbolic factorization and for forward

and backward substitution to solve the triangular systems resulting from sparse matrix factorization.

These algorithms are designed to work in conjunction with our sparse Cholesky factorization

algorithm and incur less communication overhead than parallel sparse Cholesky factorization.

Along with some recently developed parallel ordering algorithms, the algorithms presented in this

thesis make it possible to develop complete scalable parallel direct solvers for sparse linear systems.

Although our current implementations work for Cholesky factorization, the algorithm can be adapted

for solving sparse linear least squares problems by QR factorization and for Gaussian elimination

of matrices that do not require pivoting, thus paving the way for scalable parallel solution to an even

wider class of problems.

ii



ACKNOWLEDGMENTS

In completing this thesis, I am indebted to a number of mentors, colleagues, friends, family

members, and institutions—too many to list comprehensively. First and foremost, my sincere

gratitude goes to my advisor Professor Vipin Kumar, who gave me a unique educational opportunity

and working environment. I owe my academic and other achievements during my graduate student

years to his guidance, support, enthusiasm, and an extremely helpful and generous nature.

I would like to thank Professors Shantanu Dutt, David Lilja, Matthew O’Keefe, Youcef Saad,

Ahmed Sameh, and Shang-Hua Teng for taking the time to serve on my preliminary and final

examination committees. Some parts of the thesis contain results of research done in collaboration

with George Karypis and Ahmed Sameh. I am grateful to Dr. Fred Gustafson at IBM T. J. Watson

Research Center and Prof. Michael Heath at University of Illinois, Urbana for their input and interest

in my work. I thank Professors P. C. P. Bhatt, K. K. Biswas, A. K. Gupta, S. K. Gupta, A. Kumar, S.

Kaushik, B. B. Madan, and S. N. Maheshwari at the Computer Science Department, Indian Institute

of Technology for helping me acquire the background necessary to pursue a doctoral degree. In

an administrative capacity, I thank Professors Sameh, Stein, and Tsai for their efforts. I would

also like to thank the cooperative and helpful staff at the Department of Computer Science and the

Army High Performance Computing Research Center (AHPCRC) at the University of Minnesota.

Other institutions that supported this research through grants and supercomputer time are the Army

Research Office, Minnesota Supercomputer Institute, Sandia National Labs, Cray Research Inc.,

and Pittsburgh Supercomputer Center.

I thank my colleagues George Karypis, Dan Challou, Ananth Grama, and Tom Nurkkala for

their friendship, advice, and help. I also consider myself lucky to have such dear friends as Ajit,

Deepak, Julianna, Kalpana, Lekha, Sanjay, Sarika, Suranjan, Vivek and many others who made my

six years’ stay in Minneapolis a rich and rewarding experience. Last, but not the least, I am indebted

to my parents, without whose love, efforts, and sacrifice this work would not have been possible.

iii



LIST OF FIGURES

2.1 Computing the sum of 16 numbers on a 4-processor hypercube. . . . . . . . . . . 10

2.2 A typical TP verses p curve for To ≤ 2(p). . . . . . . . . . . . . . . . . . . . . 17

2.3 TP verses p curve for To > 2(p) showing T min
P when C(W ) < p0. . . . . . . . . 22

2.4 TP verses p curve for To > 2(p) showing T min
P when C(W ) > p0. . . . . . . . . 23

3.1 The Cooley-Tukey algorithm for single dimensional unordered FFT. . . . . . . . 34

3.2 Speedup curves on a hypercube for various problem sizes. . . . . . . . . . . . . . 44

3.3 Isoefficiency curves for 3 different values of E on a hypercube. . . . . . . . . . . 45

3.4 Isoefficiency curves on mesh and hypercube for E = 0.66. . . . . . . . . . . . . . 46

3.5 A comparison of the four algorithms for tw = 3 and ts = 150. . . . . . . . . . . . 56

3.6 A comparison of the four algorithms for tw = 3 and ts = 10. . . . . . . . . . . . . 57

3.7 A comparison of the four algorithms for tw = 3 and ts = 0.5. . . . . . . . . . . . 58

3.8 Efficiency as a function of matrix size for Cannon’s algorithm and GK algorithm

for 64 processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.9 Efficiency vs matrix size for Cannon’s algorithm (p = 484) and the GK algorithm

(p = 512). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.10 The Preconditioned Conjugate Gradient algorithm. . . . . . . . . . . . . . . . . 65

3.11 Partitioning a finite difference grid on a processor mesh. . . . . . . . . . . . . . . 68

3.12 Isoefficiency curves for E = 0.5 with a fixed processor speed and different values

of channel bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.13 Isoefficiency curves for E = 0.5 with a fixed processor speed and different values

of message startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.14 Isoefficiency curves for different efficiencies with ts = 20 and tw = 4. . . . . . . . 77

3.15 Partition of a banded sparse matrix and a vector among the processors. . . . . . . 79

iv



3.16 Speedup curves for block-tridiagonal matrices with diagonal preconditioner. . . . 83

3.17 Efficiency curves for the diagonal and the IC preconditioner with a 1600 × 1600

matrix of coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.18 Isoefficiency curves for the two preconditioning schemes. . . . . . . . . . . . . . 85

3.19 Efficiency plots for unstructured sparse matrices with fixed number of non-zero

elements per row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.20 Isoefficiency curves for banded unstructured sparse matrices with fixed number of

non-zero elements per row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.21 An isoefficiency curve for unstructured sparse matrices with the number of non-zero

elements per row increasing with the matrix size. . . . . . . . . . . . . . . . . . 88

4.1 An overview of the performance and scalability of parallel algorithms for factoriza-

tion of sparse matrices resulting from two-dimensional N -node grid graphs. Box

D represents our algorithm, which is a significant improvement over other known

classes of algorithms for this problem. . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 The serial computational complexity of the various phases of solving a sparse system

of linear equations arising from two- and three-dimensional constant node-degree

graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 An elimination-tree guided recursive formulation of the multifrontal algorithm for

Cholesky factorization of a sparse SPD matrix A into L L T . If r is the root of the

postordered elimination tree of A, then a call to Factor(r) factors the matrix A. . . 98

4.4 The extend-add operation on two 3 × 3 triangular matrices. It is assumed that

i0 < i1 < i2 < i3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 A symmetric sparse matrix and the associated elimination tree with subtree-to-

subcube mapping onto 8 processors. The nonzeros in the original matrix are

denoted by the symbol “×” and fill-ins are denoted by the symbol “◦”. . . . . . . 100

v



4.6 Steps in serial multifrontal Cholesky factorization of the matrix shown in Fig-

ure 4.5(a). The symbol “+” denotes an extend-add operation. The nonzeros in

the original matrix are denoted by the symbol “×” and fill-ins are denoted by the

symbol “◦”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7 Extend-add operations on the update matrices during parallel multifrontal factoriza-

tion of the matrix shown in Figure 4.5(a) on eight processors. Pi |M denotes the part

of the matrix M that resides on processor number i. M may be an update matrix or

the result of performing an extend-add on two update matrices. The shaded portions

of a matrix are sent out by a processor to its communication partner in that step. . 103

4.8 Four successive parallel extend-add operations (denoted by “+”) on hypothetical

update matrices for multifrontal factorization on 16 processors. . . . . . . . . . . 105

4.9 The two communication operations involved in a single elimination step (index of

pivot = 0 here) of Cholesky factorization on a 12 × 12 frontal matrix distributed

over 16 processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.10 Block-cyclic mapping of a 12×12 matrix on a logical processor mesh of 16 processors.107

4.11 Labeling of subtrees in subtree-to-subcube (a) and subtree-to-submesh (b) mappings.108

4.12 Comparison of our experimental isoefficiency curves with 2(p1.5) curve (theo-

retical asymptotic isoefficiency function of our algorithm due to communication

overhead on a hypercube) and with 2(p1.5(log p)3) curve (the lower bound on the

isoefficiency function of the best known parallel sparse factorization algorithm until

now). The four data points on the curves correspond to the matrices GRID63x63,

GRID103x95, GRID175x127, and GRID223x207. . . . . . . . . . . . . . . . . 118

4.13 The two functions performed by the tree balancing algorithm. . . . . . . . . . . . 120

4.14 Plot of the performance of the parallel sparse multifrontal algorithm for various

problems on Cray T3D (from [53, 78]). The first plot shows total Gigaflops

obtained and the second one shows Megaflops per processor. . . . . . . . . . . . 124

vi



4.15 Pictorial representation of forward elimination along three levels of an elimination

tree. The color of an RHS box is determined by the color(s) of the box(es) at the

next lower level that contribute to its value. . . . . . . . . . . . . . . . . . . . . 127

4.16 Progression of computation consistent with data dependencies in parallel pipelined

forward elimination in a hypothetical supernode of the lower-triangular factor matrix

L . The number in each box of L represents the time step in which the corresponding

element of L is used in the computation. Communication delays are ignored in this

figure and the computation time for each box is assumed to be identical. In parts (b)

and (c), the supernode is partitioned among the processors using a cyclic mapping.

A block-cyclic mapping can be visualized by regarding each box as a b × b block

(the diagonal boxes will represent triangular blocks). . . . . . . . . . . . . . . . 129

4.17 Column-priority pipelined backward substitution on a hypothetical supernode dis-

tributed among 4 processors using column-wise cyclic mapping. . . . . . . . . . 130

4.18 A table of communication overheads and isoefficiency functions for sparse factor-

ization and triangular solution with different partitioning schemes. . . . . . . . . 136

4.19 Converting the two-dimensional partitioning of a supernode into one-dimensional

partitioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.20 Performance versus number of processors on a Cray T3D for parallel sparse trian-

gular solutions with different number of right-hand side vectors (from [57]). . . . 140

4.21 An elimination-tree guided recursive algorithm for symbolic factorization . . . . . 142

4.22 The serial and parallel complexities of the various phases of solving a sparse system

of linear equations arising from two- and three-dimensional constant node-degree

graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

vii



LIST OF TABLES

2.1 Performance of FFT on a hypercube with N = 1024, ts = 2 and tw = 0.1. . . . . 28

3.1 Scalability of FFT algorithm on four different hypercubes for various efficiencies.

Each entry denotes the ratio of log n to log p. . . . . . . . . . . . . . . . . . . . 47

3.2 Efficiencies as a function of input size and number of processors on a hypercube of

type M4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Communication overhead, scalability and range of application of the four algorithms

on a hypercube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Scalability of a PCG iteration with unstructured sparse matrices of coefficients. The

average number of entries in each row of the N × N matrix is αN x and these entries

are located within a band of width βN y along the principal diagonal. . . . . . . . 82

4.1 Experimental results for factoring sparse symmetric positive definite matrices as-

sociated with a 9-point difference operator on rectangular grids. All times are in

seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2 Experimental results for factoring some sparse symmetric positive definite matrices

resulting from 3-D problems in structural engineering. All times are in seconds.

The single processor run times suffixed by “*” and “#” were estimated by timing

different parts of factorization on two and 32 processors, respectively. . . . . . . 119

4.3 The performance of sparse Cholesky factorization on Cray T3D (from [53, 78]).

For each problem the table contains the number of equations n of the matrix A,

the original number of nonzeros in A, the nonzeros in the Cholesky factor L , the

number of operations required to factor the nodes, and the performance in gigaflops

for different number of processors. . . . . . . . . . . . . . . . . . . . . . . . . . 123

viii



4.4 A table of experimental results for sparse forward and backward substitution on

a Cray T3D (from [57]). In the above table, “NRHS” denotes the number of

right-hand side vectors, “FBsolve time” denotes the total time spent in both the

forward and the backward solvers, and “FBsolve MFLOPS” denotes the average

performance of the solvers in million floating point operations per second. See

footnote in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

ix



Contents

List of Figures iv

List of Tables viii

1 Introduction 1

2 Performance and Scalability Metrics for Parallel Systems 5

2.1 Definition and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The Isoefficiency Metric of Scalability . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Relationship between Isoefficiency and Other Metrics . . . . . . . . . . . . . . . 13

2.3.1 Minimizing the Parallel Execution Time . . . . . . . . . . . . . . . . . . 16

2.3.2 Minimizing TP and the Isoefficiency Function . . . . . . . . . . . . . . . 22

2.3.3 Minimizing p(TP)
r . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4 Minimizing p(TP)
r and the Isoefficiency Function . . . . . . . . . . . . 26

2.3.5 Significance in the Context of Related Research . . . . . . . . . . . . . . 29

3 Scalability Analysis of Some Numerical Algorithms 32

3.1 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 The FFT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Scalability Analysis of the Binary-Exchange Algorithm for Single Dimen-

sional Radix-2 Unordered FFT . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.3 Scalability Analysis of the Transpose Algorithm for Single Dimensional

Radix-2 Unordered FFT . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.4 Impact of Architectural and Algorithmic Variations on Scalability of FFT . 40

3.1.5 Comparison between Binary-Exchange and Transpose Algorithms . . . . 40

x



3.1.6 Cost-Effectiveness of Mesh and Hypercube for FFT Computation . . . . . 41

3.1.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Dense Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Parallel Matrix Multiplication Algorithms . . . . . . . . . . . . . . . . . 48

3.2.2 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3 Relative Performance of the Four Algorithms on a Hypercube . . . . . . . 55

3.2.4 Scalabilities of Different Algorithms with Simultaneous Communication

on All Hypercube Channels . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.5 Isoefficiency as a Function of Technology Dependent Factors . . . . . . . 60

3.2.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Performance and Scalability of Preconditioned Conjugate Gradient Methods on

Parallel Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 The Serial PCG Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.2 Scalability Analysis: Block-Tridiagonal Matrices . . . . . . . . . . . . . 68

3.3.3 Scalability Analysis: Unstructured Sparse Matrices . . . . . . . . . . . . 78

3.3.4 Experimental Results and their Interpretations . . . . . . . . . . . . . . . 82

3.3.5 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Scalable Parallel Algorithms for Solving Sparse Systems of Linear Equations 90

4.1 Earlier Research in Sparse Matrix Factorization and Our Contribution . . . . . . . 92

4.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 The Serial Multifrontal Algorithm for Sparse Matrix Factorization . . . . . . . . 97

4.4 A Parallel Multifrontal Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.1 Block-Cyclic Mapping of Matrices onto Processors . . . . . . . . . . . . 106

4.4.2 Subtree-to-Submesh Mapping for the 2-D Mesh Architecture . . . . . . . 107

4.5 Analysis of Communication Overhead . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.1 Overhead in Parallel Extend-Add . . . . . . . . . . . . . . . . . . . . . 111

4.5.2 Overhead in Factorization Steps . . . . . . . . . . . . . . . . . . . . . . 111

xi



4.5.3 Communication Overhead for 3-D Problems . . . . . . . . . . . . . . . 112

4.5.4 Communication Overhead on a Mesh . . . . . . . . . . . . . . . . . . . 113

4.6 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6.1 Scalability with Respect to Memory Requirement . . . . . . . . . . . . . 114

4.7 Experimental Results of Sparse Cholesky Factorization . . . . . . . . . . . . . . 115

4.7.1 Load Balancing for Factorization . . . . . . . . . . . . . . . . . . . . . 121

4.8 Parallel Algorithms for Forward Elimination and Backward Substitution in Direct

Solution of Sparse Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.8.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.8.2 Backward Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.8.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.8.4 Data Distribution for Efficient Triangular Solution . . . . . . . . . . . . . 135

4.8.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.9 Parallel Symbolic Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.9.1 The Serial Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.9.2 Parallel Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.9.3 Overhead and Scalability . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.10 A Complete Scalable Direct Solver for Sparse SPD Systems . . . . . . . . . . . . 144

4.11 Application to Gaussian Elimination and QR Factorization . . . . . . . . . . . . 145

5 Concluding Remarks and Future Work 147

Bibliography 151

A Complexity of Functions and Order Analysis 164

A.1 Complexity of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.2 Order Analysis of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

B Proof of Case I in Section 2.3.1 168

xii



C Proof of Case II in Section 2.3.1 169

D Derivation of the Isoefficiency Function for Parallel Triangular Solvers 171

xiii



1

Chapter 1

INTRODUCTION

Parallel computers consisting of thousands of processors are now commercially available. These

computers provide many orders of magnitude more raw computing power than traditional super-

computers at a much lower cost. They open up new frontiers in the application of computers—many

previously unsolvable problems can be solved if the power of these machines is used effectively.

The availability of massively parallel computers has created a number of challenges, for example:

How should parallel computers be programmed? What algorithms and data structures should be

used? How can the quality of the algorithms be analyzed? Which algorithms are suitable for

particular parallel computer architectures? This dissertation addresses some of these issues in the

design and analysis of parallel algorithms.

Analyzing the performance of a given parallel algorithm/architecture calls for a comprehensive

method that accounts for scalability: a measure of a parallel system’s capacity to effectively utilize

an increasing number of processors. There has been extensive work in investigating the performance

and scalability properties of large scale parallel systems and several laws governing their behavior

have been proposed. Amdahl’s law one of the earliest examples. In Chapter 2, we survey a

number of techniques and formalisms that have been developed for studying the performance and

scalability issues in parallel systems, and discuss their interrelationships. We present a methodology

for understanding these issues based on isoefficiency metric of scalability, which relates problem

size to the number of processors required to maintain a fixed efficiency. We present some laws

governing the performance and scalability properties that parallel systems must obey and show that

our results generalize or extend a range of earlier research results concerning the performance of

parallel systems. For example, we show that instances of a problem with increasing size can be

solved in a constant parallel run time by employing an increasing number of processors if and only
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if the isoefficiency function of the parallel system is linear with respect to the number of processors.

We show that for a wide class of parallel systems, the relationship between the problem size and the

number of processors that minimize the run time for that problem size is given by an isoefficiency

curve.

Isoefficiency analysis can be used to determine scalability with respect to the number of proces-

sors, their speed, and the communication bandwidth of the interconnection network. It succinctly

captures the characteristics of a particular algorithm/architecture combination in a single expression;

thus, allowing a comparison among various combinations for a range of problem and machine sizes.

In Chapter 3, we demonstrate the analytical power of the isoefficiency function by obtaining many

useful insights into the behavior of several numerical algorithms on different parallel architectures.

For example, we show that a commonly used parallel FFT algorithm that was thought to be ideally

suited for hypercubes has a limit on the achievable efficiency that is determined by the ratio of

CPU speed and communication bandwidth of the hypercube channels. Efficiencies higher than this

threshold value can be obtained if the problem size is increased very rapidly. In the context of dense

matrix multiplication, we show that special hardware permitting simultaneous communication on

all the ports of the processors does not improve the overall scalability on a hypercube. In the case of

parallel PCG algorithm, we found that the use of a truncated Incomplete Cholesky (IC) precondi-

tioner, which was considered unsuitable for parallel computers, can actually improve the scalability

over a parallel CG with diagonal or no preconditioning. As a result, a parallel formulation of the

PCG algorithm with this IC preconditioner may execute faster than that with a simple diagonal

preconditioner even if the latter runs faster in a serial implementation for a given problem.

In Chapter 4, we present a highly parallel sparse Cholesky factorization algorithm that substan-

tially improves the state of the art in parallel direct solution of sparse linear systems—both in terms

of scalability and overall performance. This chapter shows how isoefficiency analysis can guide the

development of better parallel algorithms by aiding in identifying and eliminating or reducing the

scalability bottlenecks in a parallel system. Through an analysis of this and other parallel sparse

factorization algorithms, we have shown that our algorithm is the first and only parallel algorithm

for this problem that is optimally scalable for a wide class of practical problems. It is a well known

fact that dense matrix factorization scales well and can be implemented efficiently on parallel com-
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puters. However, it had been a challenge to developing efficient and scalable parallel formulations

of sparse matrix factorization. Our new parallel sparse factorization algorithm is asymptotically

as scalable as the best dense matrix factorization algorithms on a variety of parallel architectures

for a wide class of problems that include all two- and three-dimensional finite element problems.

This algorithm incurs less communication overhead than any previously known parallel formulation

of sparse matrix factorization. It is equally scalable on parallel architectures based on 2-D mesh,

hypercube, fat-tree, and multistage networks. In addition, it is the only known sparse factorization

algorithm that can deliver speedups in proportion to an increasing number of processors while

requiring almost constant memory per processor.

The performance and scalability analysis of our algorithm is supported by experimental results

on up to 1024 processors of the nCUBE2 parallel computer. We have been able to achieve

speedups of up to 364 on 1024 processors and 230 on 512 processors over a highly efficient

sequential implementation for moderately sized problems from the Harwell-Boeing collection. An

implementation of this algorithm on a 1024-processor Cray T3D delivers up to 20 GFLOPS on

medium-size structural engineering and linear programming problems [53, 78]. To the best of our

knowledge, this is the highest performance ever achieved on any supercomputer for sparse matrix

factorization.

Numerical factorization is the most time consuming of the four phases involved in obtaining

a direct solution of the sparse system of linear equation. Although direct methods are used

extensively in practice, their use for solving large sparse systems has been mostly confined to

big vector supercomputers due to the high time and memory requirements of the factorization

phase. Parallel processing offers the potential to tackle both these problems; however, only limited

success had been achieved until recently in developing scalable parallel formulations of sparse

matrix factorization. By using our algorithm, large sparse systems can be solved efficiently on large

scale parallel computers. Given the highly scalable nature of our parallel numerical factorization

algorithm, it is imperative that the remaining phases of the solution process be parallelized effectively

in order to scale the performance of the overall solver. Furthermore, without an overall parallel

solver, the size of the sparse systems that can be solved may be severely restricted by the amount

of memory available on a uniprocessor system. In Chapter 4, we also present efficient parallel
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algorithms for two other phases—symbolic factorization and for forward and backward substitution

to solve the triangular systems resulting from sparse matrix factorization. These algorithms are

designed to work in conjunction with our sparse Cholesky factorization algorithm and incur less

communication overhead than parallel sparse Cholesky factorization. Along with some recently

developed parallel ordering algorithms [76], the algorithms presented in this thesis make it possible

to develop complete scalable parallel direct solvers for sparse linear systems. Although our current

implementations work for Cholesky factorization, the algorithm can be adapted for solving sparse

linear least squares problems by QR factorization and for Gaussian elimination of matrices that do

not require pivoting, thus paving the way for scalable parallel solution to an even wider class of

problems.
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Chapter 2

PERFORMANCE AND SCALABILITY METRICS FOR PARALLEL SYSTEMS

At the current state of technology, it is possible to construct parallel computers that employ

hundreds or thousands of processors. The availability of such computers has created a number of

challenges. Determining the best parallel algorithm to solve a problem on a given architecture is

considerably more complex that determining the best sequential algorithm. A parallel algorithm

that solves a problem well using a fixed number of processors on a particular architecture may

perform poorly if either of these parameters changes. Therefore, analyzing the performance of a

given parallel algorithm/architecture calls for a rather comprehensive method. In this chapter, we

present a methodology for understanding the performance and scalability of algorithms on parallel

computers and present some laws governing the performance and scalability properties that parallel

systems must obey.

When solving a problem in parallel, it is reasonable to expect a reduction in execution time that

is commensurable with the amount of processing resources employed to solve the problem. The

scalability of a parallel algorithm on a parallel architecture is a measure of its capacity to effectively

utilize an increasing number of processors. Scalability analysis of a parallel algorithm-architecture

combination can be used for a variety of purposes. It may be used to select the best algorithm-

architecture combination for a problem under different constraints on the growth of the problem

size and the number of processors. It may be used to predict the performance of a parallel algorithm

and a parallel architecture for a large number of processors from the known performance on fewer

processors. For a fixed problem size, it may be used to determine the optimal number of processors

to be used and the maximum possible speedup that can be obtained. The scalability analysis can

also predict the impact of changing hardware technology on the performance and thus help design

better parallel architectures for solving various problems.

In this chapter, we discuss in detail a popular and useful scalability metric, the isoefficiency

function, first proposed by Kumar and Rao [85] in the context of depth-first search. We present
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results that generalize this metric to subsume many others proposed in the literature. We also

survey some properties of the common performance metrics, such as, parallel run time, speedup,

and efficiency. A number of properties of these metrics have been studied in the literature. For

example, it is a well known fact that given a parallel architecture and a problem of a fixed size, the

speedup of a parallel algorithm does not continue to increase with increasing number of processors.

It usually tends to saturate or peak at a certain limit. Thus it may not be useful to employ more than

an optimal number of processors for solving a problem on a parallel computer. This optimal number

of processors depends on the problem size, the parallel algorithm and the parallel architecture. In

this chapter, we study the impact of parallel processing overheads and the degree of concurrency of

a parallel algorithm on the optimal number of processors to be used when the criterion for optimality

is minimizing the parallel execution time. We then study a more general criterion of optimality and

show how operating at the optimal point is equivalent to operating at a unique value of efficiency

which is characteristic of the criterion of optimality and the properties of the parallel system under

study. We put the technical results derived in this chapter in perspective with similar results that

have appeared in the literature before and show how these results generalize or extend the earlier

results.

2.1 Definition and Assumptions

In this section, we formally describe the terminology used in the remainder of the dissertation.

Parallel System : The performance of a parallel algorithm cannot be studied in isolation from

the parallel architecture it is implemented on. For the purpose of performance evaluation we

define a parallel system as a combination of a parallel algorithm and a parallel architec-

ture that is a homogeneous ensemble of processors; i.e., all processors and communication

channels are identical in speed.

Problem Size W : The size of a problem is a measure of the number of basic operations needed

to solve the problem. There can be several different algorithms to solve the same problem.

To keep the problem size unique for a given problem, we define it as the number of basic

operations required by the fastest known sequential algorithm to solve the problem on a single
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processor. Problem size is a function of the size of the input. For example, for the problem

of computing an N -point FFT, W = 2(N log N).

According to our definition, the sequential time complexity of the fastest known serial

algorithm to solve a problem determines the size of the problem. If the time taken by

an optimal (or the fastest known) sequential algorithm to solve a problem of size W on a

single processor is TS, then TS ∝ W , or

TS = tcW, (2.1)

where tc is a machine dependent constant. Often, we assume tc = 1 and normalize the other

constants with respect to tc. As a result, we can use W and TS interchangeably in such cases.

Parallel Execution Time TP : The time elapsed from the moment a parallel computation starts,

to the moment the last processor finishes execution. For a given parallel system, T P is

normally a function of the problem size (W ) and the number of processors (p), and we will

sometimes write it as TP(W, p).

Cost: The cost of a parallel system is defined as the product of parallel execution time and the

number of processors utilized. A parallel system is said to be cost-optimal if and only if

the cost is asymptotically of the same order of magnitude as the serial execution time (i.e.,

pTP = 2(W )). Cost is also referred to as processor-time product.

Speedup S : The ratio of the serial execution time of the fastest known serial algorithm (TS) to

the parallel execution time of the chosen algorithm (TP).

Total Parallel Overhead To: The sum total of all the overhead incurred due to parallel process-

ing by all the processors. It includes communication costs, non-essential work and idle time

due to synchronization and serial components of the algorithm. Mathematically,

To = pTP − TS. (2.2)

In order to simplify the analysis, we assume that To is a non-negative quantity. This implies

that speedup is always bounded by p. For instance, speedup can be superlinear and To can
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be negative if the memory is hierarchical and the access time increases (in discrete steps) as

the memory used by the program increases. In this case, the effective computation speed of

a large program will be slower on a serial processor than on a parallel computer employing

similar processors. The reason is that a sequential algorithm using M bytes of memory will

use only M/p bytes on each processor of a p-processor parallel computer. The core results

of in this dissertation are still valid with hierarchical memory, except that the scalability

and performance metrics will have discontinuities, and their expressions will be different in

different ranges of problem sizes. The flat memory assumption helps us to concentrate on the

characteristics of the parallel algorithm and architectures, without getting into the details of

a particular machine.

For a given parallel system, To is normally a function of both W and p and we will often

write it as To(W, p).

Efficiency E : The ratio of speedup (S) to the number of processors (p). Thus,

E = TS

pTP
= 1

1+ To

TS

. (2.3)

Serial Fraction s: The ratio of the serial component of an algorithm to its execution time on one

processor. The serial component of the algorithm is that part of the algorithm which cannot

be parallelized and has to be executed on a single processor.

Degree of Concurrency C(W ): The maximum number of tasks that can be executed simultane-

ously at any given time in the parallel algorithm. Clearly, for a given W , the parallel algorithm

can not use more than C(W ) processors. C(W ) depends only on the parallel algorithm, and

is independent of the architecture. For example, for multiplying two N × N matrices using

Fox’s parallel matrix multiplication algorithm [37], W = N 3 and C(W ) = N 2 = W 2/3. It is

easily seen that if the processor-time product [5] is2(W ) (i.e., the algorithm is cost-optimal),

then C(W ) = O(W ).

Maximum Number of Processors Usable, pmax: The number of processors that yield maxi-

mum speedup Smax for a given W . This is the maximum number of processors one would

like to use because using more processors will not increase the speedup.
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2.2 The Isoefficiency Metric of Scalability

If a parallel system is used to solve a problem instance of a fixed size, then the efficiency decreases

as p increases. The reason is that To increases with p. For many parallel systems, if the problem

size W is increased on a fixed number of processors, then the efficiency increases because To

grows slower than W . For these parallel systems, the efficiency can be maintained at some fixed

value (between 0 and 1) for increasing p, provided that W is also increased. We call such systems

scalable1 parallel systems. This definition of scalable parallel algorithms is similar to the definition

of parallel effective algorithms given by Moler [102].

For different parallel systems, W should be increased at different rates with respect to p in order

to maintain a fixed efficiency. For instance, in some cases, W might need to grow as an exponential

function of p to keep the efficiency from dropping as p increases. Such parallel systems are poorly

scalable. The reason is that on these parallel systems, it is difficult to obtain good speedups for a

large number of processors unless the problem size is enormous. On the other hand, if W needs to

grow only linearly with respect to p, then the parallel system is highly scalable. This is because it

can easily deliver speedups proportional to the number of processors for reasonable problem sizes.

The rate at which W is required to grow w.r.t. p to keep the efficiency fixed can be used as a

measure of scalability of the parallel algorithm for a specific architecture. If W must grow as fE (p)

to maintain an efficiency E , then fE (p) is defined to be the isoefficiency function for efficiency

E and the plot of fE (p) vs. p is called the isoefficiency curve for efficiency E . Equivalently, if the

relation W = fE (p) defines the isoefficiency curve for a parallel system, then p should not grow

faster that f −1
E (W ) if an efficiency of at least E is desired.

Given that E = 1/(1 + To(W, p)/(tcW )), in order to maintain a fixed efficiency, W should

be proportional to To(W, p). In other words, the following relation must be satisfied in order to

maintain a fixed efficiency:

W = K To(W, p), (2.4)

where K = E/(tc(1 − E)) is a constant depending on the efficiency to be maintained. Equation

1 For some parallel systems ( e.g., some of the ones discussed in [125] and [88]), the maximum obtainable efficiency
Emax is less than 1. Even such parallel systems are considered scalable if the efficiency can be maintained at a desirable
value between 0 and Emax .
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Figure 2.1: Computing the sum of 16 numbers on a 4-processor hypercube.

2.4 is the central relation that is used to determine the isoefficiency function of a parallel algorithm-

architecture combination. This is accomplished by abstracting W as a function of p through

algebraic manipulations on Equation 2.4.

For example, consider the problem of adding n numbers. For this problem the number of

operations, and hence the problem size W is equal to n. If we assume that each addition takes unit

time, then TS = n = W (in reality the number of basic operations, W , is n − 1; however, for large

values of n, W can be approximated by n). Now consider a parallel algorithm for adding n numbers

using a p-processor hypercube. This algorithm is shown in Figure 2.1 for n = 16 and p = 4. Each

processors is allocated n/p numbers. In the first step of this algorithm, each processor locally adds

its n/p numbers in 2(n/p) time. The problem is now reduced to adding the p partial sums on p

processors. These can be done by propagating and adding the partial sums as shown in Figure 2.1.

A single step consists of one addition and one nearest neighbor communication of a single word,

each of which is a constant time operation. For the sake of simplicity, let us assume that it takes

one unit of time to add two numbers and also to communicate a number between two processors.

Therefore, n/p time is spent in adding the n/p local numbers at each processor. After the local

addition, the p partial sums are added in log p steps, each step consisting of one addition and one

communication. Thus, the total parallel execution time TP is n/p + 2 log p. The same task can

be accomplished sequentially in n time units. Thus, out of the n/p + 2 log p time units that each

processor spends in parallel execution, n/p time is spent in performing useful work. The remaining
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2 log p units of time per processor contribute to a total overhead of

To = 2p log p. (2.5)

Substituting the value of To in Equation 2.4, we get

W = 2K p log p. (2.6)

Thus the asymptotic isoefficiency function for this parallel system is 2(p log p). This means that

if the number of processors is increased from p to p
′
, the problem size (in this case, n) will have

to be increased by a factor of p
′
log p

′
/(p log p) to get the same efficiency as on p processors. In

other words, increasing the number of processors by a factor of p
′
/p requires n to be increased by

a factor of p
′
log p

′
/(p log p), in order to increase the speedup by a factor of p

′
/p.

In the simple example of adding n numbers, the communication overhead is a function of only

p. In general, it can depend on both the problem size and the number of processors. A typical

overhead function may have several different terms of different orders of magnitude with respect to

p and W . When there are multiple terms of different orders of magnitude in the overhead function,

it may be impossible or cumbersome to obtain the isoefficiency function as a closed form function

of p. For instance, consider a hypothetical parallel system, for which To = p3/2 + p3/4W 3/4. In

this case Equation 2.4 will be W = K p3/2 + K p3/4W 3/4. It is difficult to solve for W in terms

of p. Recall that the condition for constant efficiency is that the ratio of To and W should remain

fixed. As p and W increase in a parallel system, the efficiency is guaranteed not to drop if none

of the terms of To grow faster than W . Therefore, if To has multiple terms, we balance W against

each individual term of To to compute the respective isoefficiency function. The component of To

that causes the problem size to grow at the fastest rate with respect to p determines the overall

asymptotic isoefficiency function of the computation.

For example, consider a hypothetical parallel algorithm-architecture combination for which

To = p3/2 + p3/4W 3/4. If we ignore the second term of To and use only the first term in Equation

2.4, we get

W = K p3/2. (2.7)
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Now consider only the second term of the overhead function and repeat the above analysis.

Equation 2.4 now takes the form

W = K p3/4W 3/4,

W 1/4 = K p3/4,

W = K 4 p3. (2.8)

In order to ensure that the efficiency does not decrease as the number of processors increase, the

first and the second term of the overhead function require the problem size to grow as 2(p3/2) and

2(p3), respectively. The asymptotically higher of the two rates should be regarded as the overall

asymptotic isoefficiency function. Thus, the isoefficiency function is2(p3) for this parallel system.

This is because if the problem size W grows as 2(p3), then To would remain of the same order as

W .

Isoefficiency analysis has been found to be very useful in characterizing the scalability of a

variety of parallel systems [53, 70, 58, 85, 86, 88, 118, 125, 144, 143, 56, 54, 87, 52, 83]. In a single

expression, the isoefficiency function captures the characteristics of a parallel algorithm as well as

the parallel architecture on which it is implemented. After performing the isoefficiency analysis, we

can test the performance of a parallel program on a few processors and then predict its performance

on a larger number of processors. However, the utility of isoefficiency analysis is not limited to

predicting the impact on performance of an increasing number of processors. In [51], we show how

the isoefficiency function characterizes the amount of parallelism inherent in a parallel algorithm.

We will see in later (for example in the context of parallel FFT in Chapter 3) that isoefficiency

analysis can be used also to study the behavior of a parallel system with respect to changes in

hardware parameters such as the speed of processors and communication channels.

The reader should note that in the framework described in this section, a parallel system is

considered scalable if its isoefficiency function exists; otherwise the parallel system is unscalable.

The isoefficiency function of a scalable system could, however, be arbitrarily large; i.e., it could

dictate a very high rate of growth of problem size w.r.t. the number of processors. In practice, the

problem size can be increased asymptotically only at a rate permitted by the amount of memory

available at each processor. If the memory constraint does not allow the size of the problem to
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increase at the rate necessary to maintain a fixed efficiency, then the parallel system should be

considered unscalable from a practical point of view.

2.3 Relationship between Isoefficiency and Other Metrics

A number of scalability metrics have been proposed by various researchers [22, 34, 36, 55, 61,

59, 60, 75, 80, 98, 108, 131, 130, 132, 137, 142, 146, 149]. We present a detailed survey of these

metrics in [84]. After reviewing these various measures of scalability, one may ask whether there

exists one measure that is better than all others [66]? The answer to this question is no, as different

measures are suitable for different situations.

One situation arises when the problem at hand is fixed and one is trying to use an increasing

number of processors to solve it. In this case, the speedup is determined by the serial fraction in

the program as well as other overheads such as those due to communication and due to redundant

work. In this situation choosing one parallel system over the other can be done using the standard

speedup metric. Note that for any fixed problem size W , the speedup on a parallel system will

saturate or peak at some value Smax(W ), which can also be used as a metric. Scalability issues for

the fixed problem size case are addressed in [36, 75, 55, 105, 134, 146].

Another possible scenario is that in which a parallel computer with a fixed number of processors

is being used and the best parallel algorithm needs to be chosen for solving a particular problem.

For a fixed p, the efficiency increases as the problem size is increased. The rate at which the

efficiency increases and approaches one (or some other maximum value) with respect to increase

in problem size may be used to characterize the quality of the algorithm’s implementation on the

given architecture.

The third situation arises when the additional computing power due to the use of more processors

is to be used to solve bigger problems. Now the question is how should the problem size be increased

with the number of processors?

For many problem domains, it is appropriate to increase the problem size with the number of

processors so that the total parallel execution time remains fixed. An example is the domain of

weather forecasting. In this domain, the size of the problem can be increased arbitrarily provided

that the problem can be solved within a specified time (e.g., it does not make sense to take more
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than 24 hours to forecast the next day’s weather). The scalability issues for such problems have

been explored by Worley [146], Gustafson [61, 59], and Sun and Ni [131].

Another extreme in scaling the problem size is to try as big problems as can be handled in the

memory. This is investigated by Worley [145, 146, 147], Gustafson [61, 59] and by Sun and Ni

[131], and is called the memory-constrained case. Since the total memory of a parallel computer

increases with increasing p, it is possible to solve bigger problems on parallel computer with bigger

p. It should also be clear that any problem size for which the memory requirement exceeds the total

available memory cannot be solved on the system.

An important scenario is that in which one is interested in making efficient use of the parallel

system; i.e., it is desired that the overall performance of the parallel system increases linearly with

p. Clearly, this can be done only for scalable parallel systems, which are exactly the ones for which

a fixed efficiency can be maintained for arbitrarily large p by simply increasing the problem size.

For such systems, it is natural to use isoefficiency function or related metrics [85, 80, 22]. The

analyses in [148, 149, 36, 97, 105, 134, 34] also attempt to study the behavior of a parallel system

with some concern for overall efficiency.

Although different scalability measures are appropriate for rather different situations, many of

them are related to each other. For example, from the isoefficiency analysis, one can reach a number

of conclusions regarding the time-constrained case (i.e., when bigger problems are solved on larger

parallel computers with some upper-bound on the parallel execution time). It can be shown that for

cost-optimal algorithms, the problem size can be increased linearly with the number of processors

while maintaining a fixed execution time if and only if the isoefficiency function is2(p). The proof

is as follows. Let C(W ) be the degree of concurrency of the algorithm. Thus, as p is increased,

W has to be increased at least as 2(p), or else p will eventually exceed C(W ). Note that C(W ) is

upper-bounded by 2(W ) and p is upper-bounded by C(W ). TP is given by (TS + To(W, p))/p =

(tcW + To(W, p))/p. Now consider the following two cases. Let the first case be when C(W ) is

smaller than2(W ). In this case, even if as many as C(W ) processors are used, the term tcW/C(W )

of the expression for TP will diverge with increasing W , and hence, it is not possible to continue

to increase the problem size and maintain a fixed parallel execution time. At the same time, the

overall isoefficiency function grows faster than 2(p) because the isoefficiency due to concurrency
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exceeds 2(p). In the second case in which C(W ) = 2(W ), as many as 2(W ) processors can be

used. If 2(W ) processors are used, then the first term in TP can be maintained at a constant value

irrespective of W . The second term in TP will remain constant if and only if To(W, p)/p remains

constant when p = 2(W ) (in other words, To/W remains constant while p and W are of the same

order). This condition is necessary and sufficient for linear isoefficiency.

A direct corollary of the above result is that if the isoefficiency function is greater than 2(p),

then the minimum parallel execution time will increase even if the problem size is increased as

slowly as linearly with the number of processors. Worley [145, 146, 147] has shown that for many

algorithms used in the scientific domain, for any given TP, there will exist a problem size large

enough so that it cannot be solved in time TP, no matter how many processors are used. Our above

analysis shows that for these parallel systems, the isoefficiency curves have to be worse than linear.

It can be easily shown that the isoefficiency function will be greater than 2(p) for any algorithm-

architecture combination for which To > 2(p) for a given W . The latter is true when any algorithm

with a global operation (such as broadcast, and one-to-all and all-to-all personalized communication

[18, 71]) is implemented on a parallel architecture that has a message passing latency or message

startup time. Thus, it can be concluded that for any cost-optimal parallel algorithm involving

global communication, the problem size cannot be increased indefinitely without increasing

the execution time on a parallel computer having a startup latency for messages, no matter

how many processors are used (up to a maximum of W ). This class of algorithms includes

some fairly important algorithms such as matrix multiplication (all-to-all/one-to-all broadcast) [54],

vector dot products (single node accumulation) [58], shortest paths (one-to-all broadcast) [88], and

FFT (all-to-all personalized communication) [56], etc. The readers should note that the presence of a

global communication operation in an algorithm is a sufficient but not a necessary condition for non-

linear isoefficiency on an architecture with message passing latency. Thus, the class of algorithms

having the above mentioned property is not limited to the algorithms with global communication.

If the isoefficiency function of a parallel system is greater than 2(p), then given a problem

size W , there is as lower-bound on the parallel execution time. This lower-bound (lets call it

T min
P (W )) is a non-decreasing function of W . The rate at which the T min

P (W ) for a problem (given

arbitrarily many processors) must increase with the problem size can also serve as a measure of
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scalability of the parallel system. In the best case, T min
P (W ) is constant; i.e., larger problems can

be solved in a fixed amount of time by simply increasing the number of processors. In the worst

case, T min
P (W ) = 2(W ). This happens when the degree of effective parallelism is constant. The

slower T min
P (W ) grows as a function of the problem size, the more scalable the parallel system

is. T min
P is closely related to Smax(W ). For a problem size W , these two metrics are related by

W = Smax(W )× T min
P (W ).

Let ξ(W ) be the number of processors that should be used for obtaining the minimum parallel

execution time T min
P (W ) for a problem of size W . Clearly, T min

P (W ) = (W + To(W, ξ(W )))/ξ(W ).

Using ξ(W ) processors leads to optimal parallel execution time T min
P (W ), but may not lead to

minimum pTP product (or the cost of parallel execution). Now consider the cost-optimal imple-

mentation of the parallel system (i.e., when the number of processors used for a given problem size

is governed by the isoefficiency function). In this case, if f (p) is the isoefficiency function, then

TP is given by (W + To(W, f −1(W )))/ f −1(W ) for a fixed W . Let us call this T iso
P (W ). Clearly,

T iso
P (W ) can be no better than T min

P (W ).

Several researchers have proposed to use an operating point where the value of p(T P)
r is

minimized for some constant r and for a given problem size W [36, 34, 134]. It can be shown [134]

that this corresponds to the point where E Sr−1 is maximized for a given problem size. Note that

the location of the minima of p(TP)
r (with respect to p) for two different algorithm-architecture

combinations can be used to choose one between the two.

In the following subsections, we will show the relationship between the isoefficiency function

and operating at the point of minimum TP or minimum p(TP)
r for a wide class of parallel systems.

2.3.1 Minimizing the Parallel Execution Time

In this section we relate the behavior of the TP verses p curve to the nature of the overhead function

To. As the number of processors is increased, TP either asymptotically approaches a minimum

value, or attains a minimum and starts rising again. We identify the overhead functions which lead

to one case or the other. We show that in either case, the problem can be solved in minimum time

by using a certain number of processors which we call pmax. Using more processors than pmax will

either have no effect or will degrade the performance of the parallel system in terms of parallel
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execution time.

Most problems have a serial component Ws , which is the part of W that has to be executed

sequentially. We do not consider the sequential component of an algorithm as a separate entity

because it can be subsumed in To. While one processor is working on the sequential component, the

remaining p − 1 are ideal and contribute (p − 1)Ws to To. Thus for any parallel algorithm with a

nonzero Ws , the analysis can be performed by assuming that To includes a term equal to (p− 1)Ws .

Under this assumption, the parallel execution time TP for a problem of size W on p processors is

given by the following relation:

TP = W + To(W, p)

p
. (2.9)

We now study the behavior of TP under two different conditions.
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p

200

400

600

800

1000

0 200 400 600 800 1000

pmax = C(W )

1200

↑
Tp

p→

Figure 2.2: A typical TP verses p curve for To ≤ 2(p).

Case I: To ≤ 2(p)

From Equation 2.9 it is clear that if To(W, p) grows slower than 2(p), then the overall power of p

in the R.H.S. of Equation 2.9 is negative. In this case it would appear that if p is increased, then
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TP will continue to decrease indefinitely. If To(W, p) grows as fast as 2(p) then there will be a

lower bound on TP, but that will be a constant independent of W . But we know that for any parallel

system, the maximum number of processors that can be used for a given W is limited by C(W ).

So the maximum speedup is bounded by W C(W )/(W + To(W,C(W ))) for a problem of size W

and the efficiency at this point of peak performance is given by W/(W + To(W,C(W ))). Figure 1

illustrates the curve of TP for the case when To ≤ 2(p).
There are many important natural parallel systems for which the overhead function does not

grow faster than2(p). Such systems typically arise while using shared memory or SIMD machines

which do not have a message startup time for data communication. For example, consider a

parallel implementation of the FFT algorithm [56] on a SIMD hypercube connected machine (e.g.,

the CM-2 [72]). If an N point FFT is being attempted on such a machine with p processors,

N/p units of data will be communicated among directly connected processors in log p of the

log N iterations of the algorithm. For this parallel system W = N log N . As shown in [56],

To = tw × (N/p) log p × p = twN log p, where tw is the message communication time per word.

Clearly, for a given W , To < 2(p). Since C(W ) for the parallel FFT algorithm is N , there is a

lower bound on parallel execution time which is given by (1+ tw) log N . Thus, pmax for an N point

FFT on a SIMD hypercube is N and the problem cannot be solved in less than 2(log N) time.

Case II: To > 2(p)

When To(W, p) grows faster than 2(p), a glance at Equation 2.9 will reveal that the term W/p

will keep decreasing with increasing p, while the term To/p will increase. Therefore, the overall

TP will first decrease and then increase with increasing p, resulting in a distinct minimum. Now

we derive the relationship between W and p such that TP is minimized. Let p0 be the value of p for

which the mathematical expression on the R.H.S of Equation 2.9 for TP attains its minimum value.

At p = p0, TP is minimum and therefore d
dp TP = 0.

d

dp
(

W + To(W, p)

p
) = 0,

−W

p2
− To(W, p)

p2
+

d
dp To(W, p)

p
= 0,

d

dp
To(W, p) = W

p
+ To(W, p)

p
,
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d

dp
To(W, p) = TP. (2.10)

For a given W , we can solve the above equation to find p0. A rather general form of the overhead

is one in which the overhead function is a sum of terms where each term is a product of a function of

W and a function of p. In most real life parallel systems, these functions of W and p are such that

To can be written as6i=n
i=1 ci W yi (log W )ui pxi (log p)zi , where ci ’s are constants and x i ≥ 0 and yi ≥ 0

for 1 ≤ i ≤ n, and u i ’s and zi ’s are 0’s or 1’s. The overhead functions of all architecture-algorithm

combinations that we have come across fit this form [85, 88, 125, 56, 54, 58, 144, 143, 52]. As

illustrated by a variety of examples in this chapter (these include important algorithms such as

Matrix Multiplication, FFT, Parallel Search, finding Shortest Paths in a graph, etc.), on almost all

parallel architectures of interest.

For the sake of simplicity of the following analysis, we assume zi = 0 and ui = 0 for all i’s.

Analysis similar to that presented below can be performed even without this assumption and similar

results can be obtained (Appendix B). Substituting 6 i=n
i=1 ci W yi pxi for To(W, p) in Equation 2.10,

we obtain the following equation:

6i=n
i=1 ci xi W

yi pxi−1 = W +6i=n
i=1 ci W yi pxi

p
.

W = 6i=n
i=1 ci(xi − 1)W yi pxi . (2.11)

For the overhead function described above, Equation 2.11 determines the relationship between

W and p for minimizing TP provided that To grows faster than 2(p). Because of the nature of

Equation 2.11, it may not always be possible to express p as a function of W in a closed form. So

we solve Equation 2.11, considering one R.H.S. term at a time and ignoring the rest. If the ith term

is being considered, the relation W = ci(xi − 1)W yi pxi yields

p = ( W 1−yi

ci(xi − 1)
)

1
xi = 2(W 1−yi

xi ). (2.12)

It can be shown (Appendix C) that among all the i solutions for p obtained in this manner, the

speedup is maximum for any given W when p = 2(W (1−yj)/xj ) where (1− yj)/x j ≤ (1− yi)/xi

for all i (1 ≤ i ≤ n). We call the j th term of To the dominant term if the value of (1− y j)/x j

is the least among all values (1− yi)/xi (1 ≤ i ≤ n) because this is the term that determines the

order of p0, or the asymptotic the solution to Equation 2.10 for large values of W and p. If j th term
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is the dominant term of To, then solving Equation 2.11 with respect to the j th term on the R.H.S.

yields the following approximate expression for p0 for large values of W :

p0 ≈ ( W 1−yj

cj(x j − 1)
)

1
xj . (2.13)

The value of p0 thus obtained can be used in the expression for TP to determine the minimum

parallel execution time for a given W . The value of p0, when plugged in the expression for efficiency,

yields the following:

E0 = W

W + To
,

E0 ≈ W

W + cj W yj ( W
1−yj

xj

(cj xj−cj )
1
xj
)xj

,

E0 ≈ 1− 1

x j
. (2.14)

Note that the above analysis holds only if x j , the exponent of p in the dominant term of To is

greater than 1. If x j ≤ 1, then the asymptotically highest term in To (i.e., cj W yj pxj ) is less than or

equal to 2(p) and the results for the case when To ≤ 2(p) apply.

Equations 2.13 and 2.14 yield the mathematical values of p0 and E0 respectively. But the

derived value of p0 may exceed C(W ). So in practice, at the point of peak performance (in

terms of maximum speedup or minimum execution time), the number of processors pmax is given

by min(p0,C(W )) for a given W . Thus it is possible that C(W ) of a parallel algorithm may

determine the minimum execution time rather than the mathematically derived conditions. For

example, consider the implementation of Floyd’s algorithm described in [88] for finding shortest

paths in a graph. In this algorithm, the N × N adjacency matrix of the graph is striped among

p processors such that each processor stores N/p full rows of the matrix. The problem size W

here is given by N 3 for finding all to all shortest paths on an N -node graph. In each of the N

iterations of this algorithm, a processor broadcasts a row of length N of the adjacency matrix of

the graph to every other processor. As shown in [88], if the p processor are connected in a mesh

configuration with cut-through routing, the total overhead due to this communication is given by

To = ts Np1.5 + tw(N +√p)Np. Here ts and tw are constants related to message startup time and

the speed of message transfer respectively. Since tw is often very small compared to ts ,

To = (ts + tw)Np1.5 + twN 2 p,
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To ≈ ts Np1.5 + twN 2 p,

To ≈ ts W
1/3 p1.5 + twW 2/3 p.

From Equation 2.11, p0 is equal to (W 2/3

.5ts
)2/3 ≈ 1.59N 4/3

t 2/3
s

. But since at most N processors can be used

in this algorithm, pmax = min(C(W ), p0) = N . The minimum execution time for this parallel

system is therefore N 2 + ts N 1.5 + twN 2 for pmax = N .

If working on a 100 node graph, then the speedup will peak at p = N = 100 and for ts = 1

and tw = 0.1, the speedup will be 83.33 resulting in an efficiency of 0.83 at the point of peak

performance.

It is also possible for two parallel systems to have the same To (and hence the same p0) but

different C(W )s. In such cases, an analysis of the overhead function might mislead one into

believing that the two parallel systems are equivalent in terms of maximum speedup and minimum

execution time. For example, consider a different parallel system consisting of another variation

of Floyd’s algorithm discussed in [88] and a wrap-around mesh with store-and-forward routing. In

this algorithm, the N × N adjacency matrix is partitioned into p sub-blocks of size N/
√

p× N/
√

p

each, and these sub-blocks are mapped on a p processor mesh. In this version of Floyd’s algorithm,

a processor broadcasts N/
√

p elements among
√

p processors in each of the N iterations. As

shown in [88], this results in a total overhead of To = ts Np1.5 + twN 2 p. Since the expression for To

is same as that in the previous example, p0 = 1.59N 4/3/t2/3
s again. But C(W ) for the checkerboard

version of the algorithm is W 2/3 = N 2. Therefore pmax = p0 in this case as p0 < C(W ).

For ts = 1 and tw = 0.1, Equation 2.11 yields a value of po = 738 for a 100 node graph. The

speedup peaks with 738 processors at a value of 246, but the efficiency at this peak speedup is only

0.33.

The above example illustrates the case when the speedup peaks at p = po. The algorithm in

the earlier example with striped partitioning on a cut-through mesh has exactly the same To and

hence the same po, but the speedup peaks at p = C(W ) because C(W ) < po. Thus the two parallel

systems described in these examples are significantly different in terms of their peak performances,

although their overhead functions are the same.

Figures 2.3.1 and 2.3.1 graphically depict TP as a function of p corresponding to Floyd’s

algorithm with stripe partitioning on a cut-through mesh and with checkerboard partitioning on a
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Figure 2.3: TP verses p curve for To > 2(p) showing T min
P when C(W ) < p0.

store-and-forward mesh, respectively.

2.3.2 Minimizing TP and the Isoefficiency Function

In this section we show that for a wide class of overhead functions, studying a parallel system

at its peak performance in terms of the speedup is equivalent to studying its behavior at a fixed

efficiency. The isoefficiency metric [81, 51, 84] comes in as a handy tool to study the fixed efficiency

characteristics of a parallel system. The isoefficiency function relates the problem size to the number

of processors necessary for an increase in speedup in proportion to the number of processors used.

If a parallel system incurs a total overhead of To(W, p) while solving a problem of size W on p

processors, the efficiency of the system is given by E = 1/(1+ To(W, p)/W ). In order to maintain

a constant efficiency, W ∝ To(W, p) or W = K To(W, p)must be satisfied, where K = E/(1 − E)

is a constant depending on the efficiency to be maintained. This is the central relation that is used

to determine isoefficiency as a function of p. From this equation, the problem size W can usually

be obtained as a function of p by algebraic manipulations. If the problem size W needs to grow as

fast as fE (p) to maintain an efficiency E , then fE (p) is defined to be the isoefficiency function of
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Figure 2.4: TP verses p curve for To > 2(p) showing T min
P when C(W ) > p0.

the parallel algorithm-architecture combination for efficiency E .

We now show that unless pmax = C(W ) for a parallel system, a unique efficiency is attained

at the point of peak performance. This value of E depends only on the characteristics of the

parallel system (i.e., the type of overhead function for the algorithm-architecture combination) and

is independent of W or TP. For the type of overhead function assumed in Case II, the following

relation determines the isoefficiency function for an efficiency E :

W = E

1− E
6i=n

i=1 ci W
yi pxi . (2.15)

Clearly, the above equation has the same form as Equation 2.11, but has different constants. The

dominant term on the R.H.S. will yield the relationship between W and p in a closed form in both

the equations. If this is the j th term, then both the equations will become equivalent asymptotically

if their j th terms are same. This amounts to operating at an efficiency that is given by the following

relation obtained by equating the coefficients of the j th terms of Equations 2.11 and 2.15.

E

1− E
cj = cj(x j − 1),

E = 1− 1

x j
.
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The above equation is in conformation with Equation 2.14. Once we know that working at the

point of peak performance amounts to working at an efficiency of 1 − 1/x j , then, for a given W ,

we can find the number of processors at which the performance will peak by using the relation

1− 1/x j = W/(W + To(W, p)).

As discussed in [81, 51], the relation between the problem size and the maximum number

of processors that can be used in a cost-optimal fashion for solving the problem is given by the

isoefficiency function. Often, using as many processors as possible results in a non-cost-optimal

system. For example, adding n numbers on an n-processor hypercube takes 2(log n) time, which

is the minimum execution time for this problem. This is not a cost optimal parallel system because

W = 2(N) < pTP = 2(n log n). An important corollary of the result presented in this section is

that for the parallel systems for which the relationship between the problem size and the number of

processors for maximum speedup (minimum execution time) is given by the isoefficiency function,

the asymptotic minimum execution time can be attained in a cost-optimal fashion. For instance,

if 2(n/log n) processors are used to add n numbers on a hypercube, the parallel system will be

cost-optimal and the parallel execution time will still be 2(log n).

Note that the correspondence between the isoefficiency function and the relation between W

and p for operating at minimum TP will fail if the x j in the dominant term is less than or equal to

1. In this case, a term other than the one that determines the isoefficiency function will determine

the condition for minimum TP.

Summary of Results

At this point we state the important results of this section.

. For parallel algorithms with To ≤ 2(p), the maximum speedup is obtained at p =
C(W ) and for algorithms with To > 2(p), the maximum speedup is obtained at

p = min(po,C(W )), where p0 for a given W is determined by solving Equation 2.11.

. For the parallel algorithms with To of the form described in Case II, if the j th term is

the dominant term in the expression for To and x j > 1, then the efficiency at the point

of maximum speedup always remains the same irrespective of the problem size, and is
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given by E = 1− 1/x j .

. For the parallel algorithms satisfying the above conditions, the relationship between

the problem size and the number of processors at which the speedup is maximum

for that problem size, is given by the isoefficiency function for E = 1 − 1/x j , unless

pmax = C(W ).

2.3.3 Minimizing p(TP)
r

From the previous sections, it is clear that operating at a point where TP is minimum might not

be a good idea because for some parallel systems the efficiency at this point might be low. On

the other hand, the maximum efficiency is always attained at p = 1 which obviously is the point

of minimum speedup. Therefore, in order to achieve a balance between speedup and efficiency,

several researchers have proposed to operate at a point where the value of p(TP)
r is minimized for

some constant r (r ≥ 1) and for a given problem size W [36, 34, 134]. It can be shown [134] that

this corresponds to the point where E Sr−1 is maximized for a given problem size.

p(TP)
r = pTP(

W

S
)r−1 = W r

E Sr−1
.

Thus p(TP)
r will be minimum when E Sr−1 is maximum for a given W and by minimizing

p(TP)
r , we are choosing an operating point with a concern for both speedup and efficiency, their

relative weights being determined by the value of r . Now let us locate the point where p(T P)
r is

minimum.

p(TP)
r = p(

Te + To

p
)r = p1−r(Te + To)

r .

Again, as in the previous section, the following two cases arise:

Case I: To ≤ 2(p(r−1)/r)

Since p(TP)
r = p1−r(Te + To)

r = (Te p(1−r)/r + To p(1−r)/r)r , if To ≤ 2(p(r−1)/r) then the overall

power of p in the expression for p(TP)
r will become negative and hence its value will mathematically

tend to some lower bound as p � ∞. Thus using as many processors as are feasible will lead to

minimum p(TP)
r . In other words, for this case, p(TP)

r is minimum when p = C(W ).
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Case II: To > 2(p(r−1)/r)

If To grows faster than 2(p(r−1)/r), then we proceed as follows. In order to minimize p(TP)
r ,

d
dp p(TP)

r should be equal to zero; i.e.,

(1− r)p−r (Te + To)
r + rp(1−r)(Te + To)

(r−1) d

dp
To = 0,

d

dp
To = r − 1

r
TP. (2.16)

We choose the same type of overhead function as in Case II of Section 2.3.1. Substituting

6i=n
i=1 ci W yi pxi for To in Equation 2.16, we get the following equation:

6i=n
i=1 ci xi W

yi pxi−1 = r − 1

rp
(W +6i=n

i=1 ci W
yi pxi ),

W = 6i=n
i=1 ci(

rxi

r − 1
− 1)W yi pxi . (2.17)

Now even the number of processors for which p(TP)
r is minimum could exceed the value of p

that is permitted by the degree of concurrency of the algorithm. In this case the minimum possible

value for p(TP)
r will be obtained when C(W ) processors are used. For example, consider a simple

algorithm described in [54] for multiplying two N × N matrices on a
√

p×√p wrap-around mesh.

As the first step of the algorithm, each processor acquires all those elements of both the matrices

that are required to generate the N 2/p elements of the product matrix which are to reside in that

processor. For this parallel system, W = N 3 and To = ts p
√

p + twN 2√p. For determining the

operating point where p(TP)
2 is minimum, we substitute n = 2, r = 2, c1 = ts , c2 = tw, x1 = 1.5,

x2 = 0.5, y1 = 0 and y2 = 2/3 in Equation 2.17. This substitution yields the relation W = 2ts p1.5

for determining the required operating point. In other words, the number of processors p0 at which

p(TP)
2 is minimum is given by p0 = (W/2ts)

2/3 = N 2/(2ts)
2/3. But the maximum number of

processors that this algorithm can use is only N 2. Therefore, for ts < .5, p0 > C(W ) and hence

C(W ) processors should be used to minimize pT 2
P.

2.3.4 Minimizing p(TP)
r and the Isoefficiency Function

In this subsection we show that for a wide class of parallel systems, even minimizing p(T P)
r

amounts to operating at a unique efficiency that depends only on the overhead function and the

value of r . In other words, for a given W , p(TP)
r is minimum for some value of p and the
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relationship between W and this p for the parallel system is given by its isoefficiency function for

a unique value of efficiency that depends only on r and the type of overhead function. Equation

2.17, which gives the relationship between W and p for minimum p(TP)
r , has the same form as

Equation 2.15 that determines the isoefficiency function for some efficiency E . If the j th terms

of the R.H.S.s of Equations 2.15 and 2.17 dominate (and x j > (r − 1)/r), then the efficiency at

minimum p(TP)
r can be obtained by equating the corresponding constants; i.e., Ec j/(1− E) and

cj(rx j/(r − 1) − 1). This yields the following expression for the value of efficiency at the point

where p(TP)
r is minimum:

E = 1− r − 1

rx j
. (2.18)

We now give an example that illustrates how the analysis of Section 2.3.3 can be used for

chosing an appropriate operating point (in terms of p) for a parallel algorithm to solve a problem

instance of a given size. It also confirms the validity of Equation 2.18. Consider the implementation

of the FFT algorithm on an MIMD hypercube using the binary-exchange algorithm. As shown in

[56], for an N point FFT on p processors, W = N log N and To = ts p log p + twN log p for this

algorithm. Taking ts = 2, tw = 0.1 and rewriting the expression for To in the form described in

Case II in Section 2.3.1, we get the following:

To ≈ 2p log p + 0.1
W

log W
log p.

Now suppose it is desired to minimize p(TP)
2, which is equivalent to maximizing the E S

product. Clearly, the first term of To dominates and hence putting r = 2 and x j = 1 in Equation

2.18, an efficiency of 0.5 is predicted when p(TP)
2 is minimized. An analysis similar to that in

Case II in Section 2.3.3 will show that p(TP)
r will be minimum when p ≈ N/2 is used.

If a 1024 point FFT is being attempted, then Table 2.1 shows that at p = 512 the E S product

is indeed maximum and the efficiency at this point is indeed 0.5.

Again, just like in Section 2.3.2, there are exceptions to the correspondence between the

isoefficiency function and the condition for minimum p(TP)
r . If the j th term in Equation 2.15

determines the isoefficiency function and in Equation 2.17, x j < (r − 1)/r , then the coefficient of

the j th term in Equation 2.17 will be zero or negative and some other term in Equation 2.17 will

determine the relationship between W and p for minimum p(TP)
r .

The following subsection summarizes the results of this section.
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p TP S E E × S

128 99.6 103 .80 82.4

256 59.2 173 .68 117.6

384 46.1 222 .58 128.4

512 39.8 257 .50 129.3

640 36.1 284 .44 124.9

768 33.8 303 .39 116.2

896 32.2 318 .35 112.8

1024 31.0 330 .32 105.5

Table 2.1: Performance of FFT on a hypercube with N = 1024, ts = 2 and tw = 0.1.

Summary of Results

. For parallel algorithms with To ≤ 2(p(r−1)/r), the minimum value for the expression

p(TP)
r is attained at p = C(W ) and for algorithms with To > 2(p(r−1)/r), it is attained

at p = min(C(W ), p0), where p0 for a given W is obtained by solving Equation 2.17.

. For the parallel algorithms with To of the form described in Case II, if the j th term

dominates in the expression for To and x j > (r − 1)/r , then the efficiency at the point

of minimum p(TP)
r always remains same irrespective of the problem size and is given

by E = 1− (r − 1)/rx j .

. For the parallel algorithms satisfying the above conditions, the relationship between

the problem size and the number of processors at which p(TP)
r is minimum for that

problem size, is given by the isoefficiency function for E = 1 − (r − 1)/rx j , provided

C(W ) > p0 determined from Equation 2.17.

In fact the results pertaining to minimization of TP are special cases of the above results when

r � ∞; i.e., the weight of p is zero with respect to TP or the weight of E is zero with respect
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to S. Equation 2.11 can be derived from Equation 2.17 and Equation 2.14 from Equation 2.18 if

(r − 1)/r is replaced by limr � ∞(r − 1)/r = 1.

2.3.5 Significance in the Context of Related Research

In this section we discuss how this chapter encapsulates several results that have appeared in the

literature before and happen to be special cases of the more general results presented here.

Flatt and Kennedy [36, 35] show that if the overhead function satisfies certain mathematical

properties, then there exists a unique value p0 of the number of processors for which TP is minimum

for a given W . A property of To on which their analysis depends heavily is that To > 2(p).2

This assumption on the overhead function limits the range of the applicability of their analysis.

As seen in the example in Section 2.2 (Equation 2.5), there exist parallel systems that do not obey

this condition, and in such cases the point of peak performance is determined by the degree of

concurrency of the algorithm being used.

Flatt and Kennedy show that the maximum speedup attainable for a given problem is upper-

bounded by 1/( d
dp
(pTP)) at p = p0. They also show that the better a parallel algorithm is (i.e.,

the slower To grows with p), the higher is the value of p0 and the lower is the value of efficiency

obtained at this point. Equations 2.13 and 2.14 provide results similar to Flatt and Kennedy’s. But

the analysis in [36] tends to conclude the following - (i) if the overhead function grows very fast with

respect to p, then p0 is small, and hence parallel processing cannot provide substantial speedups;

(ii) if the overhead function grows slowly (i.e., closer to 2(p)), then the overall efficiency is

very poor at p = p0. Note that if we keep improving the overhead function, the mathematically

derived value of p0 will ultimately exceed the limit imposed by the degree of concurrency on the

number of processors that can be used. Hence, in practice no more than C(W ) processors will

be used. Thus, in this situation, the theoretical value of p0 and the efficiency at this point does

not serve a useful purpose because the point of peak performance efficiency cannot be worse than

W/(W + To(W,C(W ))). For instance, Flatt and Kennedy’s analysis will predict identical values

of pmax and efficiency at this operating point for the parallel systems described in the examples in

2 To , as defined in [36], is the overhead incurred per processor when all costs are normalized with respect to W = 1. So
in the light of the definition of To in this chapter, the actual mathematical condition of [36], that To is an increasing
nonnegative function of p, has been translated to the condition that To grows faster than 2(p).
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Section 2.3.1 because their overhead functions are identical. But as we saw in these examples, this

is not the case because the the value of C(W ) in the two cases is different.

In [98], Marinescu and Rice develop a model to describe and analyze a parallel computation

on a MIMD machine in terms of the number of threads of control p into which the computation is

divided and the number events g(p) as a function of p. They consider the case where each event

is of a fixed duration θ and hence To = θg(p). Under these assumptions on To, they conclude

that with increasing number of processors, the speedup saturates at some value if To = 2(p), and

it asymptotically approaches zero if To = 2(pm), where m ≥ 2. The results of Section 2.3.1 are

generalizations of these conclusions for a wider class of overhead functions. Case I in this section

shows that the speedup saturates at some maximum value if To ≤ 2(p), and Case II shows that

speedup will attain a maximum value and then it will drop monotonically with p if To > 2(p).

Usually, the duration of an event or a communication step θ is not a constant as assumed in

[98]. In general, both θ and To are functions of W and p. If To is of the form θg(p), Marinescu

and Rice [98] derive that the number of processors that will yield maximum speedup will be given

by p = (W/θ + g(p))/g ′(p), which can be rewritten as θg ′(p) = (W + θg(p))/p. It is easily

verified that this is a special case of Equation 2.10 for To = θg(p).

Worley [146] showed that for certain algorithms, given a certain amount of time T P, there will

exist a problem size large enough so that it cannot be solved in time TP, no matter how many

processors are used. In Section 2.3.1, we describe the exact nature of the overhead function for

which a lower bound exists on the execution time for a given problem size. This is exactly the

condition for which, given a fixed time, an upper bound will exist on the size of the problem that can

be solved within this time. We show that for a class of parallel systems, the relation between problem

size W and the number of processors p at which the parallel execution time TP is minimized, is

given by the isoefficiency function for a particular efficiency.

Several other researchers have used the minimum parallel execution time of a problem of a given

size for analyzing the performance of parallel systems [105, 97, 108]. Nussbaum and Agarwal [108]

define scalability of an architecture for a given algorithm as the ratio of the algorithm’s asymptotic

speedup when run on the architecture in question to its corresponding asymptotic speedup when

run on an EREW PRAM. The asymptotic speedup is the maximum obtainable speedup for a given
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problem size if an unlimited number of processors is available. For a fixed problem size, the

scalability of the parallel system, according to their metric, depends directly on the minimum T P for

the system. For the class of parallel systems for which the correspondence between the isoefficiency

function and the relation between W and p for minimizing TP exists, Nussbaum and Agarwal’s

scalability metric will yield results identical to those predicted by the isoefficiency function on the

behavior of these parallel systems.

Eager et al. [34] and Tang and Li [134] have proposed a criterion of optimality different from

optimal speedup. They argue that the optimal operating point should be chosen so that a balance is

struck between efficiency and speedup. It is proposed in [34] that the “knee" of the execution time

verses efficiency curve is a good choice of the operating point because at this point the incremental

benefit of adding processors is roughly 0.5 per processor, or, in other words, efficiency is 0.5. Eager

et. al. and Tang and Li also conclude that for To = 2(p), this is also equivalent to operating at a

point where the E S product is maximum or p(TP)
2 is minimum. This conclusion in [34, 134] is a

special case of the more general case that is captured in Equation 2.18. If we substitute x j = 1 in

Equation 2.18 (which is the case if To = 2(p)), it can seen that we indeed get an efficiency of 0.5

for r = 2. In general, operating at the optimal point or the “knee" referred to in [34] and [134] for a

parallel system with To = 2(pxj )will be identical to operating at a point where p(TP)
r is minimum,

where r = 2/(2 − x j). This is obtained from Equation 2.18 for E = 0.5. Minimizing p(T P)
r for

r > 2/(2− x j) will result in an operating point with efficiency lower than 0.5 but a higher speedup.

On the other hand, minimizing p(TP)
r for r < 2/(2− x j) will result in an operating point with

efficiency higher than 0.5 and a lower speedup.
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Chapter 3

SCALABILITY ANALYSIS OF SOME NUMERICAL ALGORITHMS

In this chapter, we present a comprehensive scalability analysis of parallel algorithms for fast

Fourier transform (FFT), dense matrix multiplication, sparse matrix-vector multiplication, and the

preconditioned conjugate gradient (PCG) algorithm. Wherever applicable, we analyze the impact of

algorithmic features, as well as, hardware dependent parameters on scalability of parallel systems.

We discuss the cost-performance tradeoffs and the cost-effectiveness of various architectures. In

most cases, we present experimental results on commercially available parallel computers such as

the nCUBE and CM-5 to support our analysis.

Our scalability analysis of these numerical algorithms provides many interesting insights into

their behavior on parallel computers. For example, we show that a commonly used parallel

FFT algorithm that was thought to be ideally suited for hypercubes has a limit on the achievable

efficiency that is determined by the ratio of CPU speed and communication bandwidth of the

hypercube channels. Efficiencies higher than this threshold value can be obtained if the problem

size is increased very rapidly. If the hardware supports cut-through routing, then this threshold

can also be overcome by using a series of successively less scalable parallel formulations. In the

context of dense matrix multiplication, we show that special hardware permitting simultaneous

communication on all the ports of the processors does not improve the overall scalability on a

hypercube. We discuss the dependence of scalability on technology dependent factors such as

communication and computation speeds and show that under certain conditions, it may be better

to use a parallel computer with k-fold as many processors rather than one with the same number

of processors, each k-fold as fast. In the case of parallel PCG algorithm, we found that the

use of a truncated Incomplete Cholesky (IC) preconditioner, which was considered unsuitable

for parallel computers, can actually improve the scalability over a parallel CG with diagonal or no

preconditioning. As a result, a parallel formulation of the PCG algorithm with this IC preconditioner

may execute faster than that with a simple diagonal preconditioner even if the latter runs faster in a
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serial implementation for a given problem.

3.1 Fast Fourier Transform

Fast Fourier Transform plays an important role in several scientific and technical applications.

Some of the applications of the FFT algorithm include Time Series and Wave Analysis, solving

Linear Partial Differential Equations, Convolution, Digital Signal Processing and Image Filtering,

etc. Hence, there has been a great interest in implementing FFT on parallel computers [11, 17, 29,

56, 72, 106, 133, 13, 74, 19, 25, 3].

3.1.1 The FFT Algorithm

Figure 3.1 outlines the serial Cooley-Tukey algorithm for an n point single dimensional unordered

radix-2 FFT adapted from [4, 116]. X is the input vector of length n (n = 2r for some integer r)

and Y is its Fourier Transform. ωk denotes the complex number e j2π/nk , where j =
√−1. More

generally, ω is the primitive nth root of unity and hence ωk could be thought of as an element of the

finite commutative ring of integers modulo n. Note that in the lth (0 ≤ l < r) iteration of the loop

starting on Line 3, those elements of the vector are combined whose indices differ by 2r−l−1 . Thus

the pattern of the combination of these elements is identical to a butterfly network.

The computation of each R[i] in Line 8 is independent for different values of i. Hence p

processors (p ≤ n) can be used to compute the n values on Line 8 such that each processor

computes n/p values. For the sake of simplicity, assume that p is a power of 2, or more precisely,

p = 2d for some integer d such that d ≤ r . To obtain good performance on a parallel machine, it

is important to distribute the elements of vectors R and S among the processors in a way that keeps

the interprocess communication to a minimum. In a parallel implementation, there are two main

contributors to the data communication cost—the message startup time ts and the per-word transfer

time tw. In the following subsections, we present two parallel formulations of the Cooley-Tukey

algorithm. As the analysis of Section 3.1.2 will show, each of these formulations minimizes the

cost due to one of these constants.
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1. begin

2. for i := 0 to n - 1 do R[i] := Xi ;

3. for l := 0 to r - 1 do

4. begin

5. for i := 0 to n - 1 do S[i] := R[i];

6. for i := 0 to n - 1 do

7. begin

(* Let (b0b1 · · ·br−1) be the binary representation of i *)

8. R[(b0 · · ·br−1)] := S[(b0 · · ·bl−10bl+1 · · ·br−1)] + ω(blbl−1···b00···0)S[(b0 · · ·bl−11bl+1 · · ·br−1)];

9. end;

10. end;

11. end.

Figure 3.1: The Cooley-Tukey algorithm for single dimensional unordered FFT.

The Binary-Exchange Algorithm

In the most commonly used mapping that minimizes communication for the binary-exchange

algorithm [81, 5, 11, 17, 29, 72, 106, 133, 116, 94], if (b0b1 · · ·br−1) is the binary representation of

i, then for all i, R[i] and S[i] are mapped to processor number (b0 · · ·bd−1).

With this mapping, processors need to communicate with each other in the first d iterations of

the main loop (starting at line 3) of the algorithm. For the remaining r −d iterations of the loop, the

elements to be combined are available on the same processor. Also, in the lth (0 ≤ l < d) iteration,

all the n/p values required by a processor are available to it from a single processor; i.e., the one

whose number differs from it in the lth most significant bit.

The Transpose Algorithm

Let the vector X be arranged in an
√

n × √n two dimensional array in row major order. An

unordered Fourier Transform of X can be obtained by performing an unordered radix-2 FFT over
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all the rows of this 2-D array followed by an unordered radix-2 FFT over all the columns. The row

FFT corresponds to the first log n/2 iterations of the FFT over the entire vector X and the column

FFT corresponds to the remaining log n/2 iterations. In a parallel implementation, this
√

n ×√n

can be mapped on to p processors (p ≤ √n) such that each processor stores
√

n/p rows of the

array. Now the FFT over the rows can be performed without any inter-processor communication.

After this step, the 2-D array is transposed and an FFT of all the rows of the transpose is computed.

The only step that requires any inter-processor communication is transposing an
√

n×√n array on

p processors.

The algorithm described above is a two-dimensional transpose algorithm because the data

is arranged in a two-dimensional array mapped onto a one-dimensional array of processors. In

general, a q-dimensional transpose algorithm can be formulated along the above lines by mapping

a q-dimensional array of data onto a (q−1)-dimensional array of processors. The binary-exchange

algorithm is nothing but a a (log p + 1)-dimensional algorithm. In this chapter, we confine our

discussion to the two extremes (2-D transpose and binary-exchange) of this sequence of algorithms.

More detailed discussion can be found in [81].

3.1.2 Scalability Analysis of the Binary-Exchange Algorithm for Single Dimensional

Radix-2 Unordered FFT

We assume that the cost of one unit of computation (i.e., the cost of executing line 8 in Figure 3.1) is

tc. Thus for an n point FFT, W = tcn log n. As discussed in Section 3.1.1, the parallel formulation

of FFT can use at most n processors. As p is increased, the additional processors will not have any

work to do after p exceeds n. So in order to prevent the efficiency to diminish with increasing p, n

must grow at least as p so that no processor remains idle. If n increases linearly with p, then W (

= tcn log n ) must grow in proportion to tc p log p. This gives us a lower bound of �(plogp) on the

isoefficiency function for the FFT algorithm. This figure is independent of the parallel architecture

and is a function of the inherent parallelism in the algorithm. The overall isoefficiency function of

this algorithm can be worse depending upon how the overall overhead To increases with p.

Several factors may contribute to To in a parallel implementation of FFT. The most significant of

these overheads is due to data communication between processors. As discussed in Section 3.1.1,
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the p processors communicate in pairs in d (d = log p) of the r (r = log n) iterations of the loop

starting on Line 3 of Figure 3.1. Let zl be the distance between the communicating processors in

the lth iteration. If the distances between all pairs of communicating processors are not the same,

then zl is the maximum distance between any pair. In this subsection, assume that no part of the

various data paths coincides. Since each processor has n/p words, the total communication cost

for a parallel computer with store-and-forward routing is given by the following equation:

To = p ×6l=d−1
l=0 (ts + tw

n

p
zl ). (3.1)

Isoefficiency on a Hypercube

As discussed in Section 3.1.1, in the lth iteration of the loop beginning on Line 3 of Figure

3.1, data messages containing n/p words are exchanged between the processors whose binary

representations are different in the lth most significant bit position (l < d = log p). Since all these

pairs of processors with addresses differing in one bit position are directly connected in a hypercube

configuration, Equation 3.1 becomes:

To = p ×6l=(log p)−1
l=0 (ts + tw

n

p
),

To = ts p log p + twn log p. (3.2)

If p increases, then in order to maintain the efficiency at some value E , W should be equal to K To,

where K = E/(1 − E). Since W = tcn log n, n must grow such that

tcn log n = K (ts p log p + twn log p). (3.3)

Clearly, the isoefficiency function due to the first term in To, is given by:

W = K ts p log p. (3.4)

The requirement on the growth of W (to maintain a fixed efficiency) due to the second term in To

is more complicated. If this term requires W to grow at a rate less than 2(p log p), then it can be

ignored in favor of the first term. On the other hand, if this term requires W to grow at a rate higher

than 2(p log p), then the first term of To can be ignored.

Balancing W against the second term only yields the following:
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ntc log n = K twn log p,

log n = K tw
tc

log p,

n = pK tw
tc .

This leads to the following isoefficiency function (due to the second term of To):

W = K tw × pK tw/tc × log p. (3.5)

This growth is less than 2(p log p) as long as K tw/tc < 1. As soon as this product exceeds 1,

the overall isoefficiency function is given by Equation 3.5. Since the binary-exchange algorithm

involves only nearest neighbor communication on a hypercube, the total overhead To, and hence the

scalability, cannot be improved by using cut-through routing.

Efficiency Threshold

The isoefficiency function given by Equation 3.5 deteriorates very rapidly with the increase in the

value of K tw/tc.

In fact the efficiency corresponding to K tw/tc = 1, (i.e., E = tc/(tc + tw)) acts somewhat as a

threshold value. For a given hypercube with fixed tc and tw, efficiencies up to this values can be

obtained easily. But efficiencies much higher than this threshold can be obtained only if the problem

size is extremely large. For example, consider the computation of an n point FFT on a p-processor

hypercube on which tw = tc. The isoefficiency function of the parallel FFT on this machine is

K tw × pK × log p. Now for K < 1 (i.e., E ≤ 0.5) the overall isoefficiency is 2(p log p), but

for E > 0.5, the isoefficiency function is much worse. If E = 0.9, then K = 9 and hence the

isoefficiency function becomes 2(p9 log p). As another example, consider the computation of an

n point FFT on a p-processor hypercube on which tw = 2tc. Now the threshold efficiency is 0.33.

The isoefficiency function for E = 0.5 is 2(p2 log p) and for E = 0.9, it becomes 2(p18 log p).

The above examples show how the ratio of tw and tc effects the scalability and how hard it is to

obtain efficiencies higher than the threshold determined by this ratio.
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Isoefficiency on a Mesh

Assume that an n point FFT is being computed on a p-processor simple mesh (
√

p rows × √p

columns) such that
√

p is a power of 2. For example consider p = 64 such that processor

0,1,2,3,4,5,6,7 form the first row and processors 0,8,16,24,32,40,48,56 form the first column. Now

during the execution of the algorithm, processor 0 will need to communicate with processors

1,2,4,8,16,32. All these communicating processors lie in the same row or the same column.

More precisely, in log
√

p of the log p steps that require data communication, the communicating

processors are in the same row, and in the remaining log
√

p steps, they are in the same column.

The distance between the communicating processors in a row grows from one hop to
√

p/2 hops,

doubling in each of the log
√

p steps. The communication pattern is similar in case of the columns.

The reader can verify that this is true for all the communicating processors in the mesh. Thus, from

Equation 3.1 we get:

To = p × 26
l=(log

√
p)−1

l=0 (ts + tw
n

p
2l),

To = 2p(ts log
√

p + tw
n

p
(
√

p − 1)),

To ≈ ts p log p + 2twn
√

p. (3.6)

Balancing W against the first term yields the following equation for the isoefficiency function:

W = K ts p log p. (3.7)

Balancing W against the second term yields the following:

tcn log n = 2K tw × n ×√p.

logn = 2K tw
tc
×√p.

n = 22K tw
tc
×√p.

Since the growth in W required by the third term in To is much higher than that required by the first

two terms (unless p is very small), this is the term that determines the overall isoefficiency function

which is given by the following equation:

W = 2K tw
√

p × 22K tw
tc

√
p. (3.8)
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From Equation 3.8, it is obvious that the problem size has to grow exponentially with the

number of processors to maintain a constant efficiency; hence the algorithm is not very scalable

on a simple mesh. Any different mapping of input vector X on the processors does not reduce

the communication overhead. It has been shown [135] that in any mapping, there will be at least

one iteration in which the pairs of processors that need to communicate will be at least
√

p/2 hops

apart. Hence the expression for To used in the above analysis cannot be improved by more than a

factor of two.

3.1.3 Scalability Analysis of the Transpose Algorithm for Single Dimensional Radix-2

Unordered FFT

As discussed earlier in Section 3.1.1, the only data communication involved in this algorithm

is the transposition of an
√

n × √n two dimensional array on p processors. It is easily seen

that this involves the communication of a chunk of unique data of size n/p2 between every pair

of processors. This communication (known as all-to-all personalized communication) can be

performed by executing the following code on each processor:

for i = 1 to p do

send data to processor number (self address ⊕i)

It is shown in [71], that on a hypercube, in each iteration of the above code, each pair of

communicating processors have a contention-free communication path. On a hypercube with store-

and-forward routing, this communication will take tw(n/p) log p + ts p time. This communication

term yields an overhead function which is identical to the overhead function of the binary exchange

algorithm and hence this scheme does not offer any improvement over the binary exchange scheme.

However, on a hypercube with cut-through routing, this can be done in time twn/p + ts p, leading

to an overhead function To given by the following equation:

To = twn + ts p2. (3.9)

The first term of To is independent of p and hence, as p increases, the problem size must

increase to balance the second communication term. For an efficiency E , this yields the following
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isoefficiency function, where K = E/(1− E):

W = K ts p2. (3.10)

In the transpose algorithm, the mapping of data on the processors requires that
√

n ≥ p. Thus, as

p increases, n has to increase as p2, or else some processors will eventually be out of work. This

requirement imposes and isoefficiency function of2(p2 log p) due to the limited concurrency of the

transpose algorithm. Since the isoefficiency function due to concurrency exceeds the isoefficiency

function due to communication, the former (i.e., 2(p2 log p)) is also the overall isoefficiency

function of the transpose algorithm on a hypercube.

As mentioned in Section 3.1.1, in this chapter we have confined our discussion of the trans-

pose algorithm to the two-dimensional case. A generalized transpose algorithm and the related

performance and scalability analysis can be found in [81].

3.1.4 Impact of Architectural and Algorithmic Variations on Scalability of FFT

In [56], we analyze the scalability of multidimensional FFTs, ordered FFT, and FFTs with radix

higher than 2, and survey some other variations of the Cooley-Tukey algorithm. We find that within

a small constant factor, the isoefficiency functions are the same as the ones derived in this chapter

for the simplified case of unordered, radix-2, single dimensional FFT. The analysis in this chapter

assumes store-and-forward routing on the mesh. In [56] we show that due to message contention,

the expressions for the communication overhead (and hence, for the isoefficiency function too)

on the mesh do not improve if cut-through or worm-hole routing is used. In [56] and [81], we

also discuss the additional overhead that a parallel FFT algorithm might incur due to redundant

computation of twiddle-factors. Our analysis shows that the asymptotic isoefficiency term due to

this overhead is 2(p log p) and is subsumed by the isoefficiency function due to communication

overhead.

3.1.5 Comparison between Binary-Exchange and Transpose Algorithms

As discussed earlier in this section, an overall isoefficiency function of 2(p log p) can be realized

by using the binary exchange algorithm if the efficiency of operation is such that K tw/tc ≤ 1. If
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the desired efficiency is such that K tw/tc = 2, then the overall isoefficiency functions of both the

binary-exchange and the transpose schemes are 2(p2 log p). When K tw/tc > 2, the transpose

algorithm is more scalable than the binary-exchange algorithm and should be the algorithm of

choice provided that n ≥ p2.

In the transpose algorithm described in Section 3.1.1, the data of size n is arranged in an
√

n×√n

two dimensional array and is mapped on to a linear array of p processors1 with p = √n/k, where

k is a positive integer between 1 and
√

n. In a generalization of this method [81], the vector X

can be arranged in an m-dimensional array mapped on to an (m − 1)-dimensional logical array

of p processors, where p = n(m−1)/m/k. The 2-D transpose algorithm discussed in this section is

a special case of this generalization with m = 2 and the binary-exchange algorithm is a special

case for m = (log p + 1). A comparison of Equations 3.2 and 3.9 shows that the binary exchange

algorithm minimizes the communication overhead due to ts , whereas the 2-D transpose algorithm

minimizes the overhead due to tw. Also, the binary-exchange algorithm is highly concurrent and

can use as many as n processors, whereas the concurrency of the 2-D transpose algorithm is limited

to
√

n processors. By selecting values of m between 2 and (log p + 1), it is possible to derive

algorithms whose concurrencies and communication overheads due to ts and tw have intermediate

values between those for the two algorithms described in this section. Under certain circumstances,

one of these algorithms might be the best choice in terms of both concurrency and communication

overheads.

3.1.6 Cost-Effectiveness of Mesh and Hypercube for FFT Computation

The scalability of a certain algorithm-architecture combination determines its capability to use

increasing number of processors effectively. Many algorithms may be more scalable on costlier

architectures. In such situations, one needs to consider whether it is better to have a larger

parallel computer of a cost-wise more scalable architecture that is underutilized (because of poor

efficiency), or to have a smaller parallel computer of a cost-wise less scalable architecture that is

better utilized. For a given amount of resources, the aim is to maximize the overall performance

which is proportional to the number of processors and the efficiency obtained on them. From the

1 It is a logical linear array of processors which are physically connected in a hypercube network.
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scalability analysis of Section 3.1.2, it can be predicted that the FFT algorithm will perform much

poorly on a mesh as compared to a hypercube. On the other hand constructing a mesh multicomputer

is cheaper than constructing a hypercube with the same number of processors. In this section we

show that in spite of this, it might be more cost-effective to implement FFT on a hypercube rather

than on a mesh.

Suppose that the cost of building a communication network for a parallel computer is directly

proportional to the number of communication links. If we neglect the effect of the length of the

links (i.e., th = 0) and assume that ts = 0, then the efficiency of an n point FFT computation using

the binary-exchange scheme is approximately given by (1+ tw log p/(tc log n))−1 on a p processor

hypercube and by (1 + 2tw
√

p/(tc log n))−1 on a p processor mesh. It is assumed here that tw and

tc are same for both the computers. Now it is possible to obtain similar performance on both the

computers if we make each channel on the mesh w wide (thus effectively reducing the per-word

communication time to tw/w), choosing w such that 2
√

p/w = log p. The cost of constructing

these hypercube and mesh networks will be p log p and 4wp respectively, where w = 2
√

p/log p.

Since 8p
√

p/log p is greater than p log p for all p (it is easier to see that 8
√

p/(log p)2 > 1 for all

p), it will be cheaper to obtain the same performance for FFT computation on a hypercube than on a

mesh. If the comparison is based on the transpose algorithm, then the hypercube will turn out to be

even more cost effective, as the factorw by which the bandwidth of the mesh channels will have to

be increased to match its performance with that of a hypercube will now be
√

p. Thus the relative

costs of building a mesh and a hypercube with identical performance for the FFT computation will

be 8p
√

p and p log p, respectively.

However, if the cost of the network is considered to be a function of the bisection width of

the network, as may be the case in VLSI implementations [26], then the picture improves for the

mesh. The bisection widths of a hypercube and a mesh containing p processors each are p/2 and
√

p respectively. In order to match the performance of the mesh with that of the hypercube for the

binary-exchange algorithm, each of its channels has to made wider by a factor of w = 2
√

p/log p.

In this case, the bisection width of the mesh network becomes 2p/log p. Thus the costs of the

hypercube and mesh networks with p processors each, such that they yield similar performance on

the FFT, will be functions of p/2 and 2p/log p, respectively. Clearly, for p > 256, such a mesh
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network is cheaper to build than a hypercube. However, for the transpose algorithm the relative

costs of the mesh and the hypercube yielding same throughput will be p/2 and 2p, respectively.

Hence the hypercube is still more cost effective by a constant factor.

The above analysis shows that the performance of the FFT algorithm on a mesh can be improved

considerably by increasing the bandwidth of its communication channels by a factor of
√

p/2. But

the enhanced bandwidth can be fully utilized only if there are at least
√

p/4 data items to be

transferred in each communication step. Thus the input data size n should be at least p
√

p/4.

This leads to an isoefficiency term of 2(p1.5 log p) due to concurrency, but is still a significant

improvement for the mesh from 2(
√

p22K tw/tc) with channels of constant bandwidth. In fact

2(p1.5 log p) is the best possible isoefficiency for FFT on a mesh even if the channel width is

increased arbitrarily with the number of processors. It can be shown that if the channel bandwidth

grows as 2(px), then the isoefficiency function due to communication will be2(p .5−x22K (tw/tc)p.5−x
)

and the isoefficiency function due to concurrency will be 2(p1+x log p). If x < 0.5, then the

overall isoefficiency is determined by communication overheads, and is exponential. If x ≥ 0.5,

then the overall isoefficiency is determined by concurrency. Thus, the best isoefficiency function of

2(p1.5 log p) can be obtained at x = .5.

Many researchers [33, 124, 2, 1] prefer to compare architectures while keeping the number of

communication ports per processor (as opposed to bisection width) the same across the architectures.

Dutt and Trinh [33] show that for FFT-like computations, hypercubes are more cost-effective even

with this cost criterion.

3.1.7 Experimental Results

We implemented the binary-exchange algorithm for unordered single dimensional radix-2 FFT

on a 1024-node nCUBE1 hypercube. Experiments were conducted for a range of problem sizes

and a range of machine sizes; i.e., number of processors. The length of the input vector was varied

between 4 and 65536, and the number of processors was varied between 1 and 1024. The required

twiddle factors were precomputed and stored at each processor. Speedups and efficiencies were

computed w.r.t. the run time of sequential FFT running on one processor of the nCUBE1. A unit
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Figure 3.2: Speedup curves on a hypercube for various problem sizes.

FFT computation takes2 approximately 80 microseconds; i.e., tc ≈ 80 microseconds. Figures 3.2

through 3.4 summarize the results of these experiments.

Figure 3.2 shows the speedup curves for 3 different problem sizes. As expected, for a small

problem size (input vector length = 1024), the speedup reaches a saturation point for a small

number of processors. Beyond this point, an increase in the number of processors does not result

in additional speedup. On the other hand, the speedup curve is nearly linear for a larger problem

size (length of input vector = 65536).

From the timings obtained in the experiments, we determined tw, the time to transfer a word (8

bytes), to be 16 microseconds. From the experimentally obtained values of tw and tc, the value of

K tw/tc was found to exceed 1 at E = .83 and the isoefficiency curves for E > .83 should be non-

linear. We selected those sets of data points from our experiment that correspond to approximately

2 In our actual FFT program written in C a unit of computation took approximately 400 microseconds. Given that
each FFT computation requires four 32-bit additions/subtractions and four 32 bit multiplications, this corresponds to a
Mega-FLOP rating of 0.02 which is far lower than those obtained from FFT benchmarks written in Fortran or assembly
language. This is perhaps due to our inefficient C-compiler. Since CPU speed has a tremendous impact on the overall
scalability of FFT, we artificially increased the CPU speed to a more realistic rating of 0.1 Mega-FLOP. This is obtained
by replacing the actual complex arithmetic of the inner loop of the FFT computation by a dummy loop that takes 80
microseconds to execute.
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Figure 3.3: Isoefficiency curves for 3 different values of E on a hypercube.

the same efficiencies and used these to plot the three isoefficiency curves given in Figure 3.3. In

order to make it easier to see the relationship between problem size and the number of processor,

we plot n log n on the X-axis and p log p on the Y-axis. The plot is nearly linear for E = .76 and

E = .66, thus, showing an isoefficiency of �(p log p) which conforms to our analysis. The third

curve corresponding to E = .87 shows poor isoefficiency. This is in agreement with our analytical

results as 0.87 is greater than the break-even efficiency of 0.83.

Using the run times on the hypercube, the corresponding results for a mesh connected computer

having identical processor speed and identical communication costs per link were projected. Figure

3.4 shows the isoefficiency curves for hypercube and mesh connected computers for the same

efficiency of 0.66. It is clear that the problem size has to grow much more rapidly on a mesh than

on a hypercube to maintain the same efficiency.

Table 3.1 illustrates the effect of tw/tc ratio on the scalability of the FFT algorithm on hypercubes.

The entries in the table show the slope of log n to log p curve for maintaining different efficiencies on

4 different machines, namely, M1, M2, M3 and M4, for which the tw/tc ratios are 0.2, 1.28, 0.18 and

10.7 respectively. This table also serves to predict the maximum practically achievable efficiencies
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on these machines for the FFT computation. A machine can easily obtain those efficiencies for

which the entry in table is small; i.e., around 1. For example, the entry for machine M2 corresponding

to an efficiency of 0.5 is 1.28. Thus it can obtain an efficiency of 0.5 even on more than 10,000

processors (p ≈ 217) on a FFT problem with n = 217×1.28 ≈ 222, which is only moderately large.

A machine for which the entry in the table is large cannot obtain those efficiencies except on a

very small number of processors. For example in order to maintain an efficiency of 0.7 on M4, n

will have to grow asymptotically as p25. In other words, a problem with 225 input data elements

is required to get an efficiency of 0.7 even on a 2 processors machine for which the tw/tc ratio is

equal to that of M4. Note that as discussed in Section 3.1.2, when this figure is less than one, n has

to grow as p (or n log n has to grow asymptotically in proportion with p log p) due to concurrency

and other factors such as ts .

Table 3.2 shows the efficiencies obtainable on a hypercube of type M4 as a function of number

of processors and the size of the input. This table gives an idea as to how large the problem size has

to be to obtain reasonable efficiencies on hypercubes of various sizes of type M4. Clearly, except

for unreasonably large problem sizes (with n > 230), the efficiencies obtained will be small (< 0.2)
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E M1 M2 M3 M4

0.1 .022 .143 .020 1.19

0.2 .050 .320 .045 2.68

0.3 .085 .548 .076 4.59

0.4 .133 .853 .119 7.14

0.5 .200 1.28 .178 10.7

0.6 .300 1.92 .267 16.1

0.7 .466 2.99 .415 25.0

0.8 0.80 5.12 .712 42.9

0.9 1.80 11.5 1.60 96.4

.95 3.80 24.3 3.38 203

Table 3.1: Scalability of FFT algorithm on four different hypercubes for various efficiencies. Each

entry denotes the ratio of log n to log p.

for large hypercubes (having a thousand or more nodes) of type M4.

The reader should note that the tw/tc ratios for M1, M2, M3 and M4 roughly correspond to those

of four commercially available machines; i.e., nCUBE1, nCUBE2, Intel IPSC/2 and IPSC/860

respectively. Their communication channel bandwidths are roughly 0.5, 2.5, 2.8 and 2.8 Megabytes

per second and the individual processor speeds are roughly 0.1, 3.2, 0.5 and 30 Mega-FLOPS

respectively for FFT computation3.

3.2 Dense Matrix Multiplication

Matrix multiplication is widely used in a variety of applications and is often one of the core

components of many scientific computations. Since the matrix multiplication algorithm is highly

computation intensive, there has been a great deal of interest in developing parallel formulations of

this algorithm and testing its performance on various parallel architectures [5, 16, 21, 23, 24, 28, 39,

3 The processor speeds for nCUBE2, Intel IPSC/2 and IPSC/860 are quoted by the respective manufacturers for FFT
benchmarks.
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Input Size→ 212 220 230 240 250

No. of Processors ↓
1 1.00 1.00 1.00 1.00 1.00

16 0.22 0.32 0.41 0.48 0.54

64 0.19 0.24 0.32 0.38 0.44

256 0.12 0.19 0.26 0.32 0.37

1024 0.10 0.16 0.22 0.27 0.32

4096 0.09 0.13 0.19 0.24 0.28

Table 3.2: Efficiencies as a function of input size and number of processors on a hypercube of type

M4.

67, 68, 136, 27]. A number of parallel formulations of dense matrix multiplication algorithm have

been developed. For arbitrarily large number of processors, any of these algorithms or their variants

can provide near linear speedup for sufficiently large matrix sizes and none of the algorithms can

be clearly claimed to be superior than the others. In this section, we analyze the performance and

scalability of a number of parallel formulations of the matrix multiplication algorithm and predict

the conditions under which each formulation is better than the others.

3.2.1 Parallel Matrix Multiplication Algorithms

In this section we briefly describe some well known parallel matrix multiplication algorithms give

their parallel execution times.

A Simple Algorithm

Consider a logical two dimensional mesh of p processors (with
√

p rows and
√

p columns) on

which two n× n matrices A and B are to be multiplied to yield the product matrix C . Let n ≥ √p.

The matrices are divided into sub-blocks of size n/
√

p× n/
√

p which are mapped naturally on the

processor array. The algorithm can be implemented on a hypercube by embedding this processor

mesh into it. In the first step of the algorithm, each processor acquires all those elements of both the
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matrices that are required to generate the n2/p elements of the product matrix which are to reside

in that processor. This involves an all-to-all broadcast of n2/p elements of matrix A among the
√

p processors of each row of processors and that of the same sized blocks of matrix B among
√

p

processors of each column which can be accomplished in 2ts log p + 2twn2/
√

p time. After each

processor gets all the data it needs, it multiplies the
√

p pairs of sub-blocks of the two matrices

to compute its share of n2/p elements of the product matrix. Assuming that an addition and

multiplication takes a unit time, the multiplication phase can be completed in n3/p units of time.

Thus the total parallel execution time of the algorithm is given by the following equation:

Tp = n3

p
+ 2ts log p + 2tw

n2

√
p
. (3.11)

This algorithm is memory-inefficient. The memory requirement for each processor is2(n2/
√

p)

and thus the total memory requirement is 2(n2√p) words as against 2(n2) for the sequential

algorithm.

Cannon’s Algorithm

A parallel algorithm that is memory efficient and is frequently used is due to Cannon [21]. Again

the two n × n matrices A and B are divided into square submatrices of size n/
√

p × n/
√

p among

the p processors of a wrap-around mesh (which can be embedded in a hypercube if the algorithm

was to be implemented on it). The sub-blocks of A and B residing with the processor (i, j) are

denoted by Ai j and B i j respectively, where 0 ≤ i <
√

p and 0 ≤ j <
√

p. In the first phase of

the execution of the algorithm, the data in the two input matrices is aligned in such a manner that

the corresponding square submatrices at each processor can be multiplied together locally. This

is done by sending the block Ai j to processor (i, ( j + i)mod
√

p), and the block B i j to processor

((i + j)mod
√

p, j). The copied sub-blocks are then multiplied together. Now the A sub-blocks

are rolled one step to the left and the B sub-blocks are rolled one step upward and the newly

copied sub-blocks are multiplied and the results added to the partial results in the C sub-blocks.

The multiplication of A and B is complete after
√

p steps of rolling the sub-blocks of A and B

leftwards and upwards, respectively, and multiplying the in coming sub-blocks in each processor.

In a hypercube with cut-through routing, the time spent in the initial alignment step can be ignored

with respect to the
√

p shift operations during the multiplication phase, as the former is a simple



50

one-to-one communication along non-conflicting paths. Since each sub-block movement in the

second phase takes ts + twn2/p time, the total parallel execution time for all the movements of the

sub-blocks of both the matrices is given by the following equation:

Tp = n3

p
+ 2ts
√

p + 2tw
n2

√
p
. (3.12)

Fox’s Algorithm

This algorithm is due to Fox et al. and is described in detail in [39] and [38]. The input matrices

are initially distributed among the processors in the same manner as in the simple algorithm in

Section 3.2.1. The algorithm works in
√

p iterations, where p is the number of processors being

used. The data communication in the algorithm involves successive broadcast of the the sub-blocks

of A in a horizontal direction so that all processors in the ith row receive the sub-block Ai(i+ j) in

the j th iteration (iterations are numbered from 0 to j − 1). After each broadcast the sub-blocks of

A are multiplied by the sub-blocks of B currently residing in each processor and are accumulated

in the sub-blocks of S. The last step of each iteration is the shifting of the sub-blocks of B in all

the processors to their respective North neighbors in the wrap-around mesh, the sub-blocks of the

topmost row being rolled into the bottommost row. Thus, for the mesh architecture, the algorithm

takes (ts + twn2/p)
√

p time in communication in each of the
√

p iterations, resulting in a total

parallel execution time of n3/p + twn2 + ts p. By sending the sub-blocks in small packets in a

pipelined fashion, Fox et al. show the run time of this algorithm to be as follows:

Tp = n3

p
+ 2tw

n2

√
p
+ ts p. (3.13)

Clearly the parallel execution time of this algorithm is worse than that of the simple algorithm

or Cannon’s algorithm. On a hypercube, it is possible to employ a more sophisticated scheme for

one-to-all broadcast [71] of sub-blocks of matrix A among the rows. Using this scheme, the parallel

execution time can be improved to n3/p + 2twn2/
√

p + ts
√

p log p + 2n
√

ts twłogp, which is still

worse than Cannon’s algorithm. However, if the procedure is performed in an asynchronous manner

(i.e., in every iteration, a processor starts performing its computation as soon as it has all the required

data, and does not wait for the entire broadcast to finish) the computation and communication of sub-

blocks can be interleaved. It can be shown that if each step of Fox’s algorithm is not synchronized
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and the processors work independently, then its parallel execution time can be reduced to almost a

factor of two of that Cannon’s algorithm.

Berntsen’s Algorithm

Due to nearest neighbor communications on the
√

p × √p wrap-around array of processors,

Cannon’s algorithm’s performance is the same on both mesh and hypercube architectures. In [16],

Berntsen describes an algorithm which exploits greater connectivity provided by a hypercube. The

algorithm uses p = 23q processors with the restriction that p ≤ n3/2 for multiplying two n × n

matrices A and B. Matrix A is split by columns and B by rows into 2q parts. The hypercube

is split into 2q subcubes, each performing a submatrix multiplication between submatrices of A

of size n/2q × n/22q and submatrices of B of size n/22q × n/2q using Cannon’s algorithm. It

is shown in [16] that the time spent in data communication by this algorithm on a hypercube is

2ts p1/3 + (ts log p)/3 + 3twn2/p2/3, and hence the total parallel execution time is given by the

following equation:

Tp = n3

p
+ 2ts p1/3 + 1

3
ts log p + 3tw

n2

p2/3
. (3.14)

The terms associated with both ts and tw are smaller in this algorithm than the algorithms

discussed earlier in this section. It should also be noted that this algorithm, like the simple

algorithm, is not memory efficient as it requires storage of 2n2/p + n2/p2/3 matrix elements per

processor.

The DNS Algorithm

One Element Per Processor Version An algorithm that uses a hypercube with p = n3 = 23q

processors to multiply two n× n matrices was proposed by Dekel, Nassimi and Sahni in [28, 118].

The p processors can be visualized as being arranged in an 2q×2q×2q array. In this array, processor

pr occupies position (i, j, k) where r = i22q + j2q + k and 0 ≤ i, j, k < 2q. Thus if the binary

representation of r is r3q−1r3q−2...r0, then the binary representations of i, j and k are r3q−1r3q−2...r2q,

r2q−1r2q−2...rq and rq−1rq−2...r0 respectively. Each processor pr has three data registers ar , br and

cr , respectively. Initially, processor ps in position (0,j,k) contains the element a( j, k) and b( j, k)

in as and bs respectively. The computation is accomplished in three stages. In the first stage, the
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elements of the matrices A and B are distributed over the p processors. As a result, ar gets a( j, i)

and br gets b(i, k). In the second stage, product elements c( j, k) are computed and stored in each

cr . In the final stage, the sums 6n−1
i=0 ci, j,k are computed and stored in c0, j,k.

The above algorithm accomplishes the 2(n3) task of matrix multiplication in 2(log n) time

using n3 processors. Since the processor-time product of this parallel algorithm exceeds the

sequential time complexity of the algorithm, it is not processor-efficient. This algorithm can be

made processor-efficient by using fewer that n3 processors; i.e., by putting more than one element

of the matrices on each processor. There are more than one ways to adapt this algorithm to use

fewer than n3 processors. The method proposed by Dekel, Nassimi, and Sahni in [28, 118] is as

follows.

Variant with More than One Element Per Processor This variant of the DNS algorithm can

work with n2r processors, where 1 < r < n, thus using one processor for more than one element

of each of the two n × n matrices. The algorithm is similar to the one above except that a logical

processor array of r3 (instead of n3) superprocessors is used, each superprocessor comprising

of (n/r)2 hypercube processors. In the second step, multiplication of blocks of (n/r) × (n/r)

elements instead of individual elements is performed. This multiplication of (n/r)× (n/r) blocks

is performed according to Fox’s on n/r × n/r subarrays (each such subarray is actually a subcube)

of processors using Cannon’s algorithm for one element per processor. This step will require a

communication time of 2(ts + tw)n/r .

In the first stage of the algorithm, each data element is broadcast over r processors. In order to

place the elements of matrix A in their respective positions, first the buffer a(0, j,k) is sent to a(k, j,k)

in log r steps and then a(k, j,k) is broadcast to a(k, j,l), 0 ≤ l < r , again in log r steps. By following

a similar procedure, the elements of matrix B can be transmitted to their respective processors.

In the second stage, groups of (n/r)2 processors multiply blocks of (n/r) × (n/r) elements each

processor performing n/r computations and 2n/r communications. In the final step, the elements

of matrix C are restored to their designated processors in log r steps. The communication time can

thus be shown to be equal to (ts + tw)(5 log r + 2n/r) resulting in the parallel run time given by the
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following equation:

Tp = n3

p
+ (ts + tw)(5 log(

p

n2
) + 2

n3

p
). (3.15)

If p = n3/log n processors are used, then the parallel execution time of the DNS algorithm

is 2(log n). The processor-time product is now 2(n3), which is same as the sequential time

complexity of the algorithm.

Our Variant of the DNS Algorithm

Here we present another scheme to adapt the single element per processor version of the DNS

algorithm to be able to use fewer than n3 processors on a hypercube. Henceforth, we shall refer

to this algorithm as the GK variant of the DNS algorithm. As shown later in Section 3.2.3, this

algorithm performs better than the DNS algorithm for a wide range of n and p. Also, unlike the

DNS algorithm which works only for n2 ≤ p ≤ n3, this algorithm can use any number of processors

from 1 to n3. In this variant, we use p = 23q processors where q < (log n)/3. The matrices are

divided into sub-blocks of n/2q × n/2q elements and the sub-blocks are numbered just the way the

single elements were numbered in the one-element-per-processor version of the DNS algorithm.

Now, all the single element operations of this algorithm are replaced by sub-block operations; i.e.,

matrix sub-blocks are multiplied, communicated, and added.

Let tmult and tadd is the time to perform a single floating point multiplication and addition

respectively. Also, according to the earlier assumption, tmult + tadd = 1. In the first stage of this

algorithm, n2/p2/3 data elements are broadcast over p1/3 processors for each matrix. In order to place

the elements of matrix A in their respective positions, first the buffer a(0, j,k) is sent to a(k, j,k) in log p1/3

steps and then a(k, j,k) is broadcast to a(k, j,l), 0 ≤ l < p1/3, again in log p1/3 steps. By following a

similar procedure, the elements of matrix B can be sent to the processors where they are to be utilized

in 2 log p1/3 steps. In the second stage of the algorithm, each processor performs (n/p1/3)3 = n3/p

multiplications. In the third step, the corresponding elements of p1/3 groups of n2/p2/3 elements

each are added in a tree fashion. The first stage takes 4ts log p1/3 + 4tw(n2/p2/3) log p1/3 time.

The second stage contributes tmult n3/p to the parallel execution time and the third stage involves

ts log p1/3+ tw(n2/p2/3) log p1/3 communication time and taddn3/p computation time for calculating
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Algorithm Total Overhead Asymptotic Range of

Function, To Isoeff. Function Applicability

Berntsen’s 2ts p4/3 + 1
3
ts p log p + 3twn2 p1/3 2(p2) 1 ≤ p ≤ n3/2

Cannon’s 2ts p3/2 + 2twn2√p 2(p1.5) 1 ≤ p ≤ n2

GK 5
3 ts p log p + 5

3 twn2 p1/3 log p 2(p(log p)3) 1 ≤ p ≤ n3

Improved GK twn2 p1/3 + 1
3 ts p log p + 2np2/3

√
1
3 ts tw log p 2(p(log p)1.5) 1 ≤ p ≤ ( n√

ts
tw

log n
)3

DNS (ts + tw)(
5
3 p log p + 2n3) 2(p log p) n2 ≤ p ≤ n3

Table 3.3: Communication overhead, scalability and range of application of the four algorithms on

a hypercube.

the sums. The total parallel execution time is therefore given by the following equation:

Tp = n3

p
+ 5

3
ts log p + 5

3
tw

n2

p2/3
log p. (3.16)

This execution time can be further reduced by using a more sophisticated scheme for one-to-all

broadcast on a hypercube [71]. This is discussed in detail later while analyzing the scalability of

the GK algorithm.

3.2.2 Scalability Analysis

Following the technique described in Section 2.2, in [54] we have analyzed the scalability of all the

algorithms discussed in Section 3.2.1 on the hypercube architecture using the isoefficiency metric.

The asymptotic scalabilities and the range of applicability of these algorithms is summarized in

Table 3.3. The isoefficiency functions in Table 3.3 reflect the impact of communication overheads,

as well as, the degree of concurrency. For example, the isoefficiency term for Berntsen’s algorithm

is 2(p4/3) due to communication overhead [54]. However, for this algorithm, p cannot exceed

n3/2. This restriction p ≤ n3/2 implies that n3 = W = �(p2). Hence, the overall asymptotic

isoefficiency function for this algorithm is 2(p2). In this section and the rest of this chapter, we

skip the discussion of the simple algorithm and Fox’s algorithm because the expressions for their

iso-efficiency functions differ with that for Cannon’s algorithm by small constant factors only [54].

Note that Table 3.3 gives only the asymptotic scalabilities of the four algorithms. In practice,
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none of the algorithms is strictly better than the others for all possible problem sizes and number

of processors. Further analysis is required to determine the best algorithm for a given problem size

and a certain parallel machine depending on the number of processors being used and the hardware

parameters of the machine. A detailed comparison of these algorithms based on their respective

total overhead functions is presented in the next section.

3.2.3 Relative Performance of the Four Algorithms on a Hypercube

The isoefficiency functions of the four matrix multiplication algorithms predict their relative perfor-

mance for a large number of processors and large problem sizes. But for moderate values of n and

p, a seemingly less scalable parallel formulation can outperform the one that has an asymptotically

smaller isoefficiency function. In this subsection, we derive the exact conditions under which each

of these four algorithms yields the best performance.

We compare a pair of algorithms by comparing their total overhead functions (To) as given in

Table 3.3. For instance, while comparing the GK algorithm with Cannon’s algorithm, it is clear

that the ts term for the GK algorithm will always be less than that for Cannon’s algorithm. Even

if ts = 0, the tw term of the GK algorithm becomes smaller than that of Cannon’s algorithm for

p > 130 million. Thus, p = 130 million is the cut-off point beyond which the GK algorithm will

perform better than Cannon’s algorithm irrespective of the values of n. For p < 130 million, the

performance of the GK algorithm will be better than that of Cannon’s algorithm for values of n less

than a certain threshold value which is a function of p and the ration of ts and tw. A hundred and

thirty million processors is clearly too large, but we show that for reasonable values of ts, the GK

algorithm performs better than Cannon’s algorithm for very practical values of p and n.

In order to determine ranges of p and n where the GK algorithm performs better than Cannon’s

algorithm, we equate their respective overhead functions and compute n as a function of p. We

call this nEqual−To (p) because this value of n is the threshold at which the overheads of the two

algorithms will be identical for a given p. If n > n Equal−To (p), Cannon’s algorithm will perform

better and if n < nEqual−To (p), the GK algorithm will perform better.

T (Cannon)
o = 2ts p3/2 + 2twn2√p = T (GK )

o = 5

3
ts p log p + 5

3
twn2 p1/3 log p,
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Figure 3.5: A comparison of the four algorithms for tw = 3 and ts = 150.

nEqual−To (p) =
√

(5/3p log p − 2p3/2)ts

(2
√

p − 5/3p1/3 log p)tw
. (3.17)

Similarly, equal overhead conditions can be determined for other pairs of algorithms too and

the values of tw and ts can be plugged in depending upon the machine in question to determine the

best algorithm for a give problem size and number of processors. We have performed this analysis

for three practical sets of values of tw and ts . In the rest of the section we demonstrate the practical

importance of this analysis by showing how any of the four algorithms can be useful depending on

the problem size and the parallel machine available.

The plain lines represent equal overhead conditions for pairs of algorithms. For a curve marked

“X vs Y ” in a figure, algorithm X has a smaller value of communication overhead to the left of the

curve, algorithm Y has smaller communication overhead to the right side of the curve, while the

two algorithms have the same value of To along the curve. The lines with symbols
�

, +, and �

plot the functions p = n3/2, p = n2 and p = n3, respectively. These lines demarcate the regions

of applicabilities of the four algorithms (see Table 3.3) and are important because an algorithm

might not be applicable in the region where its overhead function To is mathematically superior than

others. In all the figures in this section, the region marked with an x is the one where p > n3 and

none of the algorithms is applicable, the region marked with an a is the one where the GK algorithm
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Figure 3.6: A comparison of the four algorithms for tw = 3 and ts = 10.

is the best choice, the symbol b represents the region where Berntsen’s algorithm is superior to the

others, the region marked with a c is the one where Cannon’s algorithm should be used and the

region marked with a d is the one where the DNS algorithm is the best.

Figure 3.5 compares the four algorithms for tw = 3 and ts = 150. These parameters are very

close to that of a currently available parallel computer like the nCUBE2. In this figure, since the

nEqual−To curve for the DNS algorithm and the GK algorithm lies in the x region, and the DNS

algorithm is better than the GK algorithm only for values of n smaller than n Equal−To (p). Hence the

DNS algorithm will always4 perform worse than the GK algorithm for this set of values of ts and tw

and the latter is the best overall choice for p > n2 as Berntsen’s algorithm and Cannon’s algorithm

are not applicable in this range of p. Since the n Equal−To curve for GK and Cannon’s algorithm

lies below the p = n3/2 curve, the GK algorithm is the best choice even for n3/2 ≤ p ≤ n2. For

p < n3/2, Berntsen’s algorithm is always better than Cannon’s algorithm, and for this set of ts and

tw, also than the GK algorithm. Hence it is the best choice in that region in Figure 3.5.

In Figure 3.6, we compare the four algorithms for a hypercube with tw = 3 and ts = 10. Such

a machine could easily be developed in the near future by using faster CPU’s (tw and ts represent

4 Actually, the nEqual−To curve for DNS vs GK algorithms will cross the p = n3 curve for p = 2.6 × 1018, but clearly
this region has no practical importance.
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Figure 3.7: A comparison of the four algorithms for tw = 3 and ts = 0.5.

relative communication costs with respect to the unit computation time) and reducing the message

startup time. By observing the n Equal−To curves and the regions of applicability of these algorithms,

the regions of superiority of each of the algorithms can be determined just as in case of Figure 3.5.

It is noteworthy that in Figure 3.6 each of the four algorithms performs better than the rest in some

region and all the four regions a, b, c and d contain practical values of p and n.

In Figure 3.7, we present a comparison of the four algorithms for tw = 3 and ts = 0.5. These

parameters are close to what one can expect to observe on a typical SIMD machine like the CM-2.

For the range of processors shown in the figure, the GK algorithm is inferior to the others5. Hence

it is best to use the DNS algorithm for n2 ≤ p ≤ n3, Cannon’s algorithm for n3/2 ≤ p ≤ n2 and

Berntsen’s algorithm for p < n3/2.

3.2.4 Scalabilities of Different Algorithms with Simultaneous Communication on All

Hypercube Channels

On certain parallel machines like the nCUBE2, the hardware supports simultaneous communication

on all the channels. This feature of the hardware can be utilized to significantly reduce the

5 The GK algorithm does begin to perform better than the other algorithms for p > 1.3× 108, but again we consider this
range of p to be impractical.
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communication cost of certain operations involving broadcasting and personalized communication

[71]. In this section we investigate as to what extent can the performance of the algorithms described

in Section 3.2.1 can be improved by utilizing simultaneous communication on all the log p ports of

the hypercube processors.

Cannon’s algorithm, Berntsen’s algorithm and the pipelined version of Fox’s algorithm employ

only nearest neighbor communication and hence can benefit from simultaneous communication by

a constant factor only as the subbocks of matrices A and B can now be transferred simultaneously.

The DNS algorithm can also gain only a constant factor in its communication terms as all data

messages are only one word long. Hence, among the matrix multiplication algorithms discussed

here, the ones that can potentially benefit from simultaneous communications on all the ports are

the simple algorithm (or its variations [68]) and the GK algorithm.

The Simple Algorithm with All-Port Communication

This algorithm requires an all-to-all broadcast of the sub-blocks of the matrices A and B among

groups of
√

p processors. The best possible scheme utilizing all the channels of a hypercube

simultaneously can accomplish an all-to-all broadcast of blocks of size n2/p among
√

p processors

in time 2twn2√p/(p log p)+ (ts log p)/2. Moreover, the communication of the sub-blocks of both

A and B can proceed simultaneously. Thus the parallel execution time of this algorithm on a

hypercube with simultaneous communication is given by the following equation:

Tp = n3

p
+ 2tw

n2

√
p log p

+ 1

2
ts log p. (3.18)

Recall that the simple algorithm is not memory efficient. Ho et al. [68] give a memory efficient

version of this algorithm which has somewhat higher execution time than that given by Equation

3.18. It can be shown that the isoefficiency function due to communication overheads is only

2(p log p) now, which is a significant improvement over the 2(p1.5) isoefficiency function of this

algorithm when communication on only one of the log p ports of a processor was allowed at a time.

However, as mentioned in [68], the lower limit on the message size imposes the condition that

n ≥ (√p log p)/2. This requires that n3 = W ≥ p1.5(log p)3/8. Thus the rate at which the the

problem size is required to grow with respect to the number of processors in order to utilize all the
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communication channels of the hypercube is higher than the isoefficiency function of the algorithm

implemented on a simple hypercube with one port communication at a time.

The GK Algorithm with All-Port Communication

Using the one-to-all broadcast scheme of [71] for a hypercube with simultaneous all-port commu-

nication, the parallel execution time of the GK algorithm can be reduced to the following:

Tp = n3

p
+ ts log p + 9tw

n2

p2/3 log p
+ 6

n

p1/3

√
ts tw. (3.19)

The communication terms now yield an isoefficiency function of 2(p log p), but it can be

shown that lower limit on the message size entails the problem size to grow as 2(p(log p)3) with

respect to p which is not any better that the isoefficiency function of this algorithm on a simple

hypercube with one port communication at a time.

Discussion

The gist of the analysis in this section is that allowing simultaneous on all the ports of a processor

on a hypercube does not improve the overall scalability of matrix multiplication algorithms. The

reason is that simultaneous communication on all channels requires that each processor has large

enough chunks of data to transfer to other processors. This imposes a lower bound on the size of

the problem that will generate such large messages. In case of matrix multiplication algorithms,

the problem size (as a function of p) that can generate large enough messages for simultaneous

communication to be useful, turns out to be larger than what is required to maintain a fixed efficiency

with only one port communication at a time. However, there will be certain values of n and p for

which the modified algorithm will perform better.

3.2.5 Isoefficiency as a Function of Technology Dependent Factors

The isoefficiency function can be used not only to determine the rate at which the problem size should

grow with respect to the number of processors, but also with respect to a variation in other hardware

dependent constants such as the communication speed and processing power of the processors

used etc. In many algorithms, these constants contribute a multiplicative term to the isoefficiency
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function, but in some others they effect the asymptotic isoefficiency of a parallel system (e.g.,

parallel FFT). For instance, a multiplicative term of (tw)3 appears in most isoefficiency functions of

matrix multiplication algorithms described in this chapter. As discussed earlier, tw depends on the

ratio of the data communication speed of the channels to the computation speed of the processors

used in the parallel architecture. This means that if the processors of the multicomputer are replaced

by k times faster processors, then the problem size will have to be increased by a factor of k3 in

order to obtain the same efficiency. Thus the isoefficiency function for matrix multiplication is very

sensitive to the hardware dependent constants of the architecture. For example, in case of Cannon’s

algorithm, if the number of processors is increased 10 times, one would have to solve a problem 31.6

times bigger in order to get the same efficiency. On the other hand, for small values of ts (as may be

the case with most SIMD machines), if p is kept the same and 10 times faster processors are used,

then one would need to solve a 1000 times larger problem to be able to obtain the same efficiency.

Hence for certain problem sizes, it may be better to have a parallel computer with k-fold as many

processors rather than one with the same number of processors, each k-fold as fast (assuming that

the communication network and the bandwidth etc. remain the same). This should be contrasted

with the conventional wisdom that suggests that better performance is always obtained using fewer

faster processors [15].

3.2.6 Experimental Results

We verified a part of the analysis of Section 3.2.3 through experiments on the CM-5 parallel

computer. On this machine, the fat-tree [89] like communication network on the CM-5 provides

simultaneous paths for communication between all pairs of processors. Hence the CM-5 can be

viewed as a fully connected architecture which can simulate a hypercube connected network. We

implemented Cannon’s and the algorithm and our (GK) variant of the DNS algorithm.

On the CM-5, the time taken for one floating point multiplication and addition was measured

to be 1.53 microseconds on our implementation. The message startup time for our program was

observed to be about 380 microseconds and the per-word transfer time for 4 byte words was observed

to be about 1.8 microseconds6. Since the CM-5 can be considered as a fully connected network

6 These values do not necessarily reflect the communication speed of the hardware but the overheads observed for our
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Figure 3.8: Efficiency as a function of matrix size for Cannon’s algorithm and GK algorithm for 64

processors.

of processors, the expression for the parallel execution time for the algorithm of Section 3.2.1 will

have to be modified slightly. The first part of the procedure to place the elements of matrix A in

their respective positions, requires sending the buffer a(0, j,k) to a(k, j,k). This can be done in one step

on the CM-5 instead of log(p1/3) steps on a conventional hypercube. The same is true for matrix B

as well. It can be shown that the following modified expression gives the parallel execution time

for this algorithm on the CM-5:

Tp = n3

p
+ ts(log p + 2)+ tw

n2

p2/3
(log p + 2). (3.20)

Computing the condition for equal To for this and Cannon’s algorithm by deriving the respective

values of To from Equations 3.20 and 3.12, it can be shown that for 64 processors, Cannon’s

algorithm should perform better that our algorithm for n > 83. Figure 3.8 shows the efficiency

vs n curves for the two algorithms for p = 64. It can be seen that as predicted, our algorithm

performs better for smaller problem sizes. The experimental cross-over point of the two curves

implementation. For instance, a function call in the program associated with sending or receiving a message could
contribute to the message startup overhead.
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is at n = 96. A slight deviation from the derived value of 83 can be explained due to the fact

that the values of ts and tw are not exactly the same for the two programs. For 512 processors,

the predicted cross-over point is for n = 295. Since the number of processors has to be a perfect

square for Cannon’s algorithm on square matrices, in Figure 3.9, we draw the efficiency vs n curve

for p = 484 for Cannon’s algorithm and for p = 512 for the GK algorithm7. The cross-over point

again closely matches the predicted value. These experiments suggest that the algorithm of Section

3.2.1 can outperform the classical algorithms like Cannon’s for a wide range of problem sizes and

number of processors. Moreover, as the number of processors is increased, the cross-over point

of the efficiency curves of the GK algorithm and Cannon’s algorithm corresponds to a very high

efficiency. As seen in Figure 3.9, the cross-over happens at E ≈ 0.93 and Cannon’s algorithm

cannot outperform the GK algorithm by a wide margin at such high efficiencies. On the other hand,

the GK algorithm achieves an efficiency of 0.5 for a matrix size of 112 × 112, whereas Cannon’s

algorithm operates at an efficiency of only 0.28 on 484 processors on 110 × 110 matrices. In other

words, in the region where the GK algorithm is better than Cannon’s algorithm, the difference in

the efficiencies is quite significant.

3.3 Performance and Scalability of Preconditioned Conjugate Gradient Methods on

Parallel Computers

Solving large sparse systems of linear equations is an integral part of mathematical and scientific

computing and finds application in a variety of fields such as fluid dynamics, structural analysis,

circuit theory, power system analysis, surveying, and atmospheric modeling. With the availability

of large-scale parallel computers, iterative methods such as the Conjugate Gradient method for

solving such systems are becoming increasingly appealing, as they can be parallelized with much

greater ease than direct methods. As a result there has been a great deal of interest in implementing

the Conjugate Gradient algorithm on parallel computers [6, 12, 62, 73, 79, 101, 122, 138, 139].

In this section, we study performance and scalability of parallel formulations of an iteration of the

Preconditioned Conjugate Gradient (PCG) algorithm [50] for solving large sparse linear systems

of equations of the form A x = b, where A is a symmetric positive definite matrix. Although,

7 This is not an unfair comparison because the efficiency can only be better for smaller number of processors.
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Figure 3.9: Efficiency vs matrix size for Cannon’s algorithm (p = 484) and the GK algorithm (p =

512).

we specifically deal with the Preconditioned CG algorithm only, the analysis of the diagonal

preconditioner case applies to the non-preconditioned method also. In fact the results of this section

can be adapted to a number of iterative methods that use matrix-vector multiplication and vector

inner product calculation as the basic operations in each iteration.

3.3.1 The Serial PCG Algorithm

Figure 3.10 illustrates the PCG algorithm [50] for solving a linear system of equations A x =

b, where A is a sparse symmetric positive definite matrix. The PCG algorithm performs a few

basic operations in each iteration. These are matrix-vector multiplication, vector inner product

calculation, scalar-vector multiplication, vector addition and solution of a linear system M z = r.

Here M is the preconditioner matrix, usually derived from A using certain techniques. We will

consider two kinds of preconditioner matrices M - (i) when M is chosen to be a diagonal matrix,

usually derived from the principal diagonal of A, and (ii) when M is obtained through a truncated

Incomplete Cholesky (IC) factorization [73, 138] of A. In the following subsections, we determine
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1. begin

2. i := 0; x0 := 0; r0 := b; ρ0 := ||r0||22;
3. while (

√
ρi > ε||r0||2) and (i < imax ) do

4. begin

5. Solve M zi = ri ;

6. γi := rT
i zi ;

7. i := i + 1;

8. if (i = 1) p1 := z0

9. else begin

10. βi := γi−1/γi−2;

11. pi := zi−1 + βi pi−1;

12. end;

13. wi := A pi ;

14. αi := γi−1/pT
i wi ;

15. xi := xi−1 + αi pi ;

16. ri := ri−1 − αi wi ;

17. ρi := ||ri ||22;

18. end; {while }

19. x := xi ;

20. end.

Figure 3.10: The Preconditioned Conjugate Gradient algorithm.
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the serial execution time for each iteration of the PCG algorithm with both preconditioners.

Diagonal Preconditioner

During a PCG iteration for solving a system of N equations, the serial complexity of computing the

vector inner product, scalar-vector multiplication and vector addition is 2(N). If M is a diagonal

matrix, the complexity of solving M z = r is also 2(N). If there are m non-zero elements in

each row of the sparse matrix A, then the matrix-vector multiplication of a CG iteration can be

performed in 2(m N) time by using a suitable scheme for storing A. Thus, with the diagonal

preconditioner, each CG iteration involves a few steps of2(N) complexity and one step of2(m N)

complexity. As a result, the serial execution time for one iteration of the PCG algorithm with a

diagonal preconditioner can be expressed as follows:

W = c1 N + c2m N . (3.21)

Here c1 and c2 are constants depending upon the floating point speed of the computer and m is the

number non-zero elements in each row of the sparse matrix.

The IC Preconditioner

In this section, we only consider the case when A is a block-tridiagonal matrix of dimension N

resulting from the discretization of a 2-dimensional self-adjoint elliptic partial differential equation

via finite differences using natural ordering of grid points. Besides the principal diagonal, the

matrix A has two diagonals on each side of the principal diagonal at distances of 1 and
√

N from it.

Clearly, all the vector operations can be performed in2(N) time. The matrix-vector multiplication

operation takes time proportional to 5N . When M is an IC preconditioner, the structure of M is

identical to that of A.

A method for solving M z = r, originally proposed for vector machines [138], is briefly

described below. A detailed description of the same can be found in [81]. As shown in Section

3.3.2, this method is perfectly parallelizable on CM-5 and other architectures ranging from mesh

to hypercube. In fact, this method leads to a parallel formulation of the PCG algorithm that is

somewhat more scalable and efficient (in terms of processor utilization) than a formulation using a

simple diagonal preconditioner.
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The matrix M can be written as M = (I - L)D(I - LT ), where D is a diagonal matrix and L is a

strictly lower triangular matrix with two diagonals corresponding to the two lower diagonals of M.

Thus, the system Mz = r may be solved by the following steps:

solve (I - L)u = r

solve Dv = u

solve (I - LT )z = v

Since L is strictly lower triangular (i.e., LN = 0), u and z may be written as u = 6N−1
i=0 Li r and

z = 6N−1
i=0 (Li )T v. These series may be truncated to (k + 1) terms where k � N because M is

diagonally dominant [73, 138]. In our formulation, we form the matrix L̃ = (I + L + L2 + ... +

Lk) explicitly. Thus, solving Mz = r is equivalent to

(i) u ≈ L̃r

(ii) v ≈ D−1u

(iii) z ≈ L̃T v

The number of diagonals in the matrix L̃ is equal to (k + 1)(k + 2)/2. These diagonals are

distributed in k+1 clusters at distances of
√

N from each other. The first cluster, which includes the

principal diagonal, has k + 1 diagonals, and then the number of diagonals in each cluster decreases

by one. The last cluster has only one diagonal which is at a distance of k
√

N from the principal

diagonal. Thus solving the system M z = r, in case of the IC preconditioner, is equivalent to

performing one vector division (step (ii)) and two matrix-vector multiplications (steps (i) and (iii)),

where each matrix has (k + 1)(k + 2)/2 diagonals. Hence the complexity of solving M z = r for

this case is proportional to (k + 1)(k + 2)N and the serial execution time of one complete iteration

is given by the following equation:

W = (c1 + (5+ (k + 1)(k + 2))c2)× N .

Here c1 and c2 are constants depending upon the floating point speed of the computer. The above

equation can be written compactly as follows by putting η(k) = c1 + c2(5+ (k + 1)(k + 2)).

W = η(k)N . (3.22)
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Figure 3.11: Partitioning a finite difference grid on a processor mesh.

3.3.2 Scalability Analysis: Block-Tridiagonal Matrices

In this section we consider the parallel formulation of the PCG algorithm with block-tridiagonal

matrix of coefficients resulting from a square two dimensional finite difference grid with natural

ordering of grid points. Each point on the grid contributes one equation to the system A x = b; i.e.,

one row of matrix A and one element of the vector b.

The Parallel Formulation

The points on the finite difference grid can be partitioned among the processors of a mesh connected

parallel computer as shown in Figure 3.11. Since a mesh can be mapped onto a hypercube or a

fully connected network, a mapping similar to the one shown in Figure 3.11 will work for these

architectures as well.

In the PCG algorithm, the scalar-vector multiplication and vector addition operations do not

involve any communication overhead, as all the required data is locally available on each processor

and the results are stored locally as well. If the diagonal preconditioner is used, then even solving

the system M z = r does not require any data communication because the resultant vector z can be

obtained by simply dividing each element of r by the corresponding diagonal element of M, both of

which are locally available on each processor. Thus, the operations that involve any communication

overheads are computation of inner products, matrix-vector multiplication, and, in case of the IC

preconditioner, solving the system M z = r.
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In the computation of the inner product of two vectors, the corresponding elements of each

vector are multiplied locally and these products are summed up. The value of the inner product

is the sum of these partial sums located at each processor. The data communication required to

perform this step involves adding all the partial sums and distributing the resulting value to each

processor.

In order to perform parallel matrix-vector multiplication involving the block-tridiagonal matrix,

each processor has to acquire the vector elements corresponding to the column numbers of all

the matrix elements it stores. It can be seen from Figure 3.11 that each processor needs to

exchange information corresponding to its
√

N/p boundary points with each of its four neighboring

processors. After this communication step, each processor gets all the elements of the vector it

needs to multiply with all the matrix elements it stores. Now the multiplications are performed and

the resultant products are summed and stored locally on each processor.

A method for solving M z = r for the IC preconditioner M has been described in Section

3.3.1. This computation involves multiplication of a vector with a lower triangular matrix L̃ and an

upper triangular matrix L̃T , where each triangular matrix has (k + 1)(k + 2)/2 diagonals arranged

in the fashion described in Section 3.3.1. If the scheme of partitioning A among the processors

(every processor stores
√

N/p clusters of
√

N/p matrix rows each) is extended to L̃ and L̃T , then

it can be shown that for
√

N/p > k the data communication for performing these matrix-vector

multiplications requires each processor in the mesh to send k
√

N/p vector elements to its immediate

north, east, south and west neighbors.

Communication Overheads

In this section we determine the overall overhead due to parallel processing in a PCG iteration.

As discussed in the previous subsection, the operations that incur communication overheads are

computation of inner products, matrix-vector multiplication and solving the system M z = r. Let

these three components of To be T Inner−Prod
o , T Matrix−V ector

o , and T PC−solve
o , respectively. In order to

compute each component of To, first we compute the time spent by each processor in performing

data communication for the operation in question. The product of this time with p gives the total

time spent by all the processors in performing this operation and To is the sum of each of these
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individual components.

Overhead in Computing the Inner Products The summation of p partial sums (one located

at each processor) can be performed through recursive doubling in (ts+tw) log p time on a hypercube,

and in (ts + tw) log p+ th
√

p time on a two dimensional mesh. It takes the same amount of time to

broadcast the final result to each processor. On a machine like the CM-5, such operations (known

as reduction operations) are performed by the control network in a small constant time which

can be ignored in comparison with the overhead incurred in other parts of the algorithm, such as,

matrix-vector multiplication. The following equations give the expressions for the total overhead

for each iteration over all the processors for computing the three inner products (lines 6, 14 and 17

in Figure 3.10) on different architectures. In these equations tw is ignored in comparison with ts as

the latter is much larger in most practical machines.

T Inner−Pr od
o ≈ 6(ts log p + th

√
p)× p (2− D mesh). (3.23)

T Inner−Pr od
o ≈ 6ts log p × p (H ypercube). (3.24)

T Inner−Prod
o ≈ 0 (C M − 5). (3.25)

Overhead Due to Matrix-Vector Multiplication During matrix-vector multiplication, each

processor needs to exchange vector elements corresponding to its boundary grid points with each of

its four neighboring processors. This can be done in 4ts + 4tw
√

N/p time on a mesh, hypercube or

a virtually fully connected network like that of the CM-5. The total overhead for this step is given

by the following equation:

T Matrix−V ector
o = 4(ts + tw

√
N

p
)× p. (3.26)

Overhead in Solving M z = r If a simple diagonal preconditioner is used, then this step does

not require any communication. For the case of the IC preconditioner, as discussed in Section

3.3.1, the communication pattern for this step is identical to that for matrix-vector multiplication,

except that k
√

N/p vector elements are now exchanged at each processor boundary. The required

expression for the overall overhead for this step is as follows.

T PC−solve
o = 0 (diagonal preconditioner). (3.27)
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T PC−solve
o = 4(ts + twk

√
N

p
)× p (IC preconditioner). (3.28)

Total Overhead Now, having computed each of its components, we can write the expressions

for the overall To using Equations 3.23 through 3.28. The following equations give the required

approximate expressions (after dropping the insignificant terms, if any) for To.

• The CM-5

To = 4(ts p + tw
√

pN ) (diagonal preconditioner). (3.29)

To = 4(2ts p + tw(k + 1)
√

pN ) (IC preconditioner). (3.30)

• Hypercube

To = 6ts p log p + 4tw
√

pN (diagonal preconditioner). (3.31)

To = 6ts p log p + 4(k + 1)tw
√

pN (IC preconditioner). (3.32)

• Mesh

To = 6ts p log p + 4tw
√

pN + 6th p
√

p (diagonal preconditioner). (3.33)

To = 6ts p log p + 4(k + 1)tw
√

pN + 6th p
√

p (IC preconditioner). (3.34)

Isoefficiency Analysis

Since we perform the scalability analysis with respect to one PCG iteration, the problem size W

will be considered to be 2(N) and we will study the rate at which N needs to grow with p for a

fixed efficiency as a measure of scalability. If To(W, P) is the total overhead, the efficiency E is

given by W/(W + To(W, p)). Clearly, for a given N , if p increases, then E will decrease because

To(W, p) increases with p. On the other hand, if N increases, then E increases because the rate

of increase of To is slower than that of W for a scalable algorithm. The isoefficiency function
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for a certain efficiency E can be obtained by equating W with ToE/(1 − E) (Equation 2.4) and

then solving this equation to determine N as a function of p. In our parallel formulation, To has a

number of different terms due to ts , tw, th, etc. When there are multiple terms of different orders

of magnitude with respect to p and N in W or To, it is often impossible to obtain the isoefficiency

function as a closed form function of p. For a parallel algorithm-architecture combination, as p

and W increase, efficiency is guaranteed not to drop if none of the terms of To grows faster than W .

Therefore, if To has multiple terms, we balance W against each individual term of To to compute

the respective isoefficiency function. The component of To that requires the problem size to grow

at the fastest rate with respect to p determines the overall asymptotic isoefficiency function of the

entire computation.

Diagonal Preconditioner Since the number of elements per row (m) in the matrix of coefficients

is five, from Equation 3.21, we obtain the following expression for W :

W = N(c1 + 5c2). (3.35)

Now we will use Equations 3.29, 3.31, 3.33, and 3.35 to compute the isoefficiency functions for the

case of diagonal preconditioner on different architectures.

• The CM-5

According to Equation 2.4, in order to determine the isoefficiency term due to ts , W has to

be proportional to 4ets p (see Equation 3.29), where e = E/(1 − E) and E is the desired

efficiency that has to be maintained. Therefore,

N(c1 + 5c2) ∝ 4ets p,

N ∝ p
4ets

c1 + 5c2
. (3.36)

The term due to tw in To is 4tw
√

pN (see Equation 3.29) and the associated isoefficiency

condition is determined as follows:

N(c1 + 5c2) ∝ 4etw
√

pN ,
√

N ∝ √
p

4etw
c1 + 5c2

,

N ∝ p(
4etw

c1 + 5c2
)2. (3.37)
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According to both Equations 3.36 and 3.37, the overall isoefficiency function for the PCG

algorithm with a simple diagonal preconditioner is 2(p); i.e, it is a highly scalable parallel

system which requires only a linear growth of problem size with respect to p to maintain a

certain efficiency.

• Hypercube

Since the terms due to tw are identical in the overhead functions for both the hypercube and

the CM-5 architectures, the isoefficiency condition resulting from tw is still determined by

Equation 3.37. The term associated with ts yields the following isoefficiency function:

N ∝ 6ets

c1 + 5c2
p log p. (3.38)

Since Equation 3.38 suggests a higher growth rate for the problem size with respect to p

to maintain a fixed E , it determines the overall isoefficiency function which is 2(p log p).

Also, ts has a higher impact on the efficiency on a hypercube than on the CM-5.

• Mesh

The isoefficiency term due to ts will be the same as in Equation 3.38 because the terms due

to ts in the overhead functions for the hypercube and the mesh are identical. Similarly, the

isoefficiency term due to tw will be the same as in Equation 3.37. Balancing W against the

term due to th in Equation 3.33, we get

N(c1 + 5c2) ∝ 6eth p
√

p,

N ∝ 6eth

c1 + 5c2
p1.5. (3.39)

Now N has to grow as2(p) to balance the overheads due to tw (Equation 3.37), as2(p log p)

to balance the overhead due to ts (Equation 3.38), and as 2(p1.5) to balance the overhead

due to th (Equation 3.39). Clearly, Equation 3.39 determines the asymptotic isoefficiency

function for the mesh.
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IC Preconditioner The following overall isoefficiency functions can be derived for the case of

the IC preconditioner using the analysis similar to that in the case of rge diagonal preconditioner by

taking the expression for W from Equation 3.22 and expressions for To from Equations 3.30, 3.32,

and 3.34 for various architectures:

N ∝ p(
4etw(k + 1)

η(k)
)2 (C M − 5). (3.40)

N ∝ 6ets

η(k)
p log p (hypercube). (3.41)

N ∝ 6eth

η(k)
p
√

p (mesh). (3.42)

The isoefficiency functions given by the above equations are asymptotically the same as those

for the diagonal preconditioner (Equations 3.36 through 3.39), but with different constants. The

impact of these constants on the overall efficiency and scalability of the PCG iteration is discussed

in the next section.

Discussion

A number of interesting inferences can be drawn from the scalability analysis performed in Section

3.3.2. For a typical MIMD mesh or hypercube with ts � tw, matrix-vector multiplication and

solution of M z = r with the preconditioner M incur relatively small communication overheads

compared to the computation of inner-product of vectors. For these architectures, the inner-products

calculation contributes the overhead term that determines the overall isoefficiency function and the

total communication cost is dominated by the message startup time ts. In contrast, on the CM-5, the

communication overhead in the inner product calculation is minimal due to the control network. As

a result, the CM-5 is ideally scalable for an iteration of this algorithm; i.e., speedups proportional

to the number of processors can be obtained by simply increasing N linearly with p. Equivalently,

bigger instances of problems can be solved in a fixed given time by using linearly increasing number

of processors. In the absence of the control network, even on the CM-5 the overhead due to message

startup time in the inner product computation would have dominated and the isoefficiency function

of the PCG algorithm would have been greater than 2(p). Thus, for this application, the control

network is highly useful.
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Figure 3.12: Isoefficiency curves for E = 0.5 with a fixed processor speed and different values of

channel bandwidth.

There are certain iterative schemes, like the Jacobi method [50], that require inner product

calculation only for the purpose of performing a convergence check. In such schemes, the parallel

formulation can be made almost linearly scalable even on mesh and hypercube architectures by

performing the convergence check once in a few iterations. For instance, the isoefficiency function

for the Jacobi method on a hypercube is 2(p log p). If the convergence check is performed once

every log p iterations, the amortized overhead due to inner product calculation will be2(p) in each

iteration, instead of2(p log p) and the isoefficiency function of the modified scheme will be2(p).

Similarly, performing the convergence check once in every
√

p iterations on a mesh architecture

will result in linear scalability.

Equations 3.36 and 3.37 suggest that the PCG algorithm is highly scalable on a CM-5 type

architecture and a linear increase in problem size with respect to the number of processors is

sufficient to maintain a fixed efficiency. However, we would like to point out as to how hardware

related parameters other than the number of processors affect the isoefficiency function. According

to Equation 3.37, N needs to grow in proportion to the square of the ratio of tw to the unit computation
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Figure 3.13: Isoefficiency curves for E = 0.5 with a fixed processor speed and different values of

message startup time.

time on a processor. According to Equation 3.36, N needs to grow in proportion to the ratio of ts to

the unit computation time. Thus isoefficiency is also a function of the ratio of communication and

computation speeds. Figure 3.12 shows theoretical isoefficiency curves for different values of tw

for a hypothetical machine with fixed processor speed ((c1 + 5c2) = 2 microseconds8) and message

startup time (ts = 20 microseconds). Figure 3.13 shows isoefficiency curves for different values of

ts for the same processor speed with tw = 4 microseconds. These curves show that the isoefficiency

function is much more sensitive to changes in tw than ts . Note that ts and tw are normalized with

respect to CPU speed. Hence, effectively tw could go up if either the CPU speed increases or

inter-processor communication bandwidth decreases. Figure 3.12 suggests that it is very important

to have a balance between the speed of the processors and the bandwidth of the communication

channels, otherwise good efficiencies will be hard to obtain; i.e., very large problems will be

required.

8 This corresponds to a throughput of roughly 10 MFLOPS. On a fully configured CM-5 with vector units, a throughput
of this order can be achieved very easily.
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Apart from the computation and communication related constants, isoefficiency is also a function

of the efficiency that is desired to be maintained. N needs to grow in proportion to (E/(1− E))2

in order to balance the useful computation W with the overhead due to tw (Equation 3.37) and in

proportion to E/(1 − E) to balance the overhead due to ts (Equation 3.36). Figure 3.14 graphically

illustrate the impact of desired efficiency on the scalability of a PCG iteration. The figure shows

that as higher and higher efficiencies are desired, it becomes increasingly difficult to obtain them.

An improvement in the efficiency from 0.3 to 0.5 takes little effort, but it takes substantially larger

problem sizes for a similar increase in efficiency from 0.7 to 0.9. The constant (etw/(c1 + 5c2))
2 in

Equation 3.37 indicates that a better balance between communication channel bandwidth and the

processor speed will reduce the impact of increasing the efficiency on the rate of growth of problem

size and higher efficiencies will be obtained more readily.

The isoefficiency functions for the case of the IC preconditioner for different architectures given

by Equations 3.40 through 3.41 are of the same order of magnitude as those for the case of the

diagonal preconditioner given by Equations 3.36 to 3.39. However, the constants associated with

the isoefficiency functions for the IC preconditioner are smaller due to the presence of η(k) in the
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denominator which is c1 + 5c2 + (k + 1)(k + 2)c2. As a result, the rate at which the problem

size should increase to maintain a particular efficiency will be asymptotically the same for both

preconditioners, but for the IC preconditioner the same efficiency can be realized for a smaller

problem size than in the case of the diagonal preconditioner. Also, for given p and N , the parallel

implementation with the IC preconditioner will yield a higher efficiency and speedup than one with

the diagonal preconditioner. Thus, if enough processors are used, a parallel implementation with

the IC preconditioner may execute faster than one with a simple diagonal preconditioner even if

the latter was faster in a serial implementation. The reason is that the number of iterations required

to obtain a residual whose norm satisfies a given constraint does not increase with the number of

processors used. However, the efficiency of execution of each iteration will drop more rapidly in

case of the diagonal preconditioner that in case of the IC preconditioner as the number of processors

are increased.

It can be shown that the scope of the results of this section is not limited to the type of block-

tridiagonal matrices described in Section 3.3.1 only. The results hold for all symmetric block-

tridiagonal matrices where the distance of the two outer diagonals from the principal diagonal is

N r (0 < r < 1). Such a matrix will result from a rectangular N r × N 1−r finite difference grid

with natural ordering of grid points. Similar scalability results can also be derived for matrices

resulting from three dimensional finite difference grids. These matrices have seven diagonals and

the scalability of the parallel formulations of an iteration of the PCG algorithm on a hypercube or the

CM-5 is the same as in case of block-tridiagonal matrices. However, for the mesh architecture, the

results will be different. On a two dimensional mesh of processors, the isoefficiency due to matrix-

vector multiplication will be 2(p3/2) for the matrices resulting from 3-D finite difference grids.

Thus, unlike the block-tridiagonal case, here the overheads due to both matrix vector multiplication

and inner-product computation are equally dominant on a mesh.

3.3.3 Scalability Analysis: Unstructured Sparse Matrices

In this section, we consider a more general form of sparse matrices, in which the non-zeros are

distributed randomly and do not form a regular pattern that can be utilized effectively. Such

matrices occur in some applications, notably in linear programming problems. Often, such systems
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Figure 3.15: Partition of a banded sparse matrix and a vector among the processors.

are encountered where the non-zero elements of matrix A occur only within a band around the

principal diagonal. Even if the non-zero elements are scattered throughout the matrix, it is often

possible to restrict them to a band through certain re-ordering techniques [45, 48]. Such a system is

shown in Figure 3.15 in which the non-zero elements of the sparse matrix are randomly distributed

within a band along the principal diagonal. Let the width of the band of the N × N matrix be given

by b, and b = βN y , and 0 ≤ y ≤ 1. Suitable values of the constants β and y can be selected to

represent the kind of systems being solved. If β = 1 and y = 1, we have the case of a totally

unstructured sparse matrix.

The matrix A is stored in the Ellpack-Itpack format [121]. In this storage scheme, the non-zero

elements of the matrix are stored in an N × m array while another N × m integer array stores the

column numbers of the matrix elements. It can be shown that co-ordinate and the compressed

sparse column storage formats incur much higher communication overheads, thereby leading to

unscalable parallel formulations. Two other storage schemes, namely jagged diagonals [121] and

compressed sparse rows involve communication overheads similar to the Ellpack-Itpack scheme,
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but the latter is the easiest to work with when the number of non-zero elements is almost the same

in each row of the sparse matrix. The matrix A and the vector b are partitioned among p processors

as shown in Figure 3.15. The rows and the columns of the matrix and the elements of the vector

are numbered from 0 to N − 1. Processor Pi stores (N/p)i to (N/p)(i + 1)− 1 rows of matrix A

and elements with indices from (N/p)i to (N/p)(i + 1)− 1 of vector b. The preconditioner and

all the other vectors used in the computation are partitioned similarly.

We will study the application of only the diagonal preconditioner in this case; hence the serial

execution time is given by Equation 3.21. Often the number of non-zero elements per row of

the matrix A is not constant but increases with N . Let m = αN x , where the constants α and x

(0 ≤ x ≤ 1) can be chosen to describe the kind of systems being solved. A more general expression

for W , therefore, would be as follows:

W = c1 N + c2αN 1+x . (3.43)

Communication Overheads

For the diagonal preconditioner, T PC−solve
o = 0 as discussed in Section 3.3.2. It can be shown

that T Matrix−V ector
o dominates T Inner−Prod

o for most practical cases. Therefore, T Matrix−V ector
o can be

considered to represent the overall overhead To for the case of unstructured sparse matrices.

If the distribution of non-zero elements in the matrix is unstructured, each row of the matrix could

contain elements belonging to any column. Thus, for matrix-vector multiplication, any processor

could need a vector element that belongs to any other processor. As a result, each processor has to

send its portion of the vector of size N/p to every other processor. If the bandwidth of the matrix A

is b, then the ith row of the matrix can contain elements belonging to columns i − b/2 to i + b/2.

Since a processor contains N/p rows of the matrix and N/p elements of each vector, it will need

the elements of the vector that are distributed among the processors that lie within a distance of

bp/(2N ) on its either side; i.e., processor Pi needs to communicate with all the processors Pj such

that i−bp/(2N ) ≤ j < i and i < j ≤ i+bp/(2N). Thus the total number of communication steps

in which each processor can acquire all the data it needs to perform matrix-vector multiplication

will be bp/N . As a result, the following expression gives the value of To for b = βN y .

To = (tsβpN y−1 + twβN y)× p. (3.44)
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It should be noted that this overhead is the same for all architectures under consideration in this

section from a linear array to a fully connected network.

Isoefficiency Analysis

The size W of the problem at hand is given by Equation 3.43, which may be greater than 2(N)

for x > 0. Strictly speaking, the isoefficiency function is defined as the rate at which the problem

size needs to grow as a function of p to maintain a fixed efficiency. However, to simplify the

interpretation of the results, in this section we will measure the scalability in terms of the rate at

which N (the size of the linear system of equations to be solved) needs to grow with p rather than

rate at which the quantity c1 N + c2αN 1+x should grow with respect to p.

According to Equation 2.4, the following condition must be satisfied in order to maintain a fixed

efficiency E :

c1 N + c2αN 1+x = E

1− E
(tsβp2 N y−1 + twβpN y),

c2αN x+y + c1 N y − E

1− E
twβpN 2y−1 − E

1− E
tsβp2 N 2y−2 = 0, (3.45)

N = fE (p, x , y, α, β, tw, ts, c1, c2). (3.46)

From Equation 3.45, it is not possible to compute the isoefficiency function fE in a closed form

for general x and y. However, Equation 3.45 can be solved for N for specific values of x and y. We,

therefore, compute the isoefficiency functions for a few interesting cases that result from assigning

some typical values to the parameters x and y. Table 3.4 gives a summary of the scalability analysis

for these cases. In order to maintain the efficiency at some fixed value E , the size N of the system

has to grow according to the expression in the third column of the Table 3.4, where e = E/(1− E).

The above analysis shows that a PCG iteration is unscalable for a totally unstructured sparse

matrix of coefficients with a constant number of non-zero elements in each row. However, it can

be rendered scalable by either increasing the number of non-zero elements per row as a function of

the matrix size, or by restricting the non-zero elements into a band of width less than 2(N) for an

N × N matrix using some re-ordering scheme. Various techniques for re-ordering sparse systems

to yield banded or partially banded sparse matrices are available [45, 48]. These techniques may

vary in their complexity and effectiveness. By using Equation 3.45 the benefit of a certain degree

of re-ordering can be quantitatively determined in terms of improvement in scalability.
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Parameter values Isoefficiency function Interpretation

in terms of scalability

1. x = 0, y = 1 Does not exist Unscalable

2. x = 0, y = 1
2 N ∝ p2( eβtw

c1+c2α
)2 O(p2) scalability

(moderately scalable)

3. x = 1, y = 1 N ∝ p
etwβ+
√

e2t 2
wβ

2+4c2αβets
2c2α

Linearly scalable with

a high constant

4. x = 0, y = 0 N ∝ p etwβ
2(c1+c2α)

(
1+

√
1+ 4ts(c1+c2α)

et 2
wβ

)
Linear scalability

(highly scalable)

5. x = 1
2 , y = 1

2 N ∝ p etwβ
2c2α

(
1+

√
1+ 4tsc2α

et 2
wβ

)
Linear scalability

(highly scalable)

Table 3.4: Scalability of a PCG iteration with unstructured sparse matrices of coefficients. The

average number of entries in each row of the N × N matrix is αN x and these entries are located

within a band of width βN y along the principal diagonal.

3.3.4 Experimental Results and their Interpretations

The analytical results derived in the earlier sections were verified through experimental data

obtained by implementingthe PCG algorithm on the CM-5. Both block-tridiagonal and unstructured

sparse symmetric positive definite matrices were generated randomly and used as test cases. The

degree of diagonal dominance of the matrices was controlled such that the algorithm performed

enough number of iterations to ensure the accuracy of our timing results. Often, slight variation

in the number of iterations was observed as different number of processors were used. In the

parallel formulation of the PCG algorithm, both matrix-vector multiplication and the inner product

computation involve communication of certain terms among the processors which are added up to

yield a certain quantity. For different values of p, the order in which these terms are added could

be different. As a result, due to limited precision of the data, the resultant sum may have a slightly

different value for different values of p. Therefore, the criterion for convergence might not be

satisfied after exactly the same number of iterations for all p. In our experiments, we normalized
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Figure 3.16: Speedup curves for block-tridiagonal matrices with diagonal preconditioner.

the parallel execution time with respect to the number of iterations in the serial case in order to

compute the speedups and efficiencies accurately. Sparse linear systems with matrix dimension

varying from 400 to over 64,000 were solved using up to 512 processors. For block-tridiagonal

matrices, we implemented the PCG algorithms using both the diagonal and the IC preconditioners.

For unstructured sparse matrices, only the diagonal preconditioner was used. The configuration

of the CM-5 used in our experiments had only a SPARC processor on each node which delivered

approximately 1 MFLOPS (double-precision) in our implementation. The message startup time for

the program was observed to be about 150 microseconds and the per-word transfer time for 8 byte

words was observed to be about 3 microseconds9.

Figure 3.16 shows experimental speedup curves for solving problems of different sizes using

the diagonal preconditioner on block-tridiagonal matrices.

As expected, for a given number of processors, the speedup increases with increasing problem

size. Also, for a given problem size, the speedup does not continue to increase with the number of

9 These values do not necessarily reflect the communication speed of the hardware but the overheads observed for our
implementation. For instance copying the data in and out of the buffers in the program contributes to the per-word
overhead. Moreover, the machine used in the experiments was still in beta testing phase, hence the performance
obtained in our experiments may not be indicative of the achievable performance of the machine.
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Figure 3.17: Efficiency curves for the diagonal and the IC preconditioner with a 1600×1600 matrix

of coefficients.

processors, but tends to saturate.

Recall that the use of the IC preconditioner involves substantially more computation per iteration

of the PCG algorithm over a simple diagonal preconditioner, but it also reduces the number of

iterations significantly. As the approximation of the inverse of the preconditioner matrix is made

more accurate (i.e., k is increased, as discussed in Section 3.3.1), the computation per iteration

continues to increase, while the number of iterations decreases. The overall performance is governed

by the amount of increase in the computation per iteration and the reduction in the number of

iterations. As discussed in Section 3.3.3, for the same number of processors, an implementation

with the IC preconditioner will obtain a higher efficiency10 (and hence speedup) than one with

the diagonal preconditioner. Even in case of the IC preconditioner, speedups will be higher for

higher values of k. Figure 3.17 shows the efficiency curves for the diagonal preconditioner and

the IC preconditioner for k = 2, 3 and 4 for a given problem size. From this figure it is clear

that one of the IC preconditioning schemes may yield a better overall execution time in a parallel

10 The efficiency of a parallel formulation is computed with respect to an identical algorithm running on a single processor.
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Figure 3.18: Isoefficiency curves for the two preconditioning schemes.

implementation due to a better speedup than the diagonal preconditioning scheme, even if the

latter is faster in a serial implementation. For instance, assume that on a serial machine the PCG

algorithm runs 1.2 times faster with a diagonal preconditioner than with the IC preconditioner for

a certain system of equations. As shown in Figure 3.17, with 256 processors on the CM-5, the IC

preconditioner implementation with k = 3 executes with an efficiency of about 0.4 for an 80× 80

finite difference grid, while the diagonal preconditioner implementation attains an efficiency of

only about 0.26 on the same system. Therefore, unlike on a serial computer, on a 256 processor

CM-5 the IC preconditioner implementation for this system with k = 3 will be faster by a factor of

0.4/0.26× 1.0/1.2 ≈ 1.3 than a diagonal preconditioner implementation.

In Figure 3.18, experimental isoefficiency curves are plotted for the two preconditioners by

experimentally determining the efficiencies for different values of N and p and then selecting and

plotting the (N, P) pairs with nearly the same efficiencies. As predicted by Equations 3.36, 3.37,

and 3.40, the N versus p curves for a fixed efficiency are straight lines. These equations, as well as

Figure 3.18, suggest that this is a highly scalable parallel system and requires only a linear growth

of problem size with respect to p to maintain a certain efficiency. This figure also shows that the IC
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Figure 3.19: Efficiency plots for unstructured sparse matrices with fixed number of non-zero

elements per row.

preconditioner needs a smaller problem size than the diagonal preconditioner to achieve the same

efficiency. For the same problem size, the IC preconditioner can use more processors at the same

efficiency, thereby delivering higher speedups than the diagonal preconditioner.

Figure 3.19 shows plots of efficiency versus problem size for three different values of p for a

totally unstructured sparse matrix with a fixed number of non-zero elements in each row. This kind

of a matrix leads to an unscalable parallel formulation of the CG algorithm. This fact is clearly

reflected in Figure 3.19. Not only does the efficiency drop rapidly as the number of processors are

increased, but also an increase in problem size does not suffice to counter this drop in efficiency.

For instance, using 40 processors, it does not seem possible to attain the efficiency of 16 processors,

no matter how big a problem is being solved.

Figures 3.20 and 3.21 show how the parallel CG algorithm for unstructured sparse matrices can

be made scalable by either confining the non-zero elements within a band of width < O(N), or

by increasing the number of non-zero elements in each row as a function of N . Figure 3.20 shows

the experimental isoefficiency curves for a banded unstructured sparse matrix with a bandwidth of
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2
√

N and 6 non-zero elements per row. The curves were drawn by picking up (N, p) pairs that

yielded nearly the same efficiency on the CM-5 implementation, and then plotting N with respect

to p2. As shown in Table 3.4, the isoefficiency function is 2(p2) and a linear relation between N

and p2 in Figure 3.20 confirms this. Figure 3.21 shows the isoefficiency curve for E = 0.25 for a

totally unstructured N × N sparse matrix with 0.0015N non-zero elements in each row. As shown

in Table 3.4, the isoefficiency function is linear in this case, although the constant associated with

it is quite large because of the terms 2c2α in the denominator, α being 0.0015.

3.3.5 Summary of Results

We have studied the performance and scalability of an iteration of the Preconditioned Conjugate

Gradient algorithm on a variety of parallel architectures.

It is shown that block-tridiagonal matrices resulting from the discretization of a 2-dimensional

self-adjoint elliptic partial differential equation via finite differences lead to highly scalable parallel

formulations of the CG method on a parallel machine like the CM-5 with an appropriate mapping
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elements per row increasing with the matrix size.

of data onto the processors. On this architecture, speedups proportional to the number of processors

can be achieved by increasing the problem size almost linearly with the number of processors. The

reason is that on the CM-5, the control network practically eliminates the communication overhead

in computing inner-products of vectors, whereas on more conventional parallel machines with

significant message startup times, it turns out to be the costliest operation in terms of overheads and

affects the overall scalability. The isoefficiency function for a PCG iteration with a block-tridiagonal

matrix is 2(p) on the CM-5, 2(p log p) on a hypercube, and 2(p
√

p) on a mesh. In terms of

scalability, if the number of processors is increased from 100 to 1000, the problem size will have to

increased 32 times on a mesh, 15 times on a hypercube, and only 10 times on the CM-5 to obtain

ten times higher speedups. Also, the effect of message startup time ts on the speedup is much

more significant on a typical hypercube or a mesh than on the CM-5. However, for some iterative

algorithms like the Jacobi method, linear scalability can be obtained even on these architectures by

performing the convergence check at a suitably reduced frequency.

We have shown that in case of the block-tridiagonal matrices, the truncated Incomplete Cholesky
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preconditioner can achieve higher efficiencies than a simple diagonal preconditioner if the data

mapping scheme of Figure 3.11 is used. The use of the IC preconditioner usually significantly

cuts down the number of iterations required for convergence. However, it involves solving a linear

system of equations of the form M z = r in each iteration. This is a computationally costly

operation and may offset the advantage gained by fewer iterations. Even if this is the case for the

serial algorithm, in a parallel implementation the IC preconditioner may outperform the diagonal

preconditioner as the number of processors are increased. This is because a parallel implementation

with IC preconditioner executes at a higher efficiency than one with a diagonal preconditioner.

If the matrix of coefficients of the linear system of equations to be solved is a random unstructured

sparse matrix (such matrices often occur in linear programming problems) with a constant number

of non-zero elements in each row, a parallel formulation of the PCG method will be unscalable on

any practical massage passing architecture unless some ordering is applied to the sparse matrix.

The efficiency of parallel PCG with an unordered sparse matrix will always drop as the number

of processors is increased and no increase in the problem size is sufficient to counter this drop

in efficiency. The system can be rendered scalable if either the non-zero elements of the N × N

matrix of coefficients can be confined in a band whose width is less than 2(N), or the number of

non-zero elements per row increases with N , where N is the number of simultaneous equations to

be solved. The scalability increases as the number of non-zero elements per row in the matrix of

coefficients is increased and/or the width of the band containing these elements is reduced. Both the

number of non-zero elements per row and the width of the band containing these elements depend

on the characteristics of the system of equations to be solved. In particular, the non-zero elements

can be organized within a band by using some re-ordering techniques [45, 48]. Such restructuring

techniques can improve the efficiency (for a given number of processors, problem size, machine

architecture, etc.) as well as the asymptotic scalability of the PCG algorithm.
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Chapter 4

SCALABLE PARALLEL ALGORITHMS FOR SOLVING SPARSE SYSTEMS OF

LINEAR EQUATIONS

Solving large sparse systems of linear equations is at the core of many problems in engineering

and scientific computing. Such systems are typically solved by two different types of methods—

iterative methods and direct methods. The nature of the problem at hand determines which

method is more suitable. A direct method for solving a sparse linear system of the form Ax = b

involves explicit factorization of the sparse coefficient matrix A into the product of lower and upper

triangular matrices L and U . This is a highly time and memory consuming step; nevertheless,

direct methods are important because of their generality and robustness. For linear systems arising

in certain applications, such as linear programming and structural engineering applications, they

are the only feasible solution methods. In many other applications too, direct methods are often

preferred because the effort involved in determining and computing a good preconditioner for

an iterative solution may outweigh the cost of direct factorization. Furthermore, direct methods

provide and effective means for solving multiple systems with the same coefficient matrix and

different right-hand side vectors because the factorizations needs to be performed only once.

Although direct methods are used extensively in practice, their use for solving large sparse

systems has been mostly confined to big vector supercomputers due to their high time and memory

requirements. Parallel processing offers the potential to tackle both these problems; however,

despite intensive research, only limited success had been achieved until recently in developing

scalable parallel formulations of sparse matrix factorization [63, 123, 44, 47, 46, 95, 96, 10, 114,

115, 127, 41, 69, 63, 64, 117, 8, 7, 104, 140, 49, 123, 103]. We have developed a highly parallel

sparse Cholesky factorization algorithm that substantially improves the state of the art in parallel

direct solution of sparse linear systems—both in terms of scalability and overall performance. We

show that our algorithm is just as scalable as dense matrix factoriztion, which is known to be highly

scalable. In addition to providing a fast direct solution, this algorithm significantly increases the
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range of problem sizes that can be solved. It is the only known sparse factorization algorithm

that can deliver speedups in proportion to an increasing number of processors while requiring

almost constant memory per processor. By using this algorithm, large problems that could not be

solved on serial or small parallel computers due to the high memory and time requirement of direct

factorization can now be effectively parallelized to utilize large scale parallel computers.

The performance and scalability analysis of our algorithm is supported by experimental results

on up to 1024 processors of the nCUBE2 parallel computer. We have been able to achieve speedups

of up to 364 on 1024 processors and 230 on 512 processors over a highly efficient sequential

implementation for moderately sized problems from the Harwell-Boeing collection [30]. In [77],

we have applied this algorithm to obtain a highly scalable parallel formulation of interior point

algorithms and have observed significant speedups in solving linear programming problems. A

variation of this algorithm [53] implemented on a 1024-processor Cray T3D delivers up to 20

GFLOPS on medium-size structural engineering and linear programming problems. To the best of

our knowledge, this is the first parallel implementation of sparse Cholesky factorization that has

delivered speedups of this magnitude and has been able to benefit from several hundred processors.

In this chapter we describe our highly scalable parallel algorithm for sparse matrix factorization.

We analyze its performance and scalability on a few different architectures two important classes

of sparse matrices. We give detailed experimental results of the implementations of our algorithm

on the nCUBE2 and Cray T3D parallel computers. Although our current implementations work

for Cholesky factorization of symmetric positive definite matrices, the algorithm can be adapted for

solving sparse linear least squares problems and for Gaussian elimination of diagonally dominant

matrices that are almost symmetric in structure. In addition to numerical factorization we also

present efficient parallel algorithms for two of the three other phases of solving a sparse system

of linear equations. These two phases are symbolic factorization and forward and backward

substitution to solve the triangular systems resulting from sparse matrix factorization. We show that

symbolic factorization and triangular solutions, though less computation-intensive than numerical

factorization, can be parallelized sufficiently so that the overall solution process is as scalable as the

numerical factorization phase.

Although we focus on Cholesky factorization of symmetric positive definite matrices in this
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chapter, the methodology developed here can be adapted for performing Gaussian elimination on

diagonally dominant matrices that are almost symmetric in structure [32] and for solving sparse

linear least squares problems [99].

4.1 Earlier Research in Sparse Matrix Factorization and Our Contribution

Since sparse matrix factorization is the most time consuming phase in the direct solution of a

sparse system of linear equations, there has been considerable interest in developing its parallel

formulations. It is well known that dense matrix factorization can be implemented efficiently on

distributed-memory parallel computers [40, 109, 42, 81]. However, despite inherent parallelism

in sparse direct methods, not much success has been achieved to date in developing their scalable

parallel formulations [63, 123] and for several years, it has been a challenge to implement efficient

sparse linear system solvers using direct methods on even moderately parallel computers. Perfor-

mance delivered by most existing parallel sparse matrix factorizations had been quite poor. In [123],

Schreiber concludes that it is not yet clear whether sparse direct solvers can be made competitive at

all for highly (p ≥ 256) and massively (p ≥ 4096) parallel computers.

It is difficult to derive analytical expressions for the number of arithmetic operations in fac-

torization and for the size (in terms of number of nonzero entries) of the factor for general sparse

matrices. This is because the computation and fill-in during the factorization of a sparse matrix

is a function of the the number and position of nonzeros in the original matrix. With the aid of

Figure 4.11, we summarize the contribution of our work in the context of Cholesky factorization

of the important class of sparse matrices that are adjacency matrices of graphs whose n-node

subgraphs have 2(
√

n)-node separators (this class includes sparse matrices arising out of all two-

dimensional finite difference and finite element problems). The results for the three-dimensional

case are very similar. A simple fan-out algorithm [44] with column-wise partitioning of an N × N

matrix of this type on p processors results in an 2(Np log N) total communication volume [47]

(box A). The communication volume of the column-based schemes represented in box A has been

improved using smarter ways of mapping the matrix columns onto processors, such as, the subtree-

1 In [110], Pan and Reif describe a parallel sparse matrix factorization algorithm for a PRAM type architecture.
This algorithm is not cost-optimal (i.e., the processor-time product exceeds the serial complexity of sparse matrix
factorization) and is not included in the classification given in Figure 4.1.
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Figure 4.1: An overview of the performance and scalability of parallel algorithms for factorization

of sparse matrices resulting from two-dimensional N -node grid graphs. Box D represents our

algorithm, which is a significant improvement over other known classes of algorithms for this

problem.

to-subcube mapping [46] (box B). A number of column-based parallel factorization algorithms

[95, 96, 10, 114, 115, 127, 44, 47, 41, 69, 63, 64, 117, 123, 103] have a lower bound of �(Np) on

the total communication volume [47]. Since the overall computation is only2(N 1.5) [45], the ratio

of communication to computation of column-based schemes is quite high. As a result, these column-

cased schemes scale very poorly as the number of processors is increased [123, 120]. In [8], Ashcraft

proposes a fan-both family of parallel Cholesky factorization algorithms that have a total commu-

nication volume of 2(N
√

p log N). Although the communication volume is less than the other

column-based partitioning schemes, the isoefficiency function of Ashcraft’s algorithm is still2(p3)

due to concurrency constraints because the algorithm cannot effectively utilize more than O(
√

N )

processors for matrices arising from two-dimensional constant node-degree graphs. A few schemes

with two-dimensional partitioning of the matrix have been proposed [120, 119, 7, 104, 140, 49],

and the total communication volume in the best of these schemes [120, 119] is2(N
√

p log p) (box
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C).

Most researchers so far have analyzed parallel sparse matrix factorization in terms of the total

communication volume. It is noteworthy that, on any parallel architecture, the total communication

volume is only a lower bound on the overall communication overhead. It is the total communication

overhead that actually determines the overall efficiency and speedup, and is defined as the difference

between the parallel processor-time product and the serial run time [55, 81]. The communication

overhead can be asymptotically higher than the communication volume. For example, a one-to-

all broadcast algorithm based on a binary tree communication pattern has a total communication

volume of m(p−1) for broadcasting m words of data among p processors. However, the broadcast

takes log p steps of 2(m) time each; hence, the total communication overhead is 2(mp log p)

(on a hypercube). In the context of matrix factorization, the experimental study by Ashcraft [10]

serves to demonstrate the importance of studying the total communication overhead rather than

volume. In [10], the fan-in algorithm, which has a lower communication volume than the distributed

multifrontal algorithm, has a higher overhead (and hence, a lower efficiency) than the multifrontal

algorithm for the same distribution of the matrix among the processors.

The isoefficiency function for dense matrix factorization is 2(p1.5) [81]. It is easy to prove

that2(p1.5) is also the lower bound on the isoefficiency function for factoring the above mentioned

class of sparse matrices. None of the classes of algorithms represented by boxes A, B, and C in

Figure 4.1 achieve this lower bound. Note that the simple parallel algorithm with 2(Np log p)

communication volume (box A) has been improved along two directions—one by improving the

mapping of matrix columns onto processors (box B) and the other by splitting the matrix along

both rows and columns (box C). Observing the expressions for the communication overhead and

isoefficiency functions in boxes A, B, and C of Figure 4.1, it is intuitive that if somehow the benefits

of subtree-to-subcube mapping and a two-dimensional partitioning of the sparse matrix could be

combined, one could obtain an optimally scalable parallel algorithm with an isoefficiency function

of 2(p1.5).

Based on the above observations, we devised an algorithm that is indeed optimally scalable

for the class of matrices being studied. The main features of our algorithm are that it is based on

the multifrontal technique, it uses subtree-to-subcube mapping scheme, and it partitions the matrix
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Figure 4.2: The serial computational complexity of the various phases of solving a sparse system

of linear equations arising from two- and three-dimensional constant node-degree graphs.

in two dimensions along both rows and columns. In Section 4.4, we describe how the algorithm

integrates all these features to minimize communication overhead. A key to this integration is a

block-cyclic two-dimensional partitioning based on the bits of the binary representation of row and

column indices of the sparse coefficient matrix. The total communication overhead of our algorithm

is only 2(N
√

p) for factoring an N × N matrix on p processors if it corresponds to a graph that

satisfies the separator criterion. Our algorithm reduces the communication overhead by a factor of

at least 2(log p) over the best algorithm [120, 119] implemented to date. It is also significantly

simpler in concept as well as in implementation, which helps in keeping the constant factors

associated with the overhead term low. We show in Section 4.6, the reduction in communication

overhead by a factor of 2(log p) results in an improvement in the scalability of the algorithm by

a factor of 2((log p)3); i.e., the rate at which the problem size must increase with the number of

processors to maintain a constant efficiency is lower by a factor of 2((log p)3). This can make

the difference between the feasibility and non-feasibility of parallel sparse factorization on highly

parallel (p ≥ 256) computers. In addition, our algorithm is the only known sparse factorization

algorithm that can deliver speedups in proportion to an increasing number of processors while

requiring almost constant memory per processor.

4.2 Chapter Outline

The process of obtaining a direct solution of a sparse system of linear equations of the form Ax = b

consists of the following four phases: Ordering, which determines permutation of the coefficient
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matrix A such that the factorization incurs low fill-in and is numerically stable; Symbolic Factor-

ization, which determines the structure of the triangular matrices that would result from factorizing

the coefficient matrix resulting from the ordering step; Numerical Factorization, which is the

actual factorization step that performs arithmetic operations on the coefficient matrix A to produce

a lower triangular matrix L and an upper triangular matrix U ; and Solution of Triangular Sys-

tems, which produces the solution vector x by performing forward and backward eliminations on

the triangular matrices resulting from numerical factorization. As shown in Figure 4.2, numerical

factorization is the most time-consuming phase. Karypis and Kumar have proposed an efficient

parallel algorithm for determining fill-reducing orderings for parallel factorization of sparse ma-

trices [76]. In this chapter, we present efficient and scalable parallel algorithms for symbolic

factorization, numerical factorization, and for solving the upper and lower triangular systems.

In Section 4.3, we describe the serial multifrontal algorithm for sparse Cholesky factorization.

This algorithm forms the basis of our optimally scalable parallel algorithm described in Section 4.4.

Sections 4.5 and 4.6 present the analysis of communication overhead and scalability of the parallel

sparse Cholesky factorization algorithm for two widely used classes of sparse matrices on mesh

and hypercube architectures. Section 4.7 contains the experimental results of sparse Cholesky

factorization implementations based on the algorithm of Section 4.4 on up to 1024 processors of

nCUBE2 and Cray T3D parallel computers.

The experimental results in Section 4.7 show that our algorithm can easily speedup Cholesky

factorization by a factor of at least a few hundred on up to 1024 processors. With such speedups

in numerical factorization, it is imperative that the remaining phases of the solution process be

parallelized effectively in order to scale the performance of the overall solver. Furthermore, without

an overall parallel solver, the size of the sparse systems that can be solved may be severely

restricted by the amount of memory available on a uniprocessor system. In Section 4.8, we address

the problem of performing the final phase of forward and backward substitution in parallel on

a distributed memory multiprocessor. Our analysis and experiments show that, although not as

scalable as the best parallel sparse Cholesky factorization algorithms, parallel sparse triangular

solvers can yield reasonable speedups in runtime on hundreds of processors. We also show that

for a wide class of problems, the sparse triangular solvers described in this paper are optimal and
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are asymptotically as scalable as a dense triangular solver. In Section 4.9, we describe and analyze

a parallel formulation of symbolic factorization. In this section, we show that the communication

overhead of parallel symbolic factorization is asymptotically less than that of the factorization step;

hence, this step does not impose any constraints on the performance and scalability of a complete

parallel sparse linear system solver.

The algorithm in [76], while performing the ordering in parallel, also distributes the data among

the processors in way that the remaining steps can be carried out with minimum data-movement.

At the end of the parallel ordering step, the parallel symbolic factorization algorithm described in

Section 4.9 can proceed without any redistribution. Since numerical factorization is the step with

the highest computational complexity in the entire process, it is critical to have an efficient parallel

algorithm for this step. Our algorithms for symbolic factorization and triangular solutions are

tailored to work in conjunction with the numerical factorization algorithm described in Section 4.4.

Therefore, we describe this algorithm in detail first, before we discuss triangular solution and

symbolic factorization (in that order).

4.3 The Serial Multifrontal Algorithm for Sparse Matrix Factorization

The multifrontal algorithm for sparse matrix factorization was proposed independently, and in

somewhat different forms, by Speelpening [126] and Duff and Reid [31], and later elucidated in a

tutorial by Liu [92]. In this section, we briefly describe a condensed version of multifrontal sparse

Cholesky factorization.

Given a sparse matrix and the associated elimination tree, the multifrontal algorithm can be

recursively formulated as shown in Figure 4.3. Consider the Cholesky factorization of an N × N

sparse symmetric positive definite matrix A into L L T , where L is a lower triangular matrix. The

algorithm performs a postorder traversal of the elimination tree associated with A. There is a frontal

matrix F k and an update matrix U k associated with any node k. The row and column indices of F k

correspond to the indices of row and column k of L in increasing order.

In the beginning, F k is initialized to an (s + 1) × (s + 1) matrix, where s + 1 is the number

of nonzeros in the lower triangular part of column k of A. The first row and column of this initial

F k is simply the upper triangular part of row k and the lower triangular part of column k of A. The
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/*

A is the sparse N × N symmetric positive definite matrix to be factored. L is

the lower triangular matrix such that A = L L T after factorization. A = (ai, j )

and L = (li, j ), where 0 ≤ i, j < N . Initially, li, j = 0 for all i, j .

*/

1. begin function Factor(k)

2. Fk :=




ak,k ak,q1 ak,q2 · · · ak,qs

aq1 ,k 0 0 · · · 0

aq2 ,k 0 0 · · · 0
...

...
...

. . .
...

aqs ,k 0 0 · · · 0




;

3. for all i such that Parent(i ) = k in the elimination tree of A, do

4. begin

5. Factor(i );

6. Fk := Extend add(F k , U i );

7. end

/*

At this stage, F k is a (t + 1)× (t + 1) matrix, where t is the number of nonzeros

in the sub-diagonal part of column k of L . U k is a t × t matrix. Assume that an

index i of Fk or U k corresponds to the index qi of A and L .

*/

8. for i := 0 to t do

9. lqi ,k := Fk(i, 0)/
√

Fk(0, 0);

10. for j := 1 to t do

11. for i := j to t do

12. U k(i, j) := Fk(i, j) − lqi ,k × lqj ,k ;

13. end function Factor.

Figure 4.3: An elimination-tree guided recursive formulation of the multifrontal algorithm for

Cholesky factorization of a sparse SPD matrix A into L L T . If r is the root of the postordered

elimination tree of A, then a call to Factor(r) factors the matrix A.
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Figure 4.4: The extend-add operation on two 3× 3 triangular matrices. It is assumed that i0 < i1 <

i2 < i3.

remainder of F k is initialized to all zeros. Line 2 of Figure 4.3 illustrates the initial F k .

After the algorithm has traversed all the subtrees rooted at a node k, it ends up with a (t + 1)×
(t + 1) frontal matrix F k , where t is the number of nonzeros in the strictly lower triangular part of

column k in L . The row and column indices of the final assembled F k correspond to t+1 (possibly)

noncontiguous indices of row and column k of L in increasing order. If k is a leaf in the elimination

tree of A, then the final F k is the same as the initial F k . Otherwise, the final F k for eliminating

node k is obtained by merging the initial F k with the update matrices obtained from all the subtrees

rooted at k via an extend-add operation. The extend-add is an associative and commutative operator

on two update matrices such the index set of the result is the union of the index sets of the original

update matrices. Each entry in the original update matrices is mapped onto some location in the

accumulated matrix. If entries from both matrices overlap on a location, they are added. Empty

entries are assigned a value of zero. Figure 4.4 illustrates the extend-add operation.

After F k has been assembled through the steps of lines 3–7 of Figure 4.3, a single step of the

standard dense Cholesky factorization is performed with node k as the pivot (lines 8–12). At the

end of the elimination step, the column with index k is removed from F k and forms the column k

of L . The remaining t × t matrix is called the update matrix U k and is passed on to the parent of k

in the elimination tree.

The multifrontal algorithm is further illustrated in a step-by-step fashion in Figure 4.6 for

factoring the matrix of Figure 4.5(a).
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Figure 4.5: A symmetric sparse matrix and the associated elimination tree with subtree-to-subcube

mapping onto 8 processors. The nonzeros in the original matrix are denoted by the symbol “×”

and fill-ins are denoted by the symbol “◦”.

4.4 A Parallel Multifrontal Algorithm

In this section we describe the parallel multifrontal algorithm. We assume a hypercube intercon-

nection network; however, as we will show in a later section, the algorithm also can be adapted

for a mesh topology without any increase in the asymptotic communication overhead. On other

architectures as well, such as those of the CM-5, Cray T3D, and IBM SP-2, the asymptotic expres-

sion for the communication overhead remains the same. In this chapter, we use the term relaxed

supernode for a group of consecutive nodes in the elimination tree with one child. Henceforth, any

reference to the height, depth, or levels of the tree will be with respect to the relaxed supernodal

tree. For the sake of simplicity, we assume that the relaxed supernodal elimination tree is a binary

tree up to the top log p relaxed supernodal levels. Any elimination tree can be converted to a binary

relaxed supernodal tree suitable for parallel multifrontal elimination by a simple preprocessing step.

In order to factorize the sparse matrix in parallel, portions of the elimination tree are assigned to

processors using the standard subtree-to-subcube assignment strategy. This assignment is illustrated
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Figure 4.6: Steps in serial multifrontal Cholesky factorization of the matrix shown in Figure 4.5(a).

The symbol “+” denotes an extend-add operation. The nonzeros in the original matrix are denoted

by the symbol “×” and fill-ins are denoted by the symbol “◦”.
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in Figure 4.5(b) for eight processors. With subtree-to-subcube assignment, all p processors in the

system cooperate to factorize the frontal matrix associated with the topmost relaxed supernode of

the elimination tree. The two subtrees of the root are assigned to subcubes of p/2 processors each.

Each subtree is further partitioned recursively using the same strategy. Thus, the p subtrees at a

depth of log p relaxed supernodal levels are each assigned to individual processors. Each processor

can work on this part of the tree completely independently without any communication overhead. A

call to the function Factor given in Figure 4.3 with the root of a subtree as the argument generates

the update matrix associated with that subtree. This update matrix contains all the information that

needs to be communicated from the subtree in question to other columns of the matrix.

After the independent factorization phase, pairs of processors (P2 j and P2 j+1 for 0 ≤ j < p/2)

perform a parallel extend-add on their update matrices, say Q and R, respectively. At the end of

this parallel extend-add operation, P2 j and P2 j+1 roughly equally share Q + R. Here, and in the

remainder of this chapter, the sign “+” in the context of matrices denotes an extend-add operation.

More precisely, all even columns of Q + R go to P2 j and all odd columns of Q + R go to P2 j+1.

At the next level, subcubes of two processors each perform a parallel extend-add. Each subcube

initially has one update matrix. The matrix resulting from the extend-add on these two update

matrices is now merged and split among four processors. To effect this split, all even rows are

moved to the subcube with the lower processor labels, and all odd rows are moved to the subcube

with the higher processor labels. During this process, each processor needs to communicate only

once with its counterpart in the other subcube. After this (second) parallel extend-add each of the

processors has a block of the update matrix roughly one-fourth the size of the whole update matrix.

Note that, both the rows and the columns of the update matrix are distributed among the processors

in a cyclic fashion. Similarly, in subsequent parallel extend-add operations, the update matrices are

alternatingly split along the columns and rows.

Assume that the levels of the binary relaxed supernodal elimination tree are labeled starting with

0 at the top as shown in Figure 4.5(b). In general, at level l of the relaxed supernodal elimination

tree, 2log p−l processors work on a single frontal or update matrix. These processors form a logical

2b(log p−l)/2c × 2d(log p−l)/2e mesh. All update and frontal matrices at this level are distributed on this

mesh of processors. The cyclic distribution of rows and columns of these matrices among the
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(a)  Update matrices before the first parallel extend-add operation

(b)  Update matrices after the first parallel extend-add operation

(c)  Update matrices before the second parallel extend-add operation

(d)  Update matrices after the second parallel extend-add operation

(e)  Update matrices before the third parallel extend-add operation

(f)  Update matrices after the third parallel extend-add operation

Figure 4.7: Extend-add operations on the update matrices during parallel multifrontal factorization

of the matrix shown in Figure 4.5(a) on eight processors. Pi |M denotes the part of the matrix M

that resides on processor number i. M may be an update matrix or the result of performing an

extend-add on two update matrices. The shaded portions of a matrix are sent out by a processor to

its communication partner in that step.
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processors helps maintain load-balance. The distribution also ensures that a parallel extend-add

operation can be performed with each processor exchanging roughly half of its data only with its

counterpart processor in the other subcube. This distribution is fairly straightforward to maintain.

For example, during the first two parallel extend-add operations, columns and rows of the update

matrices are distributed depending on whether their least significant bit (LSB) is 0 or 1. Indices with

LSB = 0 go to the lower subcube and those with LSB = 1 go to the higher subcube. Similarly, in the

next two parallel extend-add operations, columns and rows of the update matrices are exchanged

among the processors depending on the second LSB of their indices.

Figure 4.7 illustrates all the parallel extend-add operations that take place during parallel

multifrontal factorization of the matrix shown in Figure 4.5. The portion of an update matrix that

is sent out by its original owner processor is shown in grey. Hence, if processors Pi and Pj with

respective update matrices Q and R perform a parallel extend-add, then the final result at Pi will be

the add-extension of the white portion of Q and the grey portion of R. Similarly, the final result at

Pj will be the add-extension of the grey portion of Q and the white portion of R. Figure 4.8 further

illustrates this processes by showing four consecutive extend-add operations on hypothetical update

matrices to distribute the result among 16 processors.

Between two successive parallel extend-add operations, several steps of dense Cholesky elimi-

nation may be performed. The number of such successive elimination steps is equal to the number of

nodes in the relaxed supernode being processed. The communication that takes place in this phase

is the standard communication in pipelined grid-based dense Cholesky factorization [109, 81]. If

the average size of the frontal matrices is t × t during the processing of a relaxed supernode with

m nodes on a q-processor subcube, then 2(m) messages of size 2(t/
√

q) are passed through the

grid in a pipelined fashion. Figure 4.9 shows the communication for one step of dense Cholesky

factorization of a hypothetical frontal matrix for q = 16. It is shown in [82] that although this

communication does not take place between the nearest neighbors on a subcube, the paths of all

communications on any subcube are conflict free with e-cube routing [107, 81] and cut-through or

worm-hole flow control. This is a direct consequence of the fact that a circular shift is conflict free

on a hypercube with e-cube routing. Thus, a communication pipeline can be maintained among the

processors of a subcube during the dense Cholesky factorization of frontal matrices.
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(c)  Update matrices before third parallel extend-add

(b)  Update matrices before second parallel extend-add

(a)  Update matrices before first parallel extend-add
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Figure 4.8: Four successive parallel extend-add operations (denoted by “+”) on hypothetical update

matrices for multifrontal factorization on 16 processors.
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Figure 4.9: The two communication operations involved in a single elimination step (index of pivot

= 0 here) of Cholesky factorization on a 12× 12 frontal matrix distributed over 16 processors.

4.4.1 Block-Cyclic Mapping of Matrices onto Processors

In the parallel multifrontal algorithm described in this section, the rows and columns of frontal

and update matrices are distributed among the processors of a subcube in a cyclic manner. For

example, the distribution of a matrix with indices from 0 to 11 on a 16-processor subcube is shown

in Figure 4.8(e). The 16 processors form a logical mesh. The arrangement of the processors in

the logical mesh is shown in Figure 4.10(a). In the distribution of Figure 4.8(e), consecutive rows

and columns of the matrix are mapped onto neighboring processors of the logical mesh. If there

are more rows and columns in the matrix than the number of processors in a row or column of the

processor mesh, then the rows and columns of the matrix are wrapped around on the mesh.

Although the mapping shown in Figure 4.8(e) results in a very good load balance among the

processors, it has a disadvantage. Notice that while performing the steps of Cholesky factorization

on the matrix shown in Figure 4.8(e), the computation corresponding to consecutive pivots starts

on different processors. For example, pivot 0 on processor 0, pivot 1 on processor 3, pivot 2 on

processor 12, pivot 3 on processor 15, and so on. If the message startup time is high, this may lead to

significant delays between the stages of the pipeline. Furthermore, on cache-based processors, the

use of BLAS-3 for eliminating multiple columns simultaneously yields much higher performance

than the use of BLAS-2 for eliminating one column at a time. Figure 4.10(b) shows a variation of
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Figure 4.10: Block-cyclic mapping of a 12×12 matrix on a logical processor mesh of 16 processors.

the cyclic mapping, called block-cyclic mapping [81], that can alleviate these problems at the cost

of some added load imbalance.

Recall that in the mapping of Figure 4.8(e), the least significant dlog p/2e bits of a row or

column index of the matrix determine the processor to which that row or column belongs. Now

if we disregard the least significant bit, and determine the distribution of rows and columns by the

dlog p/2e bits starting with the second least significant bit, then the mapping of Figure 4.10(b) will

result. In general, we can disregard the first k least significant bits, and arrive at a block-cyclic

mapping with a block size of 2k×2k. The optimal value of k depends on the ratio of computation time

and the communication latency of the parallel computer in use and may vary from one computer to

another for the same problem. In addition, increasing the block size too much may cause too much

load imbalance during the dense Cholesky steps and may offset the advantage of using BLAS-3.

4.4.2 Subtree-to-Submesh Mapping for the 2-D Mesh Architecture

The mapping of rows and columns described so far works fine for the hypercube network. At

each level, the update and frontal matrices are distributed on a logical mesh of processors (e.g.,

Figure 4.10(a)) such that each row and column of this mesh is a subcube of the hypercube.

However, if the underlying architecture is a mesh, then a row or a column of the logical mesh

may not correspond to a row or a column of the physical mesh. This will lead to contention for

communication channels during the pipelined dense Cholesky steps of Figure 4.9 on a physical
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Figure 4.11: Labeling of subtrees in subtree-to-subcube (a) and subtree-to-submesh (b) mappings.

mesh. To avoid this contention for communication channels, we define a subtree-to-submesh

mapping in this subsection. The subtree-to-subcube mapping described in Figure 4.5(b) ensures

that any subtree of the relaxed supernodal elimination tree is mapped onto a subcube of the physical

hypercube. This helps in localizing communication at each stage of factorization among groups of

as few processors as possible. Similarly, the subtree-to-submesh mapping ensures that a subtree is

mapped entirely within a submesh of the physical mesh.

Note that in subtree-to-subcube mapping for a 2d-processor hypercube, all level-d subtrees of the

relaxed supernodal elimination tree are numbered in increasing order from left to right and a subtree

labeled i is mapped onto processor i. For example, the subtree labeling of Figure 4.11(a) results

in the update and frontal matrices for the supernodes in the topmost (level-0) relaxed supernode to

be distributed among 16 processors as shown in Figure4.10(a). The subtree-to-submesh mapping
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starts with a different initial labeling of the level-d subtrees. Figure4.11(b) shows this labeling for

16 processors, which will result in the update and frontal matrices of the topmost relaxed supernode

being partitioned on a 4× 4 array of processors labeled in a row-major fashion.

We now define a function map such that replacing every reference to processor i in subtree-to-

subcube mapping by a reference to processor map(i,m, n) results in a subtree-to-submesh mapping

on an m×n mesh. We assume that both m and n are powers of two. We also assume that either m = n

or m = n/2 (this configuration maximizes the cross-section width and minimizes the diameter of

an mn-processor mesh). The function map(i,m, n) is given by the following recurrence:

map(i,m, n) = i, if i < 2.

map(i,m, n) = map(i, m
2 , n), if m = n, i < mn

2 .

map(i,m, n) = mn
2 + map(i − mn

2 ,
m
2 , n), if m = n, i ≥ mn

2 .

map(i,m, n) = mbmap(i,m, n
2 )/mc + map(i,m, n

2 ), if m = n
2, i < mn

2 .

map(i,m, n) = m(bmap(i − mn
2 ,m, n

2 )/mc + 1)+ map(i − mn
2 ,m, n

2), if m = n
2, i ≥ mn

2 .

The above recurrence always maps a level-l relaxed supernode of a binary relaxed supernodal

elimination tree onto an (mn/2l)-processor submesh of the mn-processor two-dimensional mesh.

4.5 Analysis of Communication Overhead

In this section, we derive expressions for the communication overhead of our algorithm for sparse

matrices resulting from a finite difference operator on regular two- and three-dimensional grids.

Within constant factors, these expressions can be generalized to all sparse matrices that are adjacency

matrices of all graphs whose node-degree is bounded by a constant. Such two- and three-dimensional

graphs have the property that their n-node subgraphs have2(
√

n)-node and2(n2/3)-node separators,

respectively. All two- and three-dimensional finite-element graphs belong to this class. The

properties of separators can be generalized from grids to all such graphs within the same order of

magnitude bounds [91, 90, 45].

The parallel multifrontal algorithm described in Section 4.4 incurs two types of communication

overhead: one during parallel extend-add operations (Figure 4.8) and the other during the steps of

dense Cholesky factorization while processing the supernodes (Figure 4.9). Crucial to estimating

the communication overhead is estimating the sizes of frontal and update matrices at any level of
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the supernodal elimination tree.

Consider a
√

N ×√N regular finite difference grid. We analyze the communication overhead

for factorizing the N×N sparse matrix associated with this grid on p processors. In order to simplify

the analysis, we assume a somewhat different form of nested-dissection than the one used in the

actual implementation. This method of analyzing the communication complexity of sparse Cholesky

factorization has been used in [47] in the context of a column-based subtree-to-subcube scheme.

Within very small constant factors, the analysis holds for the standard nested dissection [43] of grid

graphs. We consider a cross-shaped separator (described in [47]) consisting of 2
√

N − 1 nodes that

partitions the N -node square grid into four square subgrids of size (
√

N − 1)/2× (√N − 1)/2. We

call this the level-0 separator that partitions the original grid (or the level-0 grid) into four level-1

grids. The nodes in the separator are numbered after the nodes in each subgrid have been numbered.

To number the nodes in the subgrids, they are further partitioned in the same way, and the process

is applied recursively until all nodes of the original grid are numbered. The supernodal elimination

tree corresponding to this ordering is such that each non-leaf supernode has four children. The

topmost supernode has 2
√

N −1 (≈ 2
√

N ) nodes, and the size of the supernodes at each subsequent

level of the tree is half of the supernode size at the previous level. Clearly, the number of supernodes

increases by a factor of four at each level, starting with one at the top (level 0).

The nested dissection scheme described above has the following properties: (1) the size of

level-l subgrids is approximately
√

N/2l ×√N/2l , (2) the number of nodes in a level-l separator

is approximately 2
√

N/2l , and hence, the length of a supernode at level l of the supernodal

elimination tree is approximately 2
√

N/2l . It has been proved in [47] that the number of nonzeros

that an i× i subgrid can contribute to the nodes of its bordering separators is bounded by ki 2 , where

k = 341/12. Hence, a level-l subgrid can contribute at most kN/4l nonzeros to its bordering nodes.

These nonzeros are in the form of the triangular update matrix that is passed along from the root

of the subtree corresponding to the subgrid to its parent in the elimination tree. The dimensions of

a matrix with a dense triangular part containing kN/4l entries is roughly
√

2kN /2l ×√2kN /2l .

Thus, the size of an update matrix passed on to level l − 1 of the supernodal elimination tree from

level l is roughly upper-bounded by
√

2kN /2l ×√2kN/2l for l ≥ 1.

The size of a level-l supernode is 2
√

N/2l ; hence, a total of 2
√

N/2l elimination steps take
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place while the computation proceeds from the bottom of a level-l supernode to its top. A single

elimination step on a frontal matrix of size (t + 1) × (t + 1) produces an update matrix of size

t × t . Since the size of an update matrix at the top of a level-l supernode is at most
√

2kN /2l ×
√

2kN /2l , the size of the frontal matrix at the bottom of the same supernode is upper-bounded by

(
√

2k + 2)
√

N/2l × (√2k + 2)
√

N/2l . Hence, the average size of a frontal matrix at level l of

the supernodal elimination tree is upper-bounded by (
√

2k + 1)
√

N/2l × (√2k + 1)
√

N/2l . Let
√

2k − 1 = α. Then α
√

N/2l × α√N/2l is an upper bound on the average size of a frontal matrix

at level l.

We are now ready to derive expressions for the communication overhead due to the parallel

extend-add operations and the elimination steps of dense Cholesky on the frontal matrices.

4.5.1 Overhead in Parallel Extend-Add

Before the computation corresponding to level l − 1 of the supernodal elimination tree starts, a

parallel extend-add operation is performed on lower triangular portions of the update matrices of

size
√

2kN/2l × √2kN /2l , each of which is distributed on a
√

p/2l × √p/2l logical mesh of

processors. Thus, each processor holds roughly (kN/4l ) ÷ (p/4l ) = kN/p elements of an update

matrix. Assuming that each processor exchanges roughly half of its data with the corresponding

processor of another subcube, ts + twkN/(2p) time is spent in communication, where ts is the

message startup time and tw is the per-word transfer time. Note that this time is independent

of l. Since there are (log p)/2 levels at which parallel extend-add operations take place, the total

communication time for these operations is2(N/p) log p on a hypercube. The total communication

overhead due to the parallel extend-add operations is 2(N log p) on a hypercube.

4.5.2 Overhead in Factorization Steps

We have shown earlier that the average size of a frontal matrix at level l of the supernodal elimination

tree is bounded by α
√

N/2l × α√N/2l , where α =
√

341/6 − 1. This matrix is distributed on a
√

p/2l ×√p/2l logical mesh of processors. As shown in Figure 4.9, there are two communication

operations involved with each elimination step of dense Cholesky. The average size of a message

is (α
√

N/2l) ÷ (√p/2l) = α
√

N/p . It can be shown [109, 81] that in a pipelined implementation
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on a
√

q ×√q mesh of processors, the communication time for s elimination steps with an average

message size of m is2(ms). The reason is that although each message must go to2(
√

q) processors,

messages corresponding to2(
√

q) elimination steps are active simultaneously in different parts of

the mesh. Hence, each message effectively contributes only2(m) to the total communication time.

In our case, at level l of the supernodal elimination tree, the number of steps of dense Cholesky is

2
√

N/2l . Thus the total communication time at level l is α
√

N/p× 2
√

N/2l =2((N/
√

p)(1/2l)).

The total communication time for the elimination steps at the top (log p)/2 levels of the supernodal

elimination tree is2((N/
√

p)6log4 p−1
l=0 (1/2l)). This has an upper bound of 2(N/

√
p). Hence, the

total communication overhead due to the elimination steps is 2(p × N/
√

p) = 2(N
√

p).

The parallel multifrontal algorithm incurs an additional overhead of emptying the pipeline log p

times (once before each parallel extend-add) and then refilling it. It can be easily shown that this

overhead is2(N) each time the pipeline restarts. Hence, the overall overhead due to restarting the

pipeline log p time is2(N log p), which is smaller in magnitude than the2(N
√

p) communication

overhead of the dense Cholesky elimination steps.

4.5.3 Communication Overhead for 3-D Problems

The analysis of the communication complexity for the sparse matrices arising out of three-

dimensional finite element problems can be performed along the lines of the analysis for the case of

two-dimensional grids. Consider an N 1/3×N 1/3×N 1/3 grid that is recursively partitioned into eight

subgrids by a separator that consists of three orthogonal N 1/3×N 1/3 planes. The number of nonzeros

that an i× i× i subgrid contributes to the nodes of its bordering separators is2(i 4) [47]. At level l,

due to l bisections, i is no more than N 1/3/2l . As a result, an update or a frontal matrix at level l of

the supernodal elimination tree will contain2(N 4/3/24l) entries distributed among p/8l processors.

Thus, the communication time for the parallel extend-add operation at level l is 2(N 4/3/(2l p)).

The total communication time for all parallel extend-add operations is2((N 4/3/p)6log8 p−1
l=0 (1/2l)),

which is 2(N 4/3/p). For the dense Cholesky elimination steps at any level, the message size is

2(N 2/3/
√

p). Since there are 3N 2/3/4l nodes in a level-l separator, the total communication time

for the elimination steps is2((N 4/3/
√

p)6log8 p−1
l=0 (1/4l)), which is 2(N 4/3/

√
p).

Hence, the total communication overhead due to parallel extend-add operations is 2(N 4/3) and
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that due to the dense Cholesky elimination steps is2(N 4/3√p). As in the 2-D case, these asymptotic

expressions can be generalized to sparse matrices resulting from three-dimensional graphs whose

n-node subgraphs have 2(n2/3)-node separators. This class includes the linear systems arising out

of three-dimensional finite element problems.

4.5.4 Communication Overhead on a Mesh

The communication overhead due the dense Cholesky elimination steps is the same on both the

mesh and the hypercube architectures because the frontal matrices are distributed on a logical mesh

of processors. However, the parallel extend operations use the entire cross-section bandwidth of a

hypercube, and the communication overhead due to them will increase on a mesh due to channel

contention.

Recall that the communication time for parallel extend-add at any level is 2(N/p) on a

hypercube. The extend-add is performed among groups of p/4l processors at level l of the

supernodal elimination tree. Therefore, at level l, the communication time for parallel extend-

add on a
√

p/2l × √p/2l submesh is 2(N/(2l√p)). The total communication time for all the

levels is 2((N/
√

p)6log4 p−1
l=0 (1/2l)). This has an upper bound of 2(N/

√
p), and the upper bound

on the corresponding communication overhead term is 2(N
√

p). This is the same as the total

communication overhead for the elimination steps. Hence, for two-dimensional problems, the

overall asymptotic communication overhead is the same for both mesh and hypercube architectures.

The communication time on a hypercube for the parallel extend-add operation at level l is

2(N 4/3/(2l p)) for three-dimensional problems. The corresponding communication time on a mesh

would be2(N 4/3/(4l√p). The total communication time for all the parallel extend-add operations is

2((N 4/3/
√

p)6log8 p−1
l=0 (1/4l)), which is2(N 4/3/

√
p). As in the case of two-dimensional problems,

this is asymptotically equal to the communication time for the elimination steps.

4.6 Scalability Analysis

It is well known [45] that the total work involved in factoring the adjacency matrix of an N -node

graph with an 2(
√

N )-node separator using nested dissection ordering of nodes is 2(N 1.5). We

have shown in Section 4.5 that the overall communication overhead of our scheme is 2(N
√

p).
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From Equation 2.4, a fixed efficiency can be maintained if and only if N 1.5 ∝ N
√

p, or
√

N ∝ √p,

or N 1.5 = W ∝ p1.5. In other words, the problem size must be increased as 2(p1.5) to maintain a

constant efficiency as p is increased. In comparison, a lower bound on the isoefficiency function of

Rothberg and Gupta’s scheme [120] with a communication overhead of at least 2(N
√

p log p) is

2(p1.5(log p)3). The isoefficiency function of any column-based scheme is at least 2(p3) because

the total communication overhead has a lower bound of 2(Np). Thus, the scalability of our

algorithm is superior to that of the other schemes.

It is easy to show that the scalability of our algorithm is 2(p1.5) even for the sparse matrices

arising out of three-dimensional finite element grids. The problem size in the case of an N × N

sparse matrix resulting from a three-dimensional grid is2(N 2) [47]. We have shown in Section 4.5

that the overall communication overhead in this case is2(N 4/3√p). To maintain a fixed efficiency,

N 2 ∝ N 4/3√p, or N 2/3 ∝ √p, or N 2 = W ∝ p1/5.

A lower bound on the isoefficiency function for dense matrix factorization is 2(p1.5) [81, 82]

if the number of rank-1 updates performed by the serial algorithm is proportional to the rank of

the matrix. The factorization of a sparse matrix derived from an N -node graph with an S(N)-node

separator involves a dense S(N) × S(N) matrix factorization. S(N) is 2(
√

N ) and 2(N 2/3) for

two- and three-dimensional constant node-degree graphs, respectively. Thus, the complexity of the

dense portion of factorization for these two types of matrices is 2(N 1.5) and 2(N 2), respectively,

which is of the same order as the computation required to factor the entire sparse matrix [45, 47].

Therefore, the isoefficiency function of sparse factorization of such matrices is bounded from below

by the isoefficiency function of dense matrix factorization, which is 2(p1.5). As we have shown

earlier in this section, our algorithm achieves this lower bound for both two- and three-dimensional

cases.

4.6.1 Scalability with Respect to Memory Requirement

We have shown that the problem size must increase in proportion to p1.5 for our algorithm to achieve

a fixed efficiency. As the overall problem size increases, so does the overall memory requirement.

For an N -node two-dimensional constant node-degree graphs, the size of the lower triangular factor

L is 2(N log N) [45]. For a fixed efficiency, W = N 1.5 ∝ p1.5, which implies N ∝ p and
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N log N ∝ p log p. As a result, if we increase the number of processors while solving bigger

problems to maintain a fixed efficiency, the overall memory requirement increases at the rate of

2(p log p) and the memory requirement per processor increase logarithmically with respect to the

number of processors.

In the three-dimensional case, size of the lower triangular factor L is2(N 4/3) [45]. For a fixed

efficiency, W = N 2 ∝ p1.5, which implies N ∝ p3/4 and N 4/3 ∝ p. Hence, in this case, the

overall memory requirement increases linearly with the number of processors and the per-processor

memory requirement is constant for maintaining a fixed efficiency. It can be easily shown that for

the three-dimensional case, the isoefficiency function should not be of a higher order than 2(p1.5)

if speedups proportional to the number of processors are desired without increasing the memory

requirement per processor. To the best of our knowledge, the algorithm described in Section 4.4 is

the only parallel algorithm for sparse Cholesky factorization that satisfies this condition.

4.7 Experimental Results of Sparse Cholesky Factorization

We implemented the parallel multifrontal algorithm described in this chapter on the nCUBE2 parallel

computer. We have gathered some preliminary speedup results for two classes of sparse matrices,

which are summarized in Tables 4.1 and 4.2. The entire code is written in the C programming

language augmented with the message passing primitives for nCUBE and compiled using the ncc

compiler with the -O optimization option. The results for 64 processors or less were obtained on

the 64-processor nCUBE2 (with 16 MB memory per node) at the CIS department of University

of Florida at Gainsville. The results for 128 to 1024 processors were obtained on the 1024-

processor nCUBE2 (with 4 MB memory per node) at Sandia National Labs. All timings are for

numerical factorization with single precision arithmetic. From an independent set of experiments,

we determined the time for a floating point operation to be roughly 0.5µs, the message startup time

to be roughly 180µs, and the communication rate with no channel conflicts to be roughly 2 bytes

per µs.

We conducted one set of experiments on sparse matrices associated with a 9-point difference

operator on rectangular grids. The purpose of these experiments was to compare their results with

the scalability analysis in Section 4.6. The dimensions of the grids were chosen such that the
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elimination trees were as balanced as possible. The standard nested dissection ordering [43] was

used for these matrices. Nested dissection has been shown to have optimal fill-in in the case of

regular grids [45]. The results of our implementation for some of these grids are summarized in

Table 4.1. Matrix GRIDix j in the table refers to the sparse matrix obtained from an i × j 9-point

finite difference grid.

From our experiments on the 2-D grids, we selected a few points of equal efficiency and plotted

the W versus p curve, which is shown by the solid line in Figure 4.12 for E ≈ 0.31. The problem

size W is measured in terms of the total number of floating point arithmetic operations performed

during factorization; for example, for GRID63x63, W = 4.1684 × 106. The dotted curve below

the experimental curve corresponds to an isoefficiency function of 2(p1.5) and the dashed curve at

the top corresponds to an isoefficiency function of 2(p1.5(log p)3). The first point on each curve

is that for the matrix GRID63x63 on 64 processors. To obtain the dotted curve, W was increased

by a factor of 2
√

2 every time the number of processors p was doubled. To obtain the dashed

curve, a constant was defined to be 4.1684 × 106/(64 × 8 × 63) ≈ 37.7. Then, for any p > 64,

W = 37.7p(log p)3. Given that for p = 64, an efficiency of roughly 31% is obtained for problem

size 4.1684× 106, the dotted and dashed curves indicate the problem sizes that will yield the same

efficiency for p = 128, 256, and 512 if the isoefficiency function is 2(p1.5) and 2(p1.5(log p)3),

respectively.

Figure 4.12 shows that the experimental isoefficiency curve is considerably better than

2(p1.5(log p)3), which is a lower bound on the isoefficiency function of the previously best known

(in terms of total communication volume) parallel algorithm [120] for sparse matrix factorization.

However, it is worse than 2(p1.5), which is the asymptotic isoefficiency function derived in Sec-

tion 4.6. There are two main reasons for this. First, the 2(p1.5) isoefficiency function does not

take load imbalance into account. It has been shown in [96] that even if a grid graph is perfectly

partitioned in terms of the number of nodes, the work load associated with each partition varies.

The partitions closer to the center of the grid require more computation than the ones on or closer

to the periphery. Another reason that the experimental isoefficiency function appears worse than

the prediction is that the efficiencies of the parallel implementation are computed with respect to a

very efficient serial implementation. This can be judged from the run times on a single nCUBE2
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Matrix:     GRID255x127;   N = 32385;  NNZ = 1140.6 thousand;  FLOP = 100.55 million

31.0%

Time

20.5%

Efficiency

2568

Speedup

44.4%

16 128

4 8 16 32 64
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Time

Efficiency

64

512

128
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Time
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51225616 32 64

Speedup

Time

Efficiency

Speedup

256

56.6%66.9%80.5%

12864321684

Speedup

Efficiency

Time

1286432168421

Speedup

Efficiency

Time

128

p

4.228.27 2.22 1.41 .904 .594 .315

1.00 1.96 3.73 5.87 9.15 13.9 26.2

100.0% 98.0% 93.1% 57.2% 43.5%

.411

20.1

31.4% 20.5%

Matrix:     GRID63x63;   N = 3969;  NNZ = 99.45 thousand;  FLOP = 4.1684 million

28.92 7.500 4.493 2.699 1.596

73.3%

1.017 .5516

p 1

1.00

100.0%

3.86 6.44 10.7 18.1 28.4 39.6 52.4

96.4%

p 1

Matrix:     GRID127x127;   N = 16129;  NNZ = 518.58 thousand;  FLOP = 36.682 million

Matrix:     GRID103x95;   N = 9785;  NNZ = 288.04 thousand;  FLOP = 16.599 million

58.86 15.07 5.1558.878 2.971 1.783 1.171 .8546

1.00 3.90 6.63 19.811.4 33.0 50.3 68.9

100.0% 97.6% 82.8% 71.0% 61.9% 51.6% 39.3% 26.9%

p 1

Matrix:     GRID175x127;   N = 22225;  NNZ = 731.86 thousand;  FLOP = 56.125 million

87.38 12.74 7.420 4.164 2.468 1.570 1.092 .8529

1.00 6.86 11.8 21.0 35.4 55.7 80.0 102.4

100.0% 85.7% 73.6% 65.6% 55.3% 43.5% 31.3% 20.0%

512

256

256

149.15 12.22 6.651 3.861 2.349 1.557 1.091 .8357

1.00 12.2 22.4 38.6 63.5 95.8 136.7 178.5

100.0% 76.3% 70.1% 60.4% 49.6% 37.4% 26.7% 17.4%

p 10241

p 10241

.7301

1.00

100.0%

Matrix:     GRID223x207;   N = 46161;  NNZ = 1498.7 thousand;  FLOP = 179.87 million

254.70 20.21 10.85 6.161 3.751 2.380 1.634 1.237

12.6

78.8%

23.5

73.4%

41.3

64.6%

67.9

53.0%

107.0

41.8%

155.9

30.5%

205.9

20.1%

Table 4.1: Experimental results for factoring sparse symmetric positive definite matrices associated

with a 9-point difference operator on rectangular grids. All times are in seconds.
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Figure 4.12: Comparison of our experimental isoefficiency curves with 2(p1.5) curve (theoretical

asymptotic isoefficiency function of our algorithm due to communication overhead on a hypercube)

and with 2(p1.5(log p)3) curve (the lower bound on the isoefficiency function of the best known

parallel sparse factorization algorithm until now). The four data points on the curves correspond to

the matrices GRID63x63, GRID103x95, GRID175x127, and GRID223x207.

processor whose peak performance is rated at roughly 2.5 MFLOPS (double precision) and 8 MIPS.

In our implementation, the computation associated with the subtrees below level log p in the relaxed

supernodal elimination tree is handled by the serial code. However, the computation above this

level is handled by a separate code. In our preliminary implementation, this part of the code is less

efficient than the serial code (disregarding communication) due to additional bookkeeping, which

has a potential for optimization. For example, the total time spent by all the processors participating

in a parallel extend-add operation besides message passing is more than the time taken to perform

extend-add on the same update matrices on a single processor. The same is true for the dense

factorization steps too. However, despite these inefficiencies, our implementation is more scalable

than a hypothetical ideal implementation (with perfect load balance) of the previously best known

parallel algorithm for sparse Cholesky factorization.

In Table 4.2 we summarize the results of factoring some matrices from the Harwell-Boeing

collection of sparse matrices [30]. The purpose of these experiments was to to demonstrate that our

algorithm can deliver good speedups on hundreds of processors for practical problems. Spectral
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Matrix:     BCSSTK31;   N = 35588;  NNZ = 6458.34 thousand;  FLOP = 2583.6 million
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Matrix:     BCSSTK15;   N = 3948;  NNZ = 488.8 thousand;  FLOP = 85.55 million

Matrix:     BCSSTK25;   N = 15439;  NNZ = 1940.3 thousand;  FLOP = 512.88 million

Matrix:     BCSSTK29;   N = 13992;  NNZ = 2174.46 thousand;  FLOP = 609.08 million

Matrix:     BCSSTK30;   N = 28924;  NNZ = 5893.59 thousand;  FLOP = 2246.0 million

256

Matrix:     BCSSTK32;   N = 44609;  NNZ = 8943.91 thousand;  FLOP = 4209.0 million

588.5 301.23 184.84 74.71 52.29 30.01 16.66

2

6.64 4.53

8

1684

16

21

Speedup

32

Efficiency

64 128

Time

10.38

p

p

p

p

p

p

103.73 52.63 26.66 14.88 8.29 4.98 3.20 2.156 1.530

1.00 1.97 3.89 6.97 12.5 20.8 32.4 48.1 67.8

100.0% 98.5% 97.3% 87.1% 78.2% 65.1% 50.7% 37.6% 26.5%

100% 99% 98% 91% 91% 87% 87% 84% 84%

1.00 1.95 3.18 6.21 11.3 19.6 35.3 56.7 88.6 129.9

100.0% 97.7% 79.6% 77.7% 70.3% 61.3% 57.0% 44.3% 34.6% 25.4%

100% 98% 80% 78% 71% 63% 62% 62% 62% 61%

704.0 359.7 212.9 110.45 55.06 31.36 19.22 12.17 7.667 4.631 3.119

1.00 1.96 3.31 6.37 12.8 22.5 36.6 57.9 91.8 152.6 225.6

100.0% 97.9% 82.7% 79.7% 79.9% 70.2% 57.2% 45.2% 35.9% 29.8% 22.0%

100% 98% 83% 82% 84% 82% 77% 72% 68% 72% 72%

1493.5 1050.8 537.4 256.6 134.5 79.93 43.67 24.73 14.616 11.078

1.00 1.74 2.47 4.84 10.1 19.3 32.5 59.5

100.0% 87.0% 61.8% 60.5% 63.3% 60.4% 50.8% 46.5% 41.0% 34.7% 22.9%

2599.0*

1690.7 924.6 503.0 262.0 134.3 73.57 42.02 24.58 14.627 9.226

1.00

100.0%

276.17 153.23 46.24 27.25 16.40

1.00 18.9

59.0%100.0% 53.2%

34.0 112.8

44.1%

191.4

37.4%

318.0

31.1%

3358.0*

1.99 3.63 6.68 12.8 25.0 45.6 79.9 136.6 229.6 364.2

99.3% 90.8% 83.4% 80.1% 78.1% 71.3% 62.4% 53.4% 44.8% 35.6%

5215.0#

105.0 177.8 234.6

Time

Efficiency

Speedup

Time

Efficiency

Speedup

Time

Efficiency

Speedup

Time

Efficiency

Speedup

Time

Efficiency

Speedup

Load balance

Load balance

Load balance

Table 4.2: Experimental results for factoring some sparse symmetric positive definite matrices

resulting from 3-D problems in structural engineering. All times are in seconds. The single

processor run times suffixed by “*” and “#” were estimated by timing different parts of factorization

on two and 32 processors, respectively.
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nested dissection (SND) [111, 112, 113] was used to order the matrices in Table 4.2. This choice of

the ordering scheme was prompted by two factors. First, there is increasing evidence that spectral

orderings offer a good balance between generality of application and the quality of ordering—

both in terms of load balance and fill reduction [20]. Second, the SND algorithm itself can be

parallelized efficiently, whereas most other ordering schemes do not appear to be as well-suited

for parallelization. Although, at the present time we compute the ordering on a serial computer,

SND is our ordering algorithm of choice in a prospective completely parallel implementation of a

sparse linear system solver based on our parallel multifrontal algorithm. A drawback of using a

serial implementation of SND is that its run time is too high. However, variations of SND such as

multilevel SND [14, 113] run much faster without compromising on the quality of ordering.



121

From the experimental results in Tables 4.1 and 4.2, we can infer that our algorithm can deliver

substantial speedups, even on moderate problem sizes. These speedups are computed with respect

to a very efficient serial implementation of the multifrontal algorithm. To lend credibility to our

speedup figures, we compared the run times of our program on a single processor with the single

processor run times given for iPSC/2 in [114] and [127]. The nCUBE2 processors are about 2

to 3 times faster than iPSC/2 processors and our serial implementation, with respect to which the

speedups are computed, is 4 to 5 times faster than the one in [114] and [127]. Our single processor

run times are four times less than the single processor run times on iPSC/2 reported in [9]. We

also found that for some matrices (e.g., that from a 127 × 127 9-point finite difference grid), our

implementation on eight nCUBE2 processors (8.9 seconds) is faster than the 16-processor iPSC/860

implementation (9.7 seconds) reported in [141], although iPSC/860 has much higher computation

speeds.

4.7.1 Load Balancing for Factorization

The factorization algorithm as described in this chapter requires a binary relaxed supernodal elim-

ination trees that are fairly balanced. After obtaining the ordered matrix and the corresponding

elimination tree, we run the elimination tree through a very fast tree balancing heuristic. This

heuristic performs a single pass of depth-first search on the elimination tree and accomplishes two

tasks. First, it converts a general tree into a binary tree required by the subtree to subcube mapping.

Second, it performs limited reordering of the subtrees within the elimination tree to ensure that the

load imbalance at a given level does not exceed a predefined tolerance. The functionality of this

algorithm is briefly described in Figure 4.13. If elimination of a column is regarded as a basic

subtask in Cholesky factorization, then the elimination tree gives a partial ordering of these subtask

for correct factorization [92]. Our tree balancing algorithm is based on the fact that a modified

elimination tree that does not violate the partial order specified by the original tree still leads to

correct factorization. This algorithm generally improves the load-balance significantly in parallel

factorization at the cost of very small increase in fill.

Table 4.2 also gives the percentage load balance for different values of p for BCSSTK15,

BCSSTK25, and BCSSTK29 matrices. To evaluate the load balance, we wrote a sequential program
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that simulates the parallel multifrontal algorithm and reports the maximum achievable efficiency

for a given number of processors in the absence of communication overhead. The simulator takes

as input the same binary relaxed supernodal elimination tree as the the parallel algorithm. Now

the parallel run time to factorize the part of the matrix corresponding to a subtree rooted at level

l of the binary relaxed supernodal elimination tree is given by the sum of the parallel run time to

process the root of the subtree and the parallel run time to eliminate the subtrees of the root. The

parallel run time to processes the root is computed by dividing the serial run time to processes the

root by p/2m , where m = l if 0 ≤ l < log p and m = log p if l ≥ log p. The parallel run time to

eliminate the subtrees is computed as the maximum of the parallel run times for the two subtrees

if 0 ≤ l < log p and as the sum of the run times of the subtrees if l ≥ log p. Thus, by timing the

work associated with individual subtrees in the recursive serial implementation of the multifrontal

algorithm, the simulator can easily estimate the parallel run time in the absence of communication

overhead for a given p. The load balance or the maximum achievable efficiency is then estimated

by dividing the serial run time with the product of p and the estimated parallel run time. Note that

the inefficiency due to load imbalance of subtree-to-subcube mapping does not continue to increase

with the number of processors, but tends to saturate at 64–128 processors.

It is evident from the load balance values given in Table 4.2 that a combination of spectral

nested dissection with our tree balancing algorithm results in very respectable load balances for

up to 1024 processors. The number of nonzeros in the triangular factor (NNZ) and the number of

floating point operations (FLOP) reported in Table 4.2 are for the single processor case. As the

number of processors is increased, the tree balancing algorithm is applied to more levels (log p)

of the relaxed supernodal elimination tree, and consequently, the total NNZ and FLOP increase.

Thus, an efficiency of x% in Table 4.2 indicates that there is a (100 − x)% loss, which includes

three factors: communication, load imbalance, and extra work. For example, the efficiency for

BCSSTK25 on 64 processors is 57%; i.e., there is a 43% overhead. However, only 5% overhead is

due to communication and extra work. The remaining 38% overhead is due to load imbalance.

Although we have observed through our experiments that the upper bound on efficiency due

to load imbalance does not fall below 60–70% for hundreds of processors, even this bound can

be improved further. The subtree-to-subcube mapping can be relaxed [53, 78] to a subforest-to-
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Number of Processors

Problem n |A| |L| OPC 32 64 128 256 512 1024

PILOT87 2030 122550 504060 240M 0.44 0.73 1.05

MAROS-R7 3136 330472 1345241 720M 0.83 1.41 2.14 3.02 4.07 4.48

FLAP 51537 479620 4192304 940M 0.75 1.27 1.85 2.87 3.83 4.25

BCSSTK33 8738 291583 2295377 1000M 0.76 1.30 1.94 2.90 4.36 6.02

BCSSTK30 28924 1007284 5796797 2400M 1.48 2.42 3.59 5.56 7.54

BCSSTK31 35588 572914 6415883 3100M 0.80 1.45 2.48 3.97 6.26 7.93

BCSSTK32 44609 985046 8582414 4200M 1.51 2.63 4.16 6.91 8.90

COPTER2 55476 352238 12681357 9200M 1.10 1.94 3.31 5.76 9.55 14.78

CUBE35 42875 124950 11427033 10300M 1.27 2.26 3.92 6.46 10.33 15.70

NUG15 6330 186075 10771554 29670M 4.32 7.54 12.53 19.92

Table 4.3: The performance of sparse Cholesky factorization on Cray T3D (from [53, 78]). For

each problem the table contains the number of equations n of the matrix A, the original number of

nonzeros in A, the nonzeros in the Cholesky factor L , the number of operations required to factor

the nodes, and the performance in gigaflops for different number of processors.

subcube mapping, which reduces load imbalances at the cost of a little increase in communication. A

preliminary implementation of this variation yields up to 20 GFLOPS on medium-size problems on

a 1024-processor Cray T3D. Table 4.3 and Figure 4.14 show the performance of this implementation

on some selected matrices.

4.8 Parallel Algorithms for Forward Elimination and Backward Substitution in

Direct Solution of Sparse Linear Systems

A few parallel algorithms for solving triangular systems resulting from parallel factorization of

sparse linear systems have been proposed and implemented recently. We present a detailed analysis

of the parallel complexity and scalability of parallel algorithm described briefly in [64] to obtain

a solution to the system of sparse linear equations of the forms LY = B and U X = Y , where L

is a lower triangular matrix and U is an upper triangular matrix. Here L and U are obtained from

the numerical factorization of a sparse coefficient matrix A of the original system AX = B to be
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solved. If A, L , and U are N × N matrices, then X , Y , and B are N × m matrices, where m is the

number of right-hand side vectors for which the solution to the sparse linear system with A as the

coefficient matrix is desired. Our analysis and experiments show that, although not as scalable as the

best parallel sparse Cholesky factorization algorithms, parallel sparse triangular solvers can yield

reasonable speedups in runtime on hundreds of processors. We also show that for a wide class of

problems, the sparse triangular solvers described in this chapter are optimal and are asymptotically

as scalable as a dense triangular solver.

For a single right-hand side (m = 1), our experiments show a 256-processor performance of up

to 435 MFLOPS on a Cray T3D, on which the single-processor performance for the same problem

is ≈ 8.6 MFLOPS. With m = 30, the maximum single-processor and 256-processor performance

observed in our experiments is ≈ 30 MFLOPS and ≈ 3050 MFLOPS, respectively. To the best

of our knowledge, this is the highest performance and speedup for this problem reported on any

massively parallel computer.

In addition to the performance and scalability analysis of parallel sparse triangular solvers, we

discuss the redistribution of the triangular factor matrix among the processors between numerical

factorization and triangular solution, and its impact on performance. In [53], we describe an

optimal data-distribution scheme for Cholesky factorization of sparse matrices. This distribution

leaves groups of consecutive columns of L with identical pattern of non-zeros (henceforth called

supernodes) with a two-dimensional partitioning among groups of processors. However, this

distribution is not suitable for the triangular solvers, which are scalable only with a one-dimensional

partitioning of the supernodal blocks of L . We show that if the supernodes are distributed in a

subtree-to-subcube manner [46] then the cost of converting the two-dimensional distribution to a

one-dimensional distribution is only a constant times the cost of solving the triangular systems.

From our experiments, we observed that this constant is fairly small on the Cray T3D—at most

0.9 for a single right-hand side vector among the test cases used in our experiments. Of course,

if more than one systems need to be solved with the same coefficient matrix, then the one-time

redistribution cost is amortized.
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4.8.1 Algorithm Description

In this section, we describe parallel algorithms for sparse forward elimination and backward substi-

tution, which have been discussed briefly in [64]. The description in this section assumes a single

right-hand side vector; however, the algorithm can easily be generalized to multiple right-hand sides

by replacing all vector operations by the corresponding matrix operations.

Forward Elimination

The basic approach to forward elimination is very similar to that of multifrontal numerical factor-

ization [92] guided by an elimination tree [93, 81] with the distribution of computation determined

by a subtree-to-subcube mapping [46]. A symmetric sparse matrix, its lower triangular Cholesky

factor, and the corresponding elimination tree with subtree-to-subcube mapping onto 8 processors

is shown in Figure 4.5. The computation in forward elimination starts with the leaf supernodes of

the elimination tree and progresses upwards to terminate at the root supernode. A supernode is a

set of columns i1, i2, . . . , it of the sparse matrix such that all of them have non-zeros in identical

locations and ij+1 is the parent of ij in the elimination tree for 1 ≤ j < t . For example, in Figure 4.5,

nodes 6, 7, and 8 form a supernode. The portion of the lower triangular matrix L corresponding

to a supernode is a dense trapezoidal block of width t and maximum height n, where t is the

number of nodes in the supernode and n is the number of non-zeros in the leftmost column of the

supernode. Figure 4.15 outlines the forward elimination process across three levels of the left half

of the elimination tree of Figure 4.5. One of the blocks of L shown in Figure 4.15 is the dense

trapezoidal supernode consisting of nodes 6, 7, and 8. For this supernode, n = 4 and t = 3.

As in the case of multifrontal numerical factorization [92], the computation in forward and

backward triangular solvers can also be organized in terms of dense matrix operations. In forward

elimination (see Figure 4.15), before the computation starts at a supernode, the elements of the

right-hand side vector with the same indices as the nodes of the supernode are collected in the first

t contiguous locations in a vector of length n. The remaining n − t entries of this vector are filled

with zeros. The computation corresponding to a trapezoidal supernode, which starts at the leaves,

consists of two parts. The first computation step is to solve the dense triangular system at the top of

the trapezoid (above the dotted line in Figure 4.15). The second step is to subtract the product of
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Figure 4.15: Pictorial representation of forward elimination along three levels of an elimination

tree. The color of an RHS box is determined by the color(s) of the box(es) at the next lower level

that contribute to its value.

the vector of length t (above the dotted line) with the (n − t)× t submatrix of L (below the dotted

line) from the vector of length n− t (below the dotted line). After these two computation steps, the

entries in the lower part of the vector of length n− t are subtracted from the corresponding (i.e., with

the same index in the original matrix) entries of the vector accompanying the parent supernode. The

computation at any supernode in the tree can commence after the contributions from all its children

have been collected. The algorithm terminates after the computation at the triangular supernode at

the root of the elimination tree.

In a parallel implementation on p processors, a supernode at level l (see Figure 4.5) from the
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top is distributed among p/2l processors. The computation at a level greater than or equal to log p

is performed sequentially on a single processor assigned to that subtree. However, the computation

steps mentioned above must be performed in parallel on p/2l processors for a supernode with

0 ≤ l < log p.

In [65], Heath and Romine describe efficient pipelined or wavefront algorithms for solving

dense triangular systems with block-cyclic row-wise and column-wise partitioning of the triangular

matrices. We use variations of the same algorithms on the dense trapezoidal supernodes at each

of the parallel levels of the elimination tree. the number of processors among which a supernode

is partitioned varies with its level in the tree, but the same basic parallel algorithm is used for

each supernode. Figure 4.16(a) shows hypothetical forward elimination on a supernode with an

unlimited number of processors on an EREW-PRAM. From this figure, it is clear that, due to

data dependencies, at a time only max(t, n/2) processors can remain busy. Since the computation

proceeds along a diagonal wave from the upper-left to the lower-right corner of the supernode, at

any given time, only one block per row and one element per column is active. From this observation,

it can be shown that an efficient parallel algorithm (an algorithm capable of delivering a speedup

of 2(p) using p processors) for forward elimination must employ a one-dimensional row-wise or

column-wise partitioning of the supernode so that all processor can be busy at all times (or most

of the time). From a practical perspective, we chose a row-wise block-cyclic partitioning because

n ≥ t and a more uniform partitioning with reasonable block sizes can be obtained if the rows are

partitioned. Figures 4.16(b) and (c) illustrate two variations of the pipelined forward elimination

with block-cyclic row-wise partitioning of the supernode. Each box in the figure can be regarded

as a b × b square block of the supernode (note that the diagonal boxes represent lower triangular

blocks). In the column-priority algorithm, the computation along a column of the supernode is

finished before a new column is started. In the row-priority algorithm, the computation along a row

is finished before a new row is started.

4.8.2 Backward Substitution

The algorithm for parallel backward substitution is very similar. Since an upper triangular system

is being solved, the supernodes are organized as dense trapezoidal matrices of height t and width n
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Figure 4.16: Progression of computation consistent with data dependencies in parallel pipelined

forward elimination in a hypothetical supernode of the lower-triangular factor matrix L . The

number in each box of L represents the time step in which the corresponding element of L is used

in the computation. Communication delays are ignored in this figure and the computation time for

each box is assumed to be identical. In parts (b) and (c), the supernode is partitioned among the

processors using a cyclic mapping. A block-cyclic mapping can be visualized by regarding each

box as a b × b block (the diagonal boxes will represent triangular blocks).
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Figure 4.17: Column-priority pipelined backward substitution on a hypothetical supernode dis-

tributed among 4 processors using column-wise cyclic mapping.

(n ≥ t) and a column-wise block-cyclic partitioning is used at the top log p levels of the elimination

tree. In backward substitution, the computation starts at the root of the elimination tree and

progresses down to the leaves. First, the entries from the right-hand side vector with the same

indices as the nodes of a supernode are collected in the first t contiguous locations of a vector of

length n. The remaining n− t entries of this vector are copied from the entries with same indices in

the vector accompanying the parent supernode. This step is not performed for the root supernode,

which does not have a parent and for which n = t . The computation at a supernode consists of

two steps and can proceed only after the computation at its parent supernode is finished. The first

computation step is to subtract the product of the t × (n − t) rectangular portion of the supernode

with the lower part of the vector of size n− t from the upper part of the vector of size t . The second

step is to solve the triangular system formed by the t× t triangle of the trapezoidal supernode and the

upper part of the vector of size t . Just like forward elimination, these steps are carried out serially

for supernodes at levels greater than or equal to log p in the elimination tree. For the supernodes

at levels 0 through log p − 1, the computation is performed using a pipelined parallel algorithm.

Figure 4.17 illustrates the pipelined algorithm on four processors with column-wise cyclic mapping.

The algorithm with a block-cyclic mapping can be visualized by regarding each box in Figure 4.17

as a square block (the blocks along the diagonal of the trapezoid are triangular) of size b × b.
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In both forward and backward triangular solvers described in this section, if the system needs

to be solved with respect to more than one, say m, right-hand sides, then the vectors of length n

are replaced by rectangular n ×m matrices. The overall algorithms remain identical except that all

vector operations are replaced by the corresponding matrix operations, the size of the matrix being

the length of the vector times the number of vectors.

4.8.3 Analysis

In this section we derive expressions for the communication overheads and analyze the scalability of

the sparse supernodal multifrontal triangular solvers described in Section 4.8.1. We will present the

analysis for the forward elimination phase only; however, the reader can verify that the expressions

for the communication overhead are identical for backward substitution.

Communication Overheads

It is difficult to derive analytical expressions for general sparse matrices because the location and

amount of fill-in, and hence, the distribution and the number if non-zeros in L , is a function of the the

number and position of nonzeros in the original matrix. Therefore, we will focus on the problems

in which the original matrix is the adjacency matrix of a two- or three-dimensional graph in which

the degree of each node is bounded by a constant. These classes of matrices include the coefficient

matrices generated in all two- and three-dimensional finite element and finite difference problems.

We also assume as that a nested-dissection based fill-reducing ordering is used, which results in

an almost balanced elimination tree. The subtree-to-subcube assignment of the elimination tree to

the processors relies heavily on a balanced tree. Although there are bound to be overheads due to

unequal distribution of work, it is not possible to model such overheads analytically because the

extent of such overheads is data-dependent. From our experience with actual implementations of

parallel triangular solvers as well as parallel factorization codes [53], we have observed that such

overheads are usually not excessive. Moreover, the overhead due to load imbalance in most practical

cases tends to saturate at 32 to 64 processors for most problems and does not continue to increase

as the number of processors are increased. In the remainder of this section, we will concentrate on

overheads due to inter-processor communication only.



132

Consider the column-priority pipelined algorithm for forward elimination shown in Fig-

ure 4.16(c). Let b be the block size in the block-cyclic mapping. A piece of the vector of

size b is transferred from a processor to its neighbor in each step of the algorithm until the com-

putation moves below the upper triangular part of the trapezoidal supernode. If a supernode is

distributed among q processors, then during the entire computation at a supernode, q + t/b − 1

such communication steps are performed; q − 1 steps are required for the computation to reach the

last processor in the pipeline and t/b steps to pass the entire data (of length t) through the pipeline.

Thus, the total communication time is proportional to b(q−1)+ t , which is2(q)+2(t), assuming

that b is a constant.

Besides the communication involved in the pipelined processing over a supernode, there is

some more communication involved in collecting the contributions of the vectors associated with

the children of a supernode into the vector associated with the parent supernode. If the two child

supernodes are each distributed among q processors, then this communication is equivalent to an

all-to-all personalized communication [81] among 2q processors with a data size of roughly t/q

on each processor. This communication can be accomplished in time proportional to t/q, which is

asymptotically smaller than the 2(q)+2(t) time spent during the pipelined computation phase at

the child supernodes. Therefore, in the remainder of this section, we will ignore the communication

required to transfer the contributions of the vector across the supernodes at different levels of the

elimination tree.

So far we have established that a time proportional to b(q − 1)+ t (or roughly, bq + t) is spent

while processing an n × t trapezoidal supernode on q processors with a block-cyclic mapping that

uses blocks of size b. We can now derive an expression for the overall communication time for the

entire parallel forward elimination process by substituting for q and t in the expression bq + t for

a supernode at level l and summing up the resulting expression over all levels.

Let us first consider a sparse linear system of N equations resulting from a two-dimensional

finite element problem being solved on p processors. As a result of using the subtree-to-subcube

mapping, q at a level l is p/2l . If a nested-dissection based ordering scheme is used to number the

nodes of the graph corresponding to the coefficient matrix, then the number of nodes t in a supernode

at level l is α
√

N/2l , where α is a small constant [91, 90, 45, 53]. Thus the overall communication
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time is proportional to 6 log p−1
l=0 (bp/2l) + 6log p−1

l=0 (α
√

N/2l ), which is2(p) +2(√N ).

The overall computation is proportional to the number of non-zeros in L , which is 2(N log N)

for an N × N sparse coefficient matrix resulting from a two-dimensional finite element problem

[45] with a nested-dissection based ordering. Assuming that the computation is divided uniformly

among the processors, each processor spends 2((N log N)/p) time in computation. Hence, the

parallel runtime for forward elimination algorithm described in Section 4.8.1 is as follows2:

TP = 2(N log N

p
)+2(√N )+2(p). (4.1)

If the underlying graph corresponding to the coefficient matrix is a three-dimensional constant-

degree graph (as is the case in three-dimensional finite element and finite difference problems),

then the value of t at level l is roughly α(N/2l )2/3, where α is a small constant [45, 53]. The

value of q at level l is p/2l . Thus, the total communication time is proportional to 6 log p−1
l=0 (bp/2l)

+ 6
log p−1
l=0 (α(N/2l )2/3, which is 2(p) + 2(N 2/3). Assuming that the overall computation of

2(N 4/3) [45] is uniformly distributed among the processors, the parallel runtime is given by the

following equation:

TP = 2(N 4/3

p
) +2(N 2/3)+2(p). (4.2)

If more than one (say m) right-hand side vectors are present in the system, then each term in

Equations 4.1 and 4.2 is multiplied with m.

Scalability Analysis

Recall that for a triangular system resulting from the factorization of an N × N sparse matrix

corresponding to a two-dimensional constant-degree graph,

W = 2(N log N). (4.3)

If we assume that only the last two terms in Equation 4.1 contribute to the overhead, then from the

relation To = pTP − TS, it is easy to see that

To = 2(p2)+2(p√N ). (4.4)

2 Depending on the way the pipelining is implemented for processing a supernode, there may be2(t) and/or2(q) steps
of pipeline delay (one step performs 2b2 operations) at each supernode. However, the aggregate of such terms does not
exceed the asymptotic communication complexity of 2(p)+ 2(√N)
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Balancing W against the first term in the expression for To yields the following (see Appendix D

for details):

W ∝ p2, (4.5)

and balancing it against the second term in the expression for To yields

W ∝ p2

log p
. (4.6)

Since p2 is the dominant term in the two isoefficiency expressions, the overall rate at which the

problem size must increase with the number of processors to maintain a fixed efficiency is 2(p2),

as given by Equation 4.5.

For a triangular system resulting from the factorization of an N×N sparse matrix corresponding

to a three-dimensional constant-degree graph,

W = 2(N 4/3) (4.7)

and

To = 2(p2)+2(pN 2/3). (4.8)

Balancing W against each term in the expression for To yields the following isoefficiency function

(see Chapter 2 for details):

W ∝ p2. (4.9)

In this section, we have shown that the isoefficiency function for solving sparse triangular

systems resulting from the factorization of a wide class of sparse matrices is 2(p2). In [53],

we described parallel algorithms for sparse Cholesky factorization of the same class of matrices

with an isoefficiency function of 2(p1.5), which is better than the 2(p2) isoefficiency function of

the corresponding triangular solver. However, the amount of computation involved in numerical

factorization is much higher than that in a triangular solver. Therefore, as we experimentally

demonstrate in Section 4.8.5, despite being less efficient than parallel numerical factorization,

triangular solvers can still be speeded up enough n parallel so as to claim only a fraction of the

factorization time on the same number of processors.
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Comparison with the Scalability of Dense Triangular Solvers

The communication time for solving a dense N × N triangular system using a row-wise block-

cyclic mapping onto p processors with block size b is proportional to b(p − 1) + N , which

is 2(p) + 2(N). The problem size W is 2(N 2) and the total communication overhead To

is 2(p2) + 2(Np) (note that the total communication overhead or the overhead function is the

product of p and the communication time). It is easy to see W must grow in proportion to p2 in order

to satisfy the relation W ∝ To for maintaining a constant efficiency. Thus, the isoefficiency function

of a parallel dense triangular solver is 2(p2), indicating that the parallel algorithms described in

Section 4.8.1 for sparse forward and backward triangular solvers are asymptotically as scalable as

their dense counterparts. From this observation, we can argue that the sparse algorithms, at least

in the case of matrices associated with three-dimensional constant-degree graphs are optimal. The

topmost supernode in such a matrix is an N 2/3 × N 2/3 dense triangle. Solving a triangular system

corresponding to this supernode involves asymptotically a computation of the same complexity as

solving the entire sparse triangular system. Thus, the overall scalability cannot be better than that

of solving the topmost N 2/3 × N 2/3 dense triangular system in parallel, which is 2(p2).

4.8.4 Data Distribution for Efficient Triangular Solution

In Section 4.8.1 and in [81], we discuss that in order to implement the steps of dense triangular

solution efficiently, the matrix must be partitioned among the processors along the rows or along

the columns. However, as we have shown in [53], the dense supernodes must be partitioned along

both dimensions for the numerical factorization phase to be efficient. The table in Figure 4.18

shows the communication overheads and the isoefficiency functions for parallel dense and sparse

factorization and triangular solution using one- and two-dimensional partitioning schemes. The

most efficient scheme in each category is denoted by a shaded box in the table. The last column of

the table shows the overall isoefficiency function of the combination of factorization and triangular

solvers. Note that the triangular solvers are unscalable by themselves if the dense supernodal blocks

of the triangular factor are partitioned in two dimensions. However, the asymptotic communication

overhead of the unscalable formulation of the triangular solvers does not exceed the communication

overhead of the factorization process. As a result, the overall isoefficiency function is dominated
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Figure 4.18: A table of communication overheads and isoefficiency functions for sparse factorization

and triangular solution with different partitioning schemes.

by that of factorization. Hence, for a solving a system with a single right-hand side vectors (or a

small constant number of them), the unscalability of the triangular solvers should not be of much

concern. However, if solutions with respect to a number of right-hand side vectors are required,

then for both the factorization and triangular solution to be efficient together, each supernode must

be redistributed among the processors that share it. This redistribution must convert the original

two-dimensional block-cyclic partitioning into a one-dimensional block-cyclic partitioning. In this

section we show that the time spent in this redistribution is not asymptotically higher than the

parallel run time of the triangular solvers.

Consider an n×t dense supernode mapped onto a
√

q×√q logical grid of processors using a two

dimensional partitioning. As shown in Figure 4.19, the redistribution is equivalent to a transposition

of each (n/
√

q) × t rectangular block of the supernode among the
√

q processor on which it is

horizontally partitioned. This is an all-to-all personalized communication operation [81] among
√

q processors with each processor holding nt/q words of data. Although Figure 4.19 illustrates

redistribution with a plain block partitioning, both the procedure and the cost of redistribution are the

same with block-cyclic partitioning as well. The communication time for this all-to-all personalized
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Figure 4.19: Converting the two-dimensional partitioning of a supernode into one-dimensional

partitioning.

operation is 2(nt/q) [81]. Note that for solving a triangular system with a single right-hand side,

each processor performs2(nt/q) computation while processing an n×t supernode on q processors.

Thus, the total overhead for redistribution is of the same order as the time spent by the parallel

triangular solver while working on the top log p levels of the elimination tree, which is less than the

total parallel runtime. The actual ratio of the redistribution time and the parallel triangular solution

time will depend on the relative communication and computation speeds of the parallel computer

being used. In Section 4.8.5, we show that on a Cray T3D, the redistribution time is at most 0.9

times (0.6 times on an average) the parallel triangular solution time with a single right-hand side

vector. If more than one right-hand side vectors are used, then the cost of redistribution can be

amortized further because the redistribution needs to be done only once.
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4.8.5 Experimental Results

We implemented the algorithms described in Section 4.8.1 and integrated them with our sparse

Cholesky factorization algorithms described in Section 4.4. Table 4.43 and Figure 4.20 show the

performance of the parallel triangular solvers on a Cray T3D.

In Table 4.4, we show the time in seconds and the performance in MFLOPS on a selected

number of processors for five test matrices with the number of right-hand side vectors varying from

1 to 30. To facilitate a comparison of the times for various phases of the solution processes, the table

also contains the factorization run time and MFLOPS, as well as the time to redistribute the factor

matrix to convert the supernodes from a two-dimensional to a one-dimensional partitioning among

the processors. As shown in Table 4.4, for a single right-hand side vector, the highest performance

achieved on a 256-processor Cray T3D is approximately 435 MFLOPS, which increases to over

3 GFLOPS if a solution with 30 right-hand side vectors is obtained. Comparing with the single-

processor performance for BCSSTK15, this represents roughly 50- and 100-fold enhancement

in performance on 256 processors for 1 and 30 right-hand side vectors, respectively. There are

two other important observations to be made from the table in Table 4.4. First, despite a highly

scalable implementation of sparse Cholesky factorization, parallelization of the relatively less

scalable triangular solvers can speed them enough so that their runtime is still a small fraction of

the factorization time. Second, although efficient implementations of factorization and triangular

solvers use different data partitioning schemes, the redistribution of the data, on an average, takes

much less time than the triangular solvers for a single right-hand side vector on the T3D.

Figure 4.20 shows the plots of MFLOPS versus number of processors of the Cray T3D for

triangular solutions with different number of right-hand side vectors. The curves for these four test

matrices show that both the overall performance and the speedups are much higher if a block of right-

hand side vectors is available for solution. The use of multiple right-hand side vectors enhances the

single processor performance due to effective use of BLAS-3 routines. It also improves speedups

because the cost of certain index computations required in the parallel implementation can be

3 The factorization megaflops,operation count,and number of nonzeros are different for some matrices between Tables 4.3
and 4.4 because Table 4.3 gives the results of an implementation that modifies the subtree-subcube mapping to reduce
load imbalance [53]. On the other hand, Table 4.4 [57] implements a strict subtree-subcube mapping and also uses
somewhat different parameters in spectral nested dissection to order the matrices.
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BCSSTK15: N = 3948;  Factorization Opcount = 85.5 Million;  Nonzeros in factor = 0.49 Million

NRHS
FBsolve time (sec.)
FBsolve MFOLPS

5

21.5

10 20 30

26.5 29.4 30.0

1

8.6

2

13.7
.228 .284 .452 .740 1.33 1.92

Factorization time = .721 sec.
Factorization MFLOPS = 3871
Time to redistribute L = .035 sec.

Factorization MFLOPS = 800
Time to redistribute L = .009 sec.

Factorization time = .107 sec.

Factorization time = 5.59 sec.
Factorization MFLOPS = 499
Time to redistribute L = .071 sec.

Factorization time = 2.46 sec.
Factorization MFLOPS = 34.8
Time to redistribute L = 0.0 sec.

p = 64

p = 1

NRHS
FBsolve time (sec.)
FBsolve MFOLPS

5 10 20 301 2

81.5 145 285 405 527 583
.024 .027 .034 .048 .074 .100

BCSSTK31: N = 35588;  Factorization Opcount = 2791 Million;  Nonzeros in factor = 6.64 Million

NRHS
FBsolve time (sec.)
FBsolve MFOLPS

5 10 20 301 2

NRHS
FBsolve time (sec.)
FBsolve MFOLPS

5 10 20 301 2
.073
363

.082
646

.107
1240

.152
1738

.242
2199 2385

.334

HSCT21954: N = 21954;  Factorization Opcount = 2822 Million;  Nonzeros in factor = 5.84 Million

p = 16 .227
115

.274
194

.398
330

.614
427

1.05
498

1.51
523

COPTER2: N = 55476;  Factorization Opcount = 8905 Million;  Nonzeros in factor = 12.77 Million

p = 256
NRHS
FBsolve time (sec.)
FBsolve MFOLPS

5 10 20 301 2

p = 256
NRHS
FBsolve time (sec.)
FBsolve MFOLPS

5 10 20 301 2

.117 .130 .167 .232 .364 .500
434 785 1526 2195 2805 3053

CUBE35: N = 42875;  Factorization Opcount = 7912 Million;  Nonzeros in factor = 9.95 Million

.108 .120 .154 .216 .340 .468
369 665 1289 1838 2345 2548

NRHS
FBsolve time (sec.)
FBsolve MFOLPS

5 10 20 301 2
p = 64 .186 .220 .320 .492 .832 1.10

274 463 795 1036 1226 1277

NRHS
FBsolve time (sec.)
FBsolve MFOLPS

5 10 20 301 2

NRHS
FBsolve time (sec.)
FBsolve MFOLPS

5 10 20 301 2
p = 32 .113 .133 .189 .284 .472 .672

203 347 609 809 973 1025

p = 32 .245 .296 .436 .681 1.21 1.72
162 269 456 583 660 693

p = 256
NRHS
FBsolve time (sec.)
FBsolve MFOLPS

5 10 20 301 2
.091 .122.099 .161 .234 .312
255 471 953 1452 1991 2244

p = 256

Factorization time = 2.48 sec.
Factorization MFLOPS = 1138

Factorization time = 7.528 sec.
Factorization MFLOPS = 1051
Time to redistribute L = .13 sec.

Factorization time = .619 sec.
Factorization MFLOPS = 4560
Time to redistribute L = .067 sec.

Time to redistribute L = .10 sec.

Factorization time = 1.846 sec.

Time to redistribute L = .07 sec.

Factorization time = 1.43 sec.

Time to redistribute L = .08 sec.

Factorization time = 5.764 sec.
Factorization MFLOPS = 1545
Time to redistribute L = .11 sec.

Factorization MFLOPS = 4825

Factorization MFLOPS = 5527

Table 4.4: A table of experimental results for sparse forward and backward substitution on a Cray

T3D (from [57]). In the above table, “NRHS” denotes the number of right-hand side vectors,

“FBsolve time” denotes the total time spent in both the forward and the backward solvers, and

“FBsolve MFLOPS” denotes the average performance of the solvers in million floating point

operations per second. See footnote in the text.
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Figure 4.20: Performance versus number of processors on a Cray T3D for parallel sparse triangular

solutions with different number of right-hand side vectors (from [57]).

amortized over all the right-hand side vectors.

4.9 Parallel Symbolic Factorization

The symbolic factorization step determines the structure of the lower triangular factor matrix L and

sets up the data structures in which to store the original SPD matrix A and the nonzero entries of

L to be created during numerical factorization. Symbolic factorization is the least time consuming

of all the four steps involved in the direct solution of a sparse linear system. However, it is

important to parallelize this step for two important reasons. First, the data (i.e., the original matrix)

is already distributed among the processors before the symbolic factorization phase [76] and it

would be expensive (very often impossible too due to memory constraints) to gather the data for
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serial symbolic factorization and then redistribute it. Second, since the other three phases are quite

scalable in parallel, symbolic factorization will become a serial bottleneck despite its small run time

if it is left unparallelized.

In this section we briefly describe a method for performing symbolic factorization in parallel

provided that the original matrix is already distributed among the processors according to the

subtree-to-subcube mapping. We then analyze the asymptotic communication overhead involved

in the process for sparse matrices arising from two- and three- dimensional constant-degree graphs.

4.9.1 The Serial Algorithm

Figure 4.21 outlines a recursive serial algorithm for symbolic factorization. Just like numerical

factorization and triangular solver algorithms, symbolic factorization too is guided by the elimination

tree. Note that the algorithm of Figure 4.21 requires the knowledge of the elimination tree.

Elimination tree generation has traditionally been coupled with symbolic factorization [93, 63]. In

this chapter, we are relying on nested-dissection based ordering strategies that can be computed in

parallel and also render the remaining phases of the solution process amenable to parallelization [76].

The elimination tree can be constructed easily (and cheaply) while performing a nested-dissection

based ordering. Assume that a bisection algorithm is being used for ordering; i.e., the separator of a

subgraph of nested dissection divides the subgraph into two disconnected components. In such an

ordering the nodes of a separator are numbered consecutively. These separator nodes are also the

consecutive nodes of a relaxed supernode (as defined in Section 4.4) in the elimination tree. The

separator node with the smallest index is the one that has two children in the elimination tree (other

separator nodes have only one child). These two child nodes are the nodes with the highest index in

each of the two disconnected components. This process, when carried out recursively, determines

the entire elimination tree.

Assuming that the elimination tree is available, the algorithm in Figure 4.21 determines the

structure of each column of L . A call to Symbolic(k) computes Structi for all i ≤ k. clearly, if k is

the root of the elimination tree, Symbolic(k) performs the entire symbolic factorization. At the end

of symbolic factorization, Structk is the set of indices { j, l j,k 6= 0}.
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/*

A is the sparse N × N symmetric matrix to be symbolically factored.

A = (ai, j), where 0 ≤ i, j < N .

*/

1. begin function Symbolic(k)

2. Structk := { j, aj,k 6= 0, j ≥ k};
3. for all i such that Parent(i) = k in the elimination tree, do

4. begin

5. Symbolic(i);

6. Structk := Structk ∪ Structi − {i};
7. end

8. end function Symbolic.

Figure 4.21: An elimination-tree guided recursive algorithm for symbolic factorization

4.9.2 Parallel Formulation

A parallel formulation of symbolic factorization must generate data structures suitable for parallel

numerical factorization. Refer to the parallel multifrontal algorithm described in Section 4.4. The

role of symbolic factorization in the context of this algorithm is to generate the structure or the

index set associated with each frontal matrix. Since we are dealing with symmetric matrices, simply

generating the column (or row) indices is sufficient to carry out sequential numerical factorization.

However, the frontal matrices are partitioned among processors in two dimensions in our parallel

numerical factorization algorithm, each processor must have a list of both row and column indices

of its portion of each frontal matrix. A simple modification of the algorithm shown in Figure 4.21

suffices to achieve this.

Recall from Section 4.4 that the subtrees of the elimination tree rooted at level log p is processed

sequentially on a single processor. The algorithm of Figure 4.21 can be applied to this subtree

without modification. If k is the root of this subtree, then Structk is copied into two data structures,

Local Col Structk and Local Row Structk. For processing levels 0 to log p − 1, the flow of the
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parallel symbolic factorization algorithm is very similar to that of parallel Cholesky factorization.

Instead of performing the factorization steps, a processor simply drops those indices from its local

sets that correspond to the columns to be eliminated in that step; and, instead of performing the

parallel extend-add steps, the row and column indices are exchanged and merged, and indices from

A are added whenever required. The criterion for the selection of indices to keep or send to the

corresponding processor of the partner subcube is identical to the one used in parallel numerical

factorization. The total communication is much less than that in the extend-add steps because only

the indices (instead of an entire update matrix) are communicated between pairs of processors.

4.9.3 Overhead and Scalability

From Section 4.5 we know that while processing level l of the elimination tree associated with a two-

dimensional N -node constant-degree graph, an2(
√

N/2l×√N/2l) frontal matrix is distributed on

a
√

p/2l ×√p/2l logical mesh of processors. During symbolic factorization, in order to determine

the set of indices associated with this frontal matrix, each processor must store 2(
√

N/p) indices.

Thus the time spent in communicating and merging the row and column index sets by each processors

at each of the top l levels of the elimination tree is 2(
√

N/p). Since there are log p such levels,

the total time spent in communication by each processor while performing symbolic factorization

on the top log p levels of the elimination tree is 2((
√

N/p) log p).

The overhead function, To (see Section 2.1 for definition), in this case is2((
√

Np) log p). The

problem size, W , or the serial complexity of the symbolic factorization of sparse matrices associated

with an N -node two-dimensional constant-degree graph is of the same order as the total number of

nonzeros in the factor matrix L , which is2(N log N). Using these expressions in Equation 2.4, the

isoefficiency function can be derived to be 2(p log p).

In the case of three-dimensional constant-degree graphs, the number of indices per processor

at level l are 2(
√

N 4/3/24l/
√

p/8l), which is 2(N 2/3/((
√

2)l
√

p)). The overhead function is

2(N 2/3√p6l=log8 p−1
l=0 (

√
2)−l), which is 2(N 2/3/

√
p). When balanced against a problem size of

2(N 4/3), this overhead function yields an isoefficiency function of 2(p).

Thus, in this section, we have shown that the already efficient symbolic factorization algorithm

can be parallelized with low overheads and the parallel formulation is quite scalable.
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4.10 A Complete Scalable Direct Solver for Sparse SPD Systems

Despite more inherent parallelism that dense linear systems, it has been a challenge to develop

scalable parallel direct solvers for sparse linear systems. The process of obtaining a direct solution to

a sparse system of linear equations usually consists of four phases: ordering, symbolic factorization,

numerical factorization, and forward elimination and backward substitution. A scalable parallel

solver for sparse linear systems must implement all these phases effectively in parallel. In [76],

Karypis and Kumar present an efficient parallel algorithm for a nested-dissection based fill-reducing

ordering for such sparse matrices. In Section 4.4, we introduced a highly scalable parallel algorithm

for sparse Cholesky factorization, which is the most time consuming phase of solving a sparse linear

system with s symmetric positive definite (SPD) matrix of coefficients. In Section 4.8, we have

shown that the forward and backward substitution steps can obtain sufficient speedup on hundreds

of processors so that numerical factorization still dominates the overall time taken to solve the

system in parallel. In addition, we show that, although efficient implementations of factorization

and triangular solvers use different data partitioning schemes, the time spent in redistributing the

data to change the partitioning schemes is not a bottleneck when compared to the time spent in

factorization and triangular solutions. In Section 4.9, we describe an algorithm for computing the

symbolic factorization of a symmetric sparse matrix in parallel. We show that the parallel algorithms

for all three phases can work in conjunction with each other, and for a wide class of sparse matrices,

the combined overall asymptotic scalability (as measured by the isoefficiency metric) of these steps

is the same as that of dense matrix factorization.

Figure 4.22 shows another way of appreciating the fact that the work presented in this chapter

makes it possible to develop complete balanced parallel sparse direct solvers. This figure shows

the parallel complexity, or the asymptotic complexity of the parallel run time of each phase of such

a solver provided a sufficient number of processors. For example, in the case of two-dimensional

constant node-degree graphs, the serial complexity of factorization is2(N 1.5) and the isoefficiency

function is 2(p1.5). Thus, W = 2(N 1.5) = 2(p1.5); i.e., a fixed efficiency can be maintained if

N and p are of the same order. Thus up to 2(N) processors can be used to potentially reduce

the complexity of sparse Cholesky factorization from 2(N 1.5) to 2(
√

N ). Similarly, we compute

the best parallel complexities of the other phase for both two- and three-dimensional constant
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Figure 4.22: The serial and parallel complexities of the various phases of solving a sparse system

of linear equations arising from two- and three-dimensional constant node-degree graphs.

node-degree graphs. For both these types of graphs, the number of processors required to yield the

parallel complexity expressions given in Figure 4.22 for any phase does not exceed the number of

processors used in the factorization phase. With a slight exception in the case of two-dimensional

triangular solvers, Figure 4.22 shows that there will be no bottlenecks in a sparse direct solver that

parallelizes all the four phases of the solution process. We therefore hope that the work presented in

this chapter will enable efficient parallel solutions of a broad range of scientific computing problems.

In Section 4.11, we show how similar algorithms can be developed for some other forms of sparse

matrix factorization.

4.11 Application to Gaussian Elimination and QR Factorization

Although we have focussed on sparse Cholesky factorization in this chapter, the serial algorithm

of Figure 4.3 can be generalized to Gaussian elimination without pivoting for nearly structurally

symmetric sparse matrices [32] and for solving sparse linear least squares problems [99].

Gaussian elimination without pivoting is numerically stable for diagonally dominant matrices;

i.e., the matrices in which the sum of the absolute values of all the non-diagonal elements of a row
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or a column is less than the absolute value of the diagonal element of the same row or column. If

the matrix A to be factored is not perfectly symmetric in structure, it can be treated as a symmetric

structure matrix by explicitly storing a zero element a j,i if ai, j is nonzero. The multifrontal

factorization can then be guided by an elimination tree constructed from this symmetric pattern

matrix. For such matrices, the dense Cholesky factorization steps of F k (lines 8–12) are replaced

by steps of dense Gaussian elimination. The parallel algorithm also works similarly, except that the

frontal and update matrices are now full square matrices rather than triangular matrices as in the

case of Cholesky factorization.

The least square problem (LSP) minx ||Ax − b||2 is commonly solved [50] by factoring the

m × n matrix A (m ≥ n) into the product Q R, where Q is an m × n orthogonal matrix and R

is an n × n upper triangular matrix. Matstoms [99, 100] has recently developed a multifrontal

algorithm for Q R factorization for sparse A. Matstoms’ approach avoids storing Q explicitly

and is based on the observation that the matrix R is a Cholesky factor of the n × n symmetric

positive definite matrix AT A. The LSP is solved from the semi-normal equation RT Rx = AT b

with a few steps of iterative refinement. The elimination tree and symbolic factorization of AT A

are used to guide the multifrontal Q R factorization. The frontal matrices corresponding to the

leaves of the elimination tree are derived from the original matrix as in the algorithm of Figure 4.3.

The steps of dense Q R factorization are then performed on these frontal matrices to obtain the

corresponding update matrices. The process of forming the frontal matrix corresponding to a

node higher up in the tree involves assembling the contributions from the update matrices of the

node’s children in the tree and nonzeros from the row and column corresponding to the node in

the matrix A via extend-add operations. The difference between the multifrontal Q R factorization

and the algorithm of Figure 4.3 is that the frontal matrices can be square or rectangular and steps

of dense Q R factorization are performed in lines 8–12. Some parallel formulations of sparse QR

factorization have been proposed in the literature [117, 128, 129]. These algorithms are based

on a one-dimensional partitioning and their isoefficiency function has a lower bound of �(p3).

The parallel multifrontal algorithm described in this chapter can be modified to along the lines

of [99, 100] to develop a more scalable parallel formulation of sparse QR factorization.



147

Chapter 5

CONCLUDING REMARKS AND FUTURE WORK

In this dissertation, we have presented the results of our research on scalability analysis of parallel

algorithms for a variety of numeric computations and on the design of some new parallel algorithms

for sparse matrix computations that are more scalable than the previously known algorithms for

solving the same problems.

We have surveyed a number of techniques and formalisms that have been developed for studying

the scalability issues, and discuss their interrelationships. It is clear that a single metric is not

sufficient to analyze parallel systems. Different metrics are useful depending on whether the

number of processors, the run time, the problem size, or the efficiency is kept constant. However,

we show some interesting relationships between the technique of isoefficiency analysis and many

other methods for scalability analysis. For example, we show that instances of a problem with

increasing size can be solved in a constant parallel run time by employing an increasing number of

processors if and only if the isoefficiency function of the parallel system is 2(p). We show that

for a wide class of parallel systems, the relationship between the problem size and the number of

processors that minimize the run time for that problem size is given by an isoefficiency curve.

The analytical power of isoefficiency analysis is demonstrated in Chapter 3. We have used

this technique to analyze a variety of algorithms that have applications in scientific computing,

and have often derived interesting conclusions. In Chapter 4, we have demonstrated that the this

method of analysis can also guide the development of better parallel algorithms. An important

feature of isoefficiency analysis is that in a single expression, it succinctly captures the effects of

characteristics of a parallel algorithm as well as the parallel architecture on which it is implemented.

In can help identify the scalability bottlenecks in a parallel system and thus aid in eliminating or

reducing the impact of these bottlenecks. By analyzing the known parallel formulations of sparse

and dense matrix factorization, we learned that a two dimensional partitioning of the matrix reduces

the isoefficiency function by a factor of p1.5. Also, a smart assignment of processors to process
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different parts of the elimination tree improves the isoefficiency function by a factor of (log p)3

over a simple assignment. These observations lead us to attempt to devise a parallel formulation

of sparse matrix formulation that includes the benefits of both kinds of optimizations. Our analysis

had shown that achieving this would make parallel factorization of a wide class of sparse matrices

optimally scalable.

Having developed an optimally scalable parallel algorithm for the most time consuming step

of numerical factorization in solving a sparse system of linear equations, we looked at symbolic

factorization and solution of sparse triangular systems resulting from the factorization of the coeffi-

cient matrix. In Section 4.8, we have shown that although individually less scalable than numerical

factorization, the symbolic factorization and forward and backward substitution steps do not effect

the overall asymptotic scalability of a parallel sparse direct solver. In addition, we show that,

although efficient implementations of factorization and triangular solvers use different data parti-

tioning schemes, the time spent in redistributing the data to change the partitioning schemes is not

a bottleneck when compared to the time spent in factorization and triangular solutions. Along with

some recently developed parallel ordering algorithms, the algorithms presented in this thesis make

it possible to develop complete scalable parallel direct solvers for sparse linear systems.

Our implementations of sparse matrix factorization described in Chapter 4, in their current

form apply to symmetric positive definite matrices. However, the algorithm is applicable to a

somewhat broader class of problems. With minor modifications, it can be used to factor those

symmetric pattern sparse matrices for which the ordering can be computed prior to factorization.

This can be done for matrices whose numerically stable factorization does not require pivoting

(row and/or column interchanges to ensure that the diagonal element of a pivot column is not

much smaller than the elements that it divides). SPD matrices constitute a subclass of this class

of matrices. Another subclass contains matrices that are diagonally dominant but are not positive

definite. An N ×N sparse matrix A is diagonally dominant if and only if |A[i, i]| > 26 N−1
j=0 |A[i, j ]|

and |A[i, i]| > 26N−1
j=0 |A[ j, i]| for 0 ≤ i < N . An LU decomposition of diagonally dominant

matrices using Gaussian elimination is numerically stable in the absence of pivoting. It is quite

straightforward to adapt the algorithm of Section 4.4 for such matrices. The only modification

required in the algorithm of Section 4.4 is to perform steps of Gaussian elimination instead of
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Cholesky factorization on the frontal matrices.

There is a class of sparse matrices that require pivoting in order to ensure numerical stability.

It would be interesting to investigate if the algorithms discussed in this thesis can be extended to

support limited pivoting that would provide numerical stability in such problems without incurring

excessive overheads. Consider the class of symmetric matrices for which stable factorization

requires pivoting. In the multifrontal algorithm, processing an m-node supernode of the elimination

tree is equivalent to a rank-m update. If all the m pivots can be found by permuting these m rows and

columns among themselves, then incorporating pivoting in the algorithm of Section 4.4 is not too

difficult. As described in Section 4.4, a level-l supernode is processed by a group of p/2l processors.

The information regarding any change in the indices due to pivoting at the level-l supernode needs to

be shared among only p/2l processors to affect the exchange and to update the indices in the already

factored part of the matrix. If renumbering nodes within a supernode is not sufficient for numerical

stability, then an interchange may be required between a level-l supernode and another node from

its parent supernode at level-(l − 1). This interchange requires communication among the p/2l−1

processors that share the level-(l − 1) supernode. In particular, it introduces extra synchronization

points, as the computation at the remainder of the children supernodes has to finish (and the update

matrices have to be added into the frontal matrix of the parent node) before pivot exchange can be

performed. An additional complication accompanied with renumbering the nodes during numerical

factorization is that the exact location and amount of fill-in cannot be determined apriori.

An alternative to Gaussian elimination with pivoting is QR factorization. QR factorization is nu-

merically stable without pivoting; however, it requires more computation than Gaussian elimination

or Cholesky factorization. As discussed in Section 4.11, our parallel sparse Cholesky algorithm can

be modified to devise a scalable parallel formulation of QR factorization. It would be worthwhile

to compare Gaussian elimination with pivoting (whose scalability will be limited by the amount

of pivoting required) or QR factorization (which is costlier, but more scalable) for sparse matrix

factorization on large parallel computers.

Some possible interesting applications of scalable parallel direct solvers could be in developing

parallel hybrid and multigrid solvers and in preconditioning parallel iterative solvers. For example,

in a finite-element application, a direct solution over a coarse mesh can often be effective in finding
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a fast iterative solution over a finer mesh. Besides the applications requiring the solution of a linear

system of equations, there are numerous other interesting scientific computing problems that can

benefit significantly from scalable parallel algorithms; some examples are, N -body simulations,

solving integral equations, singular value decomposition, etc. It is important to analyze these prob-

lems, determine lower-bounds on the scalability of solving these problems on parallel computers,

and to attempt to develop parallel algorithms matching or close to the lower bounds.
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Appendix A

COMPLEXITY OF FUNCTIONS AND ORDER ANALYSIS

Order analysis and the asymptotic complexity of functions are used extensively in this thesis to

analyze the performance of algorithms.

A.1 Complexity of Functions

When analyzing parallel algorithms in this thesis, we use the following three types of functions:

1. Exponential functions: A function f from reals to reals is called an exponential function

in x if it can be expressed in the form f (x) = a x for x , a ∈ < (the set of real numbers) and

a > 1. Examples of exponential functions are 2x , 1.5x+2, and 31.5x.

2. Polynomial functions: A function f from reals to reals is called a polynomial function of

degree b in x if it can be expressed in the form f (x) = x b for x , b ∈ < and b > 0. A linear

function is a polynomial function of degree one and a quadratic function is a polynomial

function of degree two. Examples of polynomial functions are 2, 5x , and 5.5x 2.3.

A function f that is a sum of two polynomial functions g and h is also a polynomial function

whose degree is equal to the maximum of the degrees of g and h. For example, 2x + x 2 is a

polynomial function of degree two.

3. Logarithmic functions: A function f from reals to reals that can be expressed in the form

f (x) = logb x for b ∈ < and b > 1 is logarithmic in x . In this expression, b is called

the base of the logarithm. Examples of logarithmic functions are log1.5 x and log2 x . Unless

stated otherwise, all logarithms in this thesis are of base two. We use log x to denote log2 x ,

and log2 x to denote (log2 x)2.
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Most functions in this thesis can be expressed as sums of two or more functions. A function f is

said to dominate a function g if f (x) grows at a faster rate than g(x). Thus, function f dominates

function g if and only if f (x)/g(x) is a monotonically increasing function in x . In other words, f

dominates g if and only if for any constant c > 0, there exists a value x0 such that f (x) > cg(x)

for x > x0. An exponential function dominates a polynomial function and a polynomial function

dominates a logarithmic function. The relation dominates is transitive. If function f dominates

function g, and function g dominates function h, then function f also dominates function h. Thus,

an exponential function also dominates a logarithmic function.

A.2 Order Analysis of Functions

In the analysis of algorithms, it is often cumbersome or impossible to derive exact expressions for

parameters such as run time, speedup, and efficiency. In many cases, an approximation of the exact

expression is adequate. The approximation may indeed be more illustrative of the behavior of the

function because it focuses on the critical factors influencing the parameter.

Consider three cars A, B, and C . Assume that we start monitoring the cars at time t = 0. At

t = 0, car A is moving at a velocity of 1000 feet per second and maintains a constant velocity. At

t = 0, car B’s velocity is 100 feet per second and it is accelerating at a rate of 20 feet per second

per second. Car C starts from a standstill at t = 0 and accelerates at a rate of 25 feet per second

per second. Let DA(t), DB(t), and DC (t) represent the distances traveled in t seconds by cars A,

B, and C . From elementary physics, we know that

DA(t) = 1000t,

DB(t) = 100t + 20t2,

DC(t) = 25t2.

Now, we compare the cars according to the distance they travel in a given time. For t > 45 seconds,

car B outperforms car A. Similarly, for t > 20 seconds, car C outperforms car B, and for t > 40

seconds, car C outperforms car A. Furthermore, DC (t) < 1.25DB(t) and DB(t) < DC (t) for

t > 20, which implies that after a certain time, the difference in the performance of cars B and C

is bounded by the other scaled by a constant multiplicative factor. All these facts can be captured



166

by the order analysis of the expressions.

The 2 Notation: From the above example, DC(t) < 1.25DB(t) and DB(t) < DC (t) for

t > 20; that is, the difference in the performance of cars B and C after t = 0 is bounded by the other

scaled by a constant multiplicative factor. Such an equivalence in performance is often significant

when analyzing performance. The2 notation captures the relationship between these two functions.

The functions DC (t) and DB(t) can be expressed by using the 2 notation as DC (t) = 2(DB(t))

and DB(t) = 2(DC(t)). Furthermore, both functions are equal to 2(t 2).

Formally, the 2 notation is defined as follows: given a function g(x), f (x) = 2(g(x)) if and

only if for any constants c1, c2 > 0, there exists an x0 ≥ 0, such that c1g(x) ≤ f (x) ≤ c2g(x) for

all x ≥ x0.

The O Notation: Often, we would like to bound the growth of a particular parameter by a

simpler functions. From the example given earlier in this appendix, we have seen that for t > 45,

DB(t) is always greater than DA(t). This relation between DA(t) and DB(t) is expressed using the

O (big-oh) notation as DA(t) = O(DB(t)).

Formally, the O notation is defined as follows: given a function g(x), f (x) = O(g(x)) if and

only if for any constant c > 0, their exists an x0 ≥ 0, such that f (x) ≤ cg(x) for all x ≥ x0. From

this definition we deduce that DA(t) = O(t2) and DB(t) = O(t2). Furthermore, DA(t) = O(t)

also satisfies the conditions of the O notation.

The � Notation: The O notation sets an upper bound on the rate of growth of a function.

The � notation is the converse of O notation; that is, it sets a lower bound on the rate of growth

of a function. From the example given earlier in this appendix, DA(t) < DC (t) for t > 40. This

relationship can be expressed using the � notation as DC(t) = �(DA(t)).

Formally, given a function g(x), f (x) = �(g(x)) if and only if for any constant c > 0, there

exists an x0 ≥ 0, such that f (x) ≥ cg(x) for all x ≥ x0.

Properties of Functions Expressed in Order Notation

The order notations for expressions have a number of properties that are useful when analyzing the

performance of algorithms. Some of the important properties are as follows:

1. x a = O(x b) if and only if a ≤ b.
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2. loga(x) = 2(logb(x)) for all a and b.

3. ax = O(bx) if and only if a ≤ b.

4. For any constant c, c = O(1).

5. If f = O(g) then f + g = O(g).

6. If f = 2(g) then f + g = 2(g) = 2( f ).

7. f = O(g) if and only if g = �( f ).

8. f = 2(g) if and only if f = �(g) and f = O(g).
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Appendix B

PROOF OF CASE I IN SECTION 2.3.1

Here we give a brief proof of E = 1− 1/x j for a more general form of To than the one given in

Section 2.3.1. Here x j is the exponent of p in the dominant term of To.

Let To(W, p) = 6i=n
i=1 ci W yi (log W )ui pxi (log p)zi , where ci ’s are constants and x i ≥ 0 and yi ≥ 0

for 1 ≤ i ≤ n, and u i ’s and zi ’s are 0’s or 1’s. Now let us compute d
dp To(W, p).

To(W, p) = 6i=n
i=1 ci W yi (log W )ui pxi (log p)zi ,

d

dp
To(W, p) = 6i=n

i=1 ci W
yi (log W )ui (xi pxi−1(log p)zi + zi pxi−1(log p)zi−1).

If all zi ’s are either 0 or 1, then the above equations can be rewritten as follows:

d

dp
To(W, p) = 6i=n

i=1 ci W
yi(log W )ui (xi pxi−1(xi log p)zi + zi ),

d

dp
To(W, p) ≈ 6i=n

i=1 ci xi W
yi(log W )ui xi pxi−1.

Equating d
dp To(W, p) to TP according to Equation 2.10, we get

6i=n
i=1 ci xi W yi(log W )ui xi pxi−1 = W +6i=n

i=1 ci W yi (log W )ui pxi (log p)zi

p
,

W = 6i=n
i=1 ci(xi − 1)W yi(log W )ui pxi (log p)zi . (B.1)

The above equation determines the relation between W and p for which the parallel execution

time is minimized. The equation determining the isoefficiency function for the parallel system with

the overhead function under consideration will be as follows (see discussion in Section 2.3.2):

W = E

1− E
6i=n

i=1 ci W
yi (log W )ui pxi (log p)zi . (B.2)

Comparing Equations B.1 and B.2, if the j th term in To is the dominant term and x j > 1, then

the efficiency at the point of minimum parallel execution time will be given by E0 ≈ 1− 1/x j .
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Appendix C

PROOF OF CASE II IN SECTION 2.3.1

Here we show that the speedup S is maximum for po = 2(W (1−yj)/xj ), where x j is the exponent

of p in the dominant term of To.

From Equation 2.11, the relation between W and p0 is given by the solution for p from the

following equation:

W = 6i=n
i=1 ci(xi − 1)W yi pxi .

If the j th term on R.H.S. of the above is the dominant term according to the condition described

in Section 2.3.1, then we take p0 ≈ (W 1−yj/(cj(x j − 1)))1/xj as the approximate solution. Now we

show that the speedup is indeed (asymptotically) maximum for this value of p0. We know that

S = W p

W + To(W, p)
.

Since the maximum speedup condition is true in asymptotics, we will drop the constants and write

order expressions only on the R.H.S..

S = 2(
W ×W

1−yj
xj

W +6i=n
i=1(W yi ×W

1−yj
xj

xi
)

),

S = 2(
W

1+ 1−yj
xj

W +6i=n
i=1 W

yi+ 1−yj
xj

xi

).

The summation 6i=n
i=1 W yi+(1−yj)xi/xj in the denominator on the R.H.S. is at least �(W ), because

for i = j , W yi+(1−yj)xi/xj = W . So we can ignore the first W in the denominator. Rewriting the

expression for speedup, we get

S = 2(
W

1+ 1−yj
xj

6i=n
i=1 W

yi+ 1−yj
xj

xi

),

S = 2(
1

6i=n
i=1 W

yi−1+( 1−yj
xj
−1)xi

).
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Clearly, the above expression will be maximum when the denominator is minimum, which will

happen for the minimum possible value of (1− y j)/x j .
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Appendix D

DERIVATION OF THE ISOEFFICIENCY FUNCTION FOR PARALLEL

TRIANGULAR SOLVERS

Consider solving the triangular systems resulting from the factorization of a sparse matrix

associated with a two-dimensional neighborhood graph. From Equation 4.3, W = O(N log N and

from Equation 4.4, To = O(p2) + O(p
√

N ). In order to maintain a fixed efficiency, W ∝ To; i.e.,

the following two conditions must be satisfied:

W ∝ p2 (D.1)

and

W ∝ p
√

N . (D.2)

Equation D.1 clearly suggests an isoefficiency function of O(p2). From Equation D.2,

N log N ∝ p
√

N ,

√
N log N ∝ p, (D.3)

log N + log log N ∝ log p. (D.4)

Discarding the lower order term log log N from Equation D.4, we get

log N ∝ log p. (D.5)

From Equations D.3 and D.5,
√

N ∝ p

log p
,

N ∝ ( p

log p
)2,

N log N ∝ p2

log p
,
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W ∝ p2

log p
. (D.6)

Thus, we have derived Equation 4.6. Similarly, we can derive the isoefficiency function for

the triangular systems resulting from the factorization os sparse matrices associated with three-

dimensional neighborhood graphs. Recall from Chapter 4 that for such systems, W = O(N 4/3) and

To = O(p2) + O(pN 2/3). If W ∝ To, then W ∝ p2 (the first term of To) and W ∝ pN 2/3. The

second condition yields

N 4/3 ∝ pN 2/3,

N 2/3 ∝ p,

N 4/3 ∝ p2,

W ∝ p2, (D.7)

which is same as Equation 4.9.


