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ABSTRACT

In recent years, there has been extensive study of the mathematical basis of weather prediction leading to a
new system of continuous equations that are well posed, and a set of conditions that make discrete atmospheric
and other models stable and potentially more accurate. In particular, the theory deals with initial boundary value
problems that admit multiple timescales. Using this theory, a quasi-nonhydrostatic model called QNH was
developed at NOAA’s Forecast Systems Laboratory. The model is fully compressible and explicit in the vertical
as well as the horizontal direction. It is characterized by a parameter, ‘‘a’’ (typically the square of the vertical
to horizontal aspect ratio), which multiplies the hydrostatic terms in the vertical equation of motion. In this
paper, the authors describe the theoretical basis for the use of these models in mesoscale weather prediction. It
is shown that for the mesoscale, the parameter has the effect of decreasing both the frequency and amplitude
of the gravity wave perturbation response to small-scale impulses in forcing and to unbalanced initial conditions.
This allows a modeler to choose a length scale below which gravity wave generation is suppressed. A weakness
of the approach is that the hydrostatic adjustment process is slowed down. The analysis indicates that the
parameter does not have an effect on the Rossby waves, the larger horizontal-scale gravity waves, nor on forced
solutions such as those created by heating. The bounded derivative initialization is discussed. Since the speeds
of the vertical acoustic waves are decreased, quasi-nonhydrostatic models can calculate the vertical equations
explicitly and still meet the Courant–Friedrichs–Levy criteria. It is concluded that the unique characteristics of
quasi-nonhydrostatic models may make them valuable in mesoscale weather prediction, particularly of clouds
and precipitation.

1. Introduction

In recent years there has been extensive study of the
mathematical basis of atmospheric, oceanic, and plasma
models, leading to a theory of how to make their con-
tinuous equation systems well posed for the initial–
boundary value problem(Kreiss 1980; Browning and
Kreiss 1986). In particular, the theory addresses systems
that admit multiple timescales. At National Oceanic and
Atmospheric Administration (NOAA’s) Forecast Sys-
tems Laboratory, a multiyear effort to apply the theory
to mesoscale weather prediction has culminated in the
development of a quasi-nonhydrostatic model called
QNH, which will soon be used for real-time forecasting.
In this paper, we discuss the theory and how it relates
to mesoscale weather prediction. In another paper (Mac-
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Donald et al. 2000), the design of the model and a test
program are presented. A third related paper (Lee and
MacDonald 2000) presents the initialization method
prescribed by the theory and used in the model; the
bounded derivative initialization.

While well-posedness applies to continuous equa-
tions, the application of the theory in numerical models
leads to issues of stability. The concept of well-posed-
ness of a continuous equation set, and the stability of
a numerical model are closely related; in this paper, we
present the theory mainly in terms of well posedness
and then illustrate stability issues with the QNH model.

The well-posedness of hyperbolic systems was dis-
cussed by Kreiss (1970), while the issues associated
with equations and models that admit multiple time-
scales were first outlined by Kreiss (1980). The scaling
and conditions needed for implementation of a numer-
ical model for weather prediction were presented by
Browning and Kreiss (1986). Subsequent publications
(Browning et al. 1989; Kreiss and Lorenz 1989; Brown-
ing and Kreiss 1994a, 1997) have extended the theory
and further described its characteristics and use. The
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type of model that is described in this paper was referred
to by Browning and Kreiss (1986) as the ‘‘approximate
system’’ and has been referred to more recently as the
‘‘multiscale system’’ (Browning and Kreiss 1994a). It
is characterized by a parameter in front of the hydro-
static term of the vertical equation of motion, with the
value of the parameter typically chosen as the square
of the vertical to horizontal length scale (the aspect ratio)
of the smallest phenomenon of interest. The parameter
can be assigned a value between limiting cases near 0,
where the model is very stable, and 1, which is purely
nonhydrostatatic. We refer to this type of model as ‘‘qua-
si-nonhydrostatic,’’ encompassing a range of parameters
and associated model behavior that will be described in
the paper.

Although the mathematical theory associated with
quasi-nonhydrostatic models has been well developed,
it has not been investigated or tested significantly in
association with the physics (e.g., moisture, turbulence,
radiation) required for weather prediction. This paper
discusses the advantages and disadvantages in the ap-
plication of these models to mesoscale weather predic-
tion and, in particular, clarifies the effect of the quasi-
nonhydrostatic constant on small-scale gravity waves.
It is shown that the constant decreases the frequency
and amplitude of gravity waves generated by forcing,
which is small in the horizontal scale, but deep in the
vertical scale.

The primary advantage of quasi-nonhydrostatic mod-
els is related to their well-posedness (continuous equa-
tions) and for numerical prediction, the stability asso-
ciated with the suppression of generation of small-scale
gravity waves. The theory for nearly symmetric, hy-
perbolic systems prescribes conditions needed to ensure
existence of a solution for a period of time, which means
that excessive sensitivity to errors in numerical approx-
imations, small-scale perturbations of initial conditions
and forcing are limited. In short, it allows the modeler
to choose the scales and phenomena of interest, and
ensures a stable integration of the system through a
forecast period. This is in contrast to hydrostatic models
with pointwise boundary conditions that have been
shown to be ill posed (Oliger and Sundstrom 1978);
furthermore, it has been shown that hydrostatic models
are unstable for small-scale moist processes (Orlanski
1981). Pure nonhydrostatic models can be made well-
posed; however, common practices such as the use of
semi-implicit and split-explicit schemes may result in
unstable models (Browning and Kreiss 1994b), often
ameliorated by some combination of implicit and ex-
plicit smoothing. If a particular phenomenon is the target
of a prediction model [e.g., cloud and precipitation for
the O(100-km) scale], then proper choice of the quasi-
nonhydrostatic parameter will result in a more stable
model integration because of reduced energy in the
high-frequency waves.

A disadvantage of quasi-nonhydrostatic models is
due to their slower adjustment to hydrostatic equilib-

rium. The smaller the constant, the slower the model
will adjust. Thus quasi-nonhydrostatic models and
nonhydrostatic models differ in their approximations.
The issue of which of these results in better weather
forecasts for a particular phenomenon (e.g., precipi-
tation or downslope windstorms) is empirical. Only
extensive experience can show which is better for each
phenomenon.

The main goal of the quasi-nonhydrostatic model
development at Forecast Systems Laboratory (FSL)
has been short-range mesobeta-scale (order 100 km, as
defined by Orlanski 1975) weather prediction, with
particular emphasis on cloud and precipitation. Despite
great economic importance, the ability to forecast
heavy precipitation has been low, and although some
progress has been made (Black et al. 1990), much room
for improvement remains. The QNH model has gen-
erally been tested at horizontal grid meshes between 5
and 20 km (MacDonald et al. 2000), which are the
target resolutions for the weather prediction model dur-
ing the next several years. It is shown in section 2 that
several of the characteristics of quasi-nonhydrostatic
models are helpful for the short-range, limited-domain
models that are commonly used in mesoscale weather
prediction. The bounded derivative initialization tech-
nique, described in section 2d and detailed in Lee and
MacDonald (2000), allows a smooth and accurate mod-
el integration from the initial time, without the a period
of adjustment or model shock common in limited-area
models. Furthermore, the bounded derivative initiali-
zation should allow a ‘‘hot start’’ model, with latent
heating and precipitation existing and accurately bal-
anced and predicted from the initial time. A well-posed
boundary is described in section 2e that allows acous-
tic, gravity, and Rossby waves to enter and exit
smoothly through the boundaries of a limited domain.
This is an advantage for small domains and also an
advantage for nesting of higher resolution grids, since
the lateral boundary problems are significantly re-
duced. The combined advantages of bounded deriva-
tive initialization and well-posed boundaries offer the
potential for very short-range (a few hours), small-
domain predictions.

One effect of the quasi-nonhydrostatic parameter is
to slow down the speed of the vertical acoustic waves,
as shown in section 2g. (Among other effects, this
slows down the model’s adjustment to hydrostatic equi-
librium.) The time needed for an acoustic wave to cross
a grid cell can be made the same in the horizontal and
vertical directions. This suggests the use of explicit
calculations in the vertical, since the Courant–Fried-
richs–Levy (CFL) required time step needed for the
vertical calculation is the same as that for the hori-
zontal. This has two important implications. First, it
allowed the design of the QNH model to be simplified,
since the horizontal is treated similarly to the vertical;
as discussed in MacDonald et al. (2000), fourth-order
space differencing was used in all space calculations,
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which resulted in highly accurate treatment of the ver-
tical dynamics. A second implication is that the model
is unique in its treatment of the vertical coordinate for
mesobeta scales, where most modelers are using im-
plicit formulations.

An important aspect of the quasi-nonhydrostatic type
of model is related to how they accommodate gravity
waves. The results of an extensive analysis of various
atmospheric waves is given in section 3. It is shown
that the quasi-nonhydrostatic parameter, a, does not af-
fect the Rossby waves, nor the forced waves, such as
those created by adjustment to heating. Thus, an im-
portant difference between a quasi-nonhydrostatic mod-
el (a , 1) and a fully nonhydrostatic model (a 5 1)
is in how the gravity waves are modified. Both the linear
analysis and experiments with the model indicate that
the response of the model to impulses in forcing such
as heating, is to decrease the frequency and amplitude
of the smaller-scale gravity waves compared to those in
a fully nonhydrostatic model. The amount of the de-
crease is shown to depend on the constant a, and on
the vertical and horizontal wavelength of the gravity
wave. The modeler chooses, by the choice of a, the
scales (larger) of the gravity waves that will respond
fully to impulses, and equivalently, the scales (smaller)
that will intentionally have decreased response to im-
pulses. The analysis of Browning and Kreiss (1997)
indicates that small-scale gravity waves should have
comparatively small amounts of energy, which suggests
that the alteration of such waves by numerical methods
(e.g., the use of a or semi-implicit techniques) is ac-
ceptable.

It has been pointed out that the parameter a partic-
ularly affects the terrain-forced gravity waves (Ska-
marock and Klemp 1994), with a potential for improper
ducting. An analysis of this difficulty and an example
of its effect on the model’s simulation of Long’s (1953)
solution of mountain waves is given in section 3b. The
example shows that such improper ducting can indeed
occur. However, gravity waves of any scale can be ac-
commodated within the QNH model by appropriate
choice of a. Once a particular choice is made, such as
a 5 1022, terrain scales that are significantly smaller
can and should be eliminated from the bottom boundary
condition.

2. Theory and description

a. Dynamic equations

The dynamic equations are formulated similar to
Browning and Kreiss (1986) with the exception that
perturbation potential temperature, rather than its in-
verse, is used:

du 1 ]p
5 2 1 fy (1)

dt r ]x0

dy 1 ]p
5 2 2 fu (2)

dt r ]y0

dw 1 ]p g
5 a 2 1 gu 2 p (3)[ ]dt r ]z gP0 0

dp ]u ]y ]w
5 2gP 1 1 1 r gw (4)0 01 2dt ]x ]y ]z

du
5 2ũw, (5)

dt

where u, y , and w are the x, y, and z components of
wind velocity; p is the perturbation pressure; and u is
the perturbation potential temperature defined by

utotalu 5 2 1.
u(z)

The quasi-nonhydrostatic parameter, a, is typically tak-
en as the square of the aspect ratio,

a 5 (Dz/Dx)2.

The constants gP0 and are given byũ

1 ]u
5gP 5 1.4 3 10 ũ 5 .0 u(z) ]z

The total derivative is given by

d ] ] ] ]
5 1 u 1 y 1 w .

dt ]t ]x ]y ]z

This set of five prognostic equations with five un-
knowns is derived from the conservation relations for
momentum, mass, and thermodynamic energy. Density
has been eliminated from the prognostic set by use of
the equation of state, and appears in the prognostic set
as r0, a function of z, which is constant in time. When
the system is analyzed as shown in appendix A, a char-
acteristic equation with five roots is obtained. Two of
the roots are acoustic waves, two are gravity waves, and
the last is the Rossby wave.

The dynamic formulation is very similar to that used
in many atmospheric models, with the exception of the
parameter, a, which will be discussed in section 2c. In
the derivation of the equations, the hydrostatic balance
of the mean state has been subtracted off. The net result
of the use of variables, which are deviations from the
mean, is that the numerical accuracy of the system is
enhanced (Browning and MacDonald 1993). Three oth-
er approximations deserve mention. First, r0 rather than
the fully variable density is used. Second, the velocity
form rather than the flux form of the momentum equa-
tions is used. Third, the last term in (3) makes the set
more symmetric, being adjoint to the last term in (4).
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These approximations are discussed in Browning and
Kreiss (1986).

b. Multiple timescales, symmetry, and well posedness

Kreiss (1980) has developed a theory for symmetric
hyperbolic partial differential equations that admit
waves with different timescales. In weather prediction,
the acoustic waves are clearly fast waves, while the
Rossby waves are slow; the theory deals with ‘‘stiff’’
systems that admit these two widely different time-
scales, as well as the gravity waves that are intermediate.
The theory is elaborated and detailed for multiple time-
scales in Browning and Kreiss (1986), Browning and
Kreiss (1994a), and Browning and Kreiss (1997). Kreiss
and Lorenz (1989) discuss concepts of well-posedness
for Navier–Stokes and related equation systems. Math-
ematically, a problem is well posed if its solution exists,
is unique, and depends continuously on the data. In
practical terms, the theory shows how solutions respond
to small changes in initial conditions, boundary con-
ditions, and physical forcing. This is especially impor-
tant in mesoscale prediction, since forcing such as latent
heating can be quite strong and ‘‘rough.’’ The concept
of roughness is related to large gradients in time and
space, which violate the smoothness assumptions need-
ed in proofs. Mathematical energy proofs are used to
show that an initial boundary value problem will have
a unique solution, and that the error will remain bounded
for small perturbations, for a period of time. An ill-
posed system can have unbounded growth of its high-
frequency components, which can lead to large errors
in the solution or an exponential explosion. Kreiss and
Lorenz (1989) discuss well-posedness beginning with
simple linear constant-coefficient systems and proceed
to the nonlinear equation sets of interest to meteorology,
such as (1)–(5). Browning and Kreiss (1986) provide
the scaling and analysis needed to apply the theory to
systems with multiple timescales, such as atmospheric
prediction.

The theory for accurate and stable modeling is not
only related to boundary conditions. It prescribes con-
ditions on the degree of symmetry in the governing
equations, the smoothness in the initial and boundary
conditions, and the smoothness in the forcing terms. The
effect of the nonhydrostatic parameter a, [which is typ-
ically set to 0.01 for the O(100-km) scale], is to make
the equation set more symmetric (or equivalently, less
skewed) for the gravity wave term. Conversely, a pure
nonhydrostatic model (a 5 1) is more skewed and
should have larger gravity wave vertical velocity re-
sponses to small perturbations as discussed in section
3f. It has been shown (Oliger and Sundstrom 1978) that
the use of the hydrostatic, primitive equations for a lim-
ited area leads to an ill-posed boundary-value problem.
A fully nonhydrostatic model can be made well posed
if it is properly done; however, as commonly imple-
mented with implicit formulations for the vertical co-

ordinate, or time splitting for the horizontal, the well
posedness for larger scales is questionable (Browning
and Kreiss 1994b). A quasi-nonhydrostatic model can
be made well posed and is less sensitive to errors than
a fully nonhydrostatic model.

c. Classification of quasi-nonhydrostatic models

The parameter, a, which is used in the vertical equa-
tion of motion, should be determined by the square of
the aspect ratio of the phenomena of interest (Browning
and Kreiss 1986). Taking the scale height of the at-
mosphere to be 10 km, if one wishes to accurately com-
pute horizontal waves of wavelength 100 km, the as-
sociated aspect ratio would be

a 5 [(10 km)/(100 km)]2 5 1022.

Thus, to obtain the best accuracy for mesobeta (as de-
fined by Orlanski 1975) motions, one would use a model
with a vertical equation of motion of the form

1 dp
dw/dt 5 0.01 2 gu .1 2r dz0

To simplify the discussion, we have classified the QNH
model by the magnitude of the negative exponent,
henceforth referred to as the quasi-nonhydrostatic
‘‘class.’’ Thus, the model discussed above with a 5
1022 would be a QNH2 class, and a mesoalpha-scale
model with a square aspect ratio of 1024 would be a
QNH4.

Figure 1 gives examples of quasi-nonhydrostatic
models classes, and typical atmospheric phenomena for
which they would be appropriate. Figure 1 shows that
a fully nonhydrostatic model should be used for phe-
nomena such as individual cumulonimbus towers or
steep mountain–induced gravity waves, while the me-
sobeta phenomena such as fronts, orographic precipi-
tation, and squall lines can be predicted accurately using
a QNH2 class model. An interesting aspect of the work
of Browning and Kreiss (1986) is that even for large
scales, a QNH6 model should be more accurate and have
more well-behaved vertical velocity fields (and thus pre-
cipitation fields) than a hydrostatic model. This is a very
important result that could be valuable in lower-reso-
lution models, such as those used for long-term climate
simulations.

d. Bounded derivative initialization

Since the QNH model is a hyperbolic system with
multiple timescales, a limited-area model can be ini-
tialized using the bounded derivative approach. Brown-
ing et al. (1980) discuss a systematic procedure for de-
termining the equations to achieve the desired accuracy
in the bounded derivative approach.

An important aspect of use of bounded derivative
initialization, which may be valuable in mesoscale
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FIG. 1. Classification of QNH models. They are classified by the negative of the exponent of the quasi-nonhydrostatic parameter.
This is typically chosen as the square of the aspect ratio of the smallest weather phenomenon of interest. For example, a squall
line with a horizontal length scale of 100 km and a vertical length scale of 10 km would have an aspect ratio of 1/10 and thus
would require a QNH2 model. The phenomena associated with each aspect ratio are shown schematically in the top row.

weather prediction, concerns forcing such as heating (or
friction). The technique allows for initialization with a
heating function explicitly accounted. Heating shows up
on the right side of Eq. (5) and if heating is known as
a function of space, it can be incorporated into the initial
balance. Because heating can often be estimated from
independent data sources, such as radar (to estimate
latent heating), satellite (allowing estimates of radiative
heating as well as latent heating), and surface precipi-
tation rates, it can be used as a purely diagnostic input
into the bounded derivative initialization. In other
words, if heating is accurately known as a function of
space (and time) it can be used with the basic equation
sets (1)–(5). A more complex situation, not tested or
discussed here, is to attempt a bounded derivative ini-
tialization with a full set of bulk moisture equations in
addition to the dynamic equations.

The implementation of the bounded derivative tech-
nique for QNH is detailed in Lee and MacDonald
(2000). Based on the second-order bounded derivative
initialization, two dynamic constraints are derived to
suppress the fast acoustic waves corresponding to the
two largest eigenvalues in the system. These two con-
straint equations lead to two elliptic equations formu-
lated on the terrain following coordinate to account for
the complex terrain. One of the main advantages in us-
ing the bounded derivative initialization is to obtain
balanced lateral boundary data for a limited-area pre-
diction model through the formulation of well-posed
boundary conditions for the elliptic equations.

e. Well-posed boundaries

In the initial boundary value problem considered by
Oliger and Sundstrom (1978) it is shown that no well-
posed pointwise boundary conditions can be assigned
in a model that has the hydrostatic assumption. Intui-
tively, the pressure can be assigned according to the
weight of the air above (i.e., hydrostatic), or a value
that allows high-speed waves to propagate in and out
of the open boundary of the domain, but not both. The
quasi-nonhydrostatic models, as well as pure nonhy-
drostatic models, can have well-posed boundaries, pro-
vided certain requirements are met.

Almost all limited-area mesoscale weather models
must deal with open boundaries, and ideally, as stated
by Oliger and Sundstrom (1978), ‘‘(open) boundaries
should determine the interior flow as though, in fact,
the boundaries were not there at all.’’ Their approach
is to use the methods developed by Kreiss (1970) to
form boundary conditions, which can be shown by en-
ergy inequalities to limit error growth rates (in response
to perturbations in initial and boundary conditions, and
forcing) as the theory requires. The applicability of such
boundary conditions to models that are not well posed
in other respects is thus questionable. For a well-posed
model such as QNH, well-posed boundaries allow (but
do not guarantee) all the waves—Rossby, gravity, and
acoustic—smooth transmission into and out of a limited
domain. Note that even with well-posed boundaries, it
is possible for differences between the models used in
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an inner and outer domains to generate high gradients
in the dependant variables, or other similar problems at
the boundary. It is noted in passing that such a model
taken collectively (i.e., the inner plus the outer domain)
would not meet Kreiss’s (1980) definition of smoothness
and thus would not be well posed. A typical example
of such problems occurs when the physics packages,
such as moisture or radiation, result in forcing that gen-
erates substantial difference in evolution of the inner
and outer domains. Stated in the positive, the theory
developed by Browning and Kreiss (1986) allows the
implementation of an open boundary ‘‘as if it was not
there at all’’ provided the model and the boundary are
well posed, and provided that the inner and outer models
are similar in their solutions.

The concepts of Oliger and Sundstrom (1978) for the
open boundary problem are used for quasi-nonhydro-
static models. The procedure for assigning boundary
values that are well posed can be illustrated in one di-
mension for horizontally propagating waves. Taking the
western boundary as an example, the characteristics of
the waves of the outer coarse-mesh model enter the
domain from the west, and the inner fine-mesh model
has waves that are exiting from the east:

(u 1 sp ) Coarse mesh (incoming) characteristicc c

(u 2 sp ) Fine mesh (outgoing) characteristic,f f

where s is defined as

s 5 (r0gP0)1/2.

These equations must be satisfied for both incoming
and outgoing waves. We define a value of u* and p* at
the boundary that can satisfy both:

u* 1 sp* 5 u 1 sp (6)c c

u* 2 sp* 5 u 2 sp , (7)f f

where the subscript c denotes the value on the coarse
mesh, and the subscript f denotes the value on the fine
mesh.

These two equations in two unknowns can be solved
for u* and p*. The other dependent variables, y , w, and
u, are determined from the coarse mesh or the fine mesh
depending on the west wind direction determined from
the fine-mesh prediction. If uf is greater than 0, the
values of y , w, and u, are taken from the coarse (outer)
mesh, and if uf is less than 0, they are extrapolated from
the fine (inner) mesh.

Typically we use a linear second-order extrapolation
from the interior to the boundary for uf and pf

u (I 5 0) 5 1.5u (I 5 1) 2 0.5u (I 5 2)f f f

p (I 5 0) 5 1.5p (I 5 1) 2 0.5p (I 5 2).f f f

These equations need to be modified for staggered
and other types of grids.

Solving for the well-posed values gives

1
u* 5 [u 1 u 1 s(p 2 p )]c f c f2

1 1
p* 5 (u 1 u ) 1 (p 2 p ).c f c f2s 2

Generalization of this approach to other lateral bound-
aries and the top boundary is straightforward.

In order to illustrate the results of use of a well-posed
boundary, we ran a simple experiment. The fully non-
hydrostatic version of the QNH model was initialized
at rest and forced with a 1-J heat impulse during the
first minute of integration. The impulse was Gaussian
in time and space, with a 30-s rise and fall time of the
heating, and an e-fold radius of 40 km in the horizontal,
and 1 km in the vertical. The impulse was located at
5500 m in the midtroposphere. The result of the ex-
periment is shown in Fig. 2. Figure 2a is the vertical
velocity at the location of the impulse center, with a
rigid lid used for the upper boundary condition. Figure
2b is the vertical velocity at the same location, but for
a run in which the well-posed upper boundary condition
was used. In this graph of the first hour there are two
waves evident. The fast wave is an acoustic wave, and
it is clear that the well-posed boundary greatly decreased
the reflection of the acoustic wave back into the domain.
The second wave is the gravity wave, which is similar
in both integrations. Our experience with well-posed
boundaries show that they are particularly helpful near
the boundaries but also significantly decrease the spu-
rious buildup of reflected acoustic and gravity wave
energy throughout the domain of a limited-area model.

f. Smoothness

Kreiss’s (1980) theory for hyperbolic systems with
multiple timescales includes the concept of mathemat-
ical ‘‘smoothness’’ for variables in both time and space.
In order to separate the meteorologically significant
‘‘slow’’ motions from the fast waves, which do not re-
quire deterministic prediction, smoothness is required
in the initial fields and forcing. In practice, this means
that the space derivatives of first and higher order must
be of order one in a scaled version of the system, and
they must be smooth up to the boundary. In other words,
a discontinuity between the interior and the boundary
will violate the smoothness assumption required in the
energy proof that constrains the time variation. It is
shown in Browning and Kreiss (1986) that the solution
of an equation set like (1)–(5) can be made smooth near
the boundaries by setting the constant a equal to the
square of the aspect ration of the meteorological phe-
nomena being modeled:

a ; (vertical phenomena scale

4 horizontal phenomena scale)2.

There is another important ramification of the concept
of smoothness. Physical phenomena such as turbulence,
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latent heating, and radiation enter the dynamics through
forcing terms in sets (1)–(5). If these are not mathe-
matically smooth, they can generate perturbations and
fast waves that degrade the meteorologically significant
part of the solution. This means that physics package
forcing terms, such as heating that will enter on the
right side of Eq. (5), must be smooth. This issue is
discussed extensively in Browning and Kreiss (1994a).
In practice, smoothness in a quasi-nonhydrostatic model
can be enforced after the calculation, but before the
forcing is injected into the dynamics equations. Brown-
ing and Kreiss (1994a) refer to small-scale perturbations
in forcing (e.g., heating at a single grid point), which
appear in full-physics model integrations as ‘‘rough
forcing.’’ They show that high spatial gradients that
appear as a result of rough forcing can generate high-
frequency waves, which at best degrade the solution and
which may lead to instability and diverging solutions.
The use of large explicit or implicit diffusion damping
can also degrade the solution, affecting the slow-mode
meteorological waves of interest in an effort to keep the
high-frequency waves in check.

g. Explicit calculation

An interesting aspect of the use of the quasi-non-
hydrostatic parameter is that it allows a completely ex-
plicit formulation of a model. Browning and Kreiss
(1986) referred to two types of well-posed models; one
they referred to as the approximate system, which is the
type of model discussed in this paper. The second, called
the ‘‘reduced system,’’ is a system in which an elliptic
equation must be solved to relate pressure and velocity
in the forward integration of the model. The trade-off
of a purely explicit system, in which time steps must
be quite short to meet CFL criteria, and a system that
requires solution of elliptic equations is complex. It is
possible that the savings in making fewer time steps
with implicit techniques can overcome the increased
computing requirements, which solution of elliptic
equations creates. However, in addition to purely nu-
merical considerations, it is important to consider the
effect that long time steps have on gravity wave solu-
tions, which in the mesoscale can have timescales of
minutes. Part of our reason for the use of the approx-
imate or quasi-nonhydrostatic formulation is that it re-
sults in a simplicity of development in the resulting
computer code. Explicit codes are also quite amenable
to advanced computer capabilities; the QNH model is
parallelized in the horizontal and vectorized in the ver-
tical direction. A major purpose in the development of
the QNH model was to determine the advantages and
disadvantages that a purely explicit model would have.

Quasi-nonhydrostatic models can be explicit in their
vertical calculations because one effect of the constant
a is to slow down the vertical acoustic waves. The mod-
eler can choose the constant so that the time needed for
an acoustic wave to cross a grid length in the vertical

is the same as the time needed to cross a horizontal grid
length. The vertical acoustic wave has a phase velocity,
cy , given by

gP0c 5 Ïa .y ! r0

Similarly, the horizontal acoustic velocity is given by

gP0c 5 .h ! r0

Since a 5 Dz/Dx,Ï
cy 5 (Dz/Dx)ch.

Thus, it is most efficient to choose a and the vertical
and horizontal grid mesh distances such that the CFL
criteria in the horizontal and vertical directions are iden-
tical.

Most nonhydrostatic models use an implicit formu-
lation for the vertical coordinate calculations, which ob-
viates the difficulties associated with vertical CFL re-
quirements. Browning and Kreiss (1994b) have indi-
cated that the semi-implicit vertical formulation reduces
in a mathematical sense to a primitive equation for-
mulation, and therefore such models are ill posed.

3. Wave analysis

The nature of a quasi-nonhydrostatic model can be
best understood by analyzing its effects on various at-
mospheric waves. For purposes of discussion, we clas-
sify waves as ‘‘free’’ or ‘‘force.’’ Free waves are the
internal waves that are solutions of the eigensystem, that
is, Rossby, gravity, and acoustic waves. The linear sys-
tem analysis is presented in section 3a, followed by a
discussion of the effect of the quasi-nonhydrostatic pa-
rameter on the free waves; Rossby waves in section 3b;
and gravity waves in section 3c. Then the effect of the
quasi-nonhydrostatic parameter on forced waves is dis-
cussed; heat-forced circulations in section 3b and ter-
rain-forced gravity waves in section 3e. Finally, the re-
sponse of the quasi-nonhydrostatic system to unbal-
anced perturbations in the initial state and heating im-
pulses is presented in section 3f. It is shown that the
quasi-nonhydrostatic model does not affect the Rossby
and heat-forced circulations. Conversely, gravity waves
are selectively modified, with larger scales unaffected,
and small-horizontal, large vertical-scale waves de-
creased in both frequency and amplitude. Vertical acous-
tic waves are slowed down, which slows down the hy-
drostatic adjustment process.

a. Linear analysis

In order to illustrate the role of the free waves in a
quasi-nonhydrostatic model, we analyze a linearized,
somewhat simplified version of Eqs. (1)–(5). This anal-
ysis is detailed in appendix A and summarized here to
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support the associated discussion. We assume the mean
flow is zero and drop smaller terms to get

]u 1 ]p
5 2 1 fy (8)

]t r ]x0

]y 1 ]p
5 2 2 fu (9)

]t r ]y0

]w 1 ]p
5 a 2 1 gu (10)1 2]t r ]z0

]p ]u ]y ]w
5 2gP 1 1 (11)01 2]t ]x ]y ]z

]u
5 2ũw. (12)

]t

To simplify the discussion of pure gravity waves, we
will drop the Coriolis parameter in the subsequent anal-
ysis. To a good approximation, the eigenvalues for the
system are

1/2
2 2gũ(k 1 l )

v 5 0 v 5 2v ø1 2 4 21 2 2 2[ ]a (k 1 l ) 1 m
2 2 2 2 1/2v 5 2v ø C [(k 1 l ) 1 am ] ,3 5 s

where Cs 5 (gP0/r0)1/2, the speed of sound.
These five eigenvalues represent frequencies associ-

ated with acoustic, gravity, and Rossby waves. When
solved for the eigenvectors we get the Rossby wave
eigenvector as

( ) 5 (l, 2k, 0, 0, 0)û, ŷ , ŵ, p̂, û

and for other nonzero eigenvalues, vi, the eigenvectors
are

21 21   û 2v ir kp̂j 0

21 21ŷ 2v ir lp̂j 0   
21ŵ 5 2ũ v ,   j

p̂ p̂j   
û 1   

where

p̂j 5 ( (g 1 a21 ).21 21 21 2ir m) ũ v0 j

This system allows analysis of the effect of the quasi-
nonhydrostatic parameter, a, on the three types of
waves. It can be seen that a affects the frequency of
sound waves with vertical structure, but not, for ex-
ample, horizontal sound waves such as the Lamb wave.
As discussed in section 2g, the speed of propagation of
sound waves in the horizontal is unchanged, but their
propagation in the vertical is slowed down.

b. Rossby waves

The linear analysis above demonstrates that the pa-
rameter a does not affect the frequency or amplitude of

the Rossby waves. We would like to extend the analysis
to a simple nonlinear steady-state system with a sec-
ondary circulation. This can be done by deriving a vor-
ticity equation from Eqs. (1) and (2), and assuming in-
compressibility to obtain

]z ]u ]y ]u h
u 1 f 1 5 0 u 1 wũ 51 2]x ]x ]y ]x C Tp

]u ]y ]w
1 1 5 0,

]x ]y ]z

where h is heating, and z is the relative vorticity.
For the case in which there is no heating with the

zonal mean wind independent of space and time, the
system can be combined into a single equation:

2]z fu ] u
u 5 .

]x ũ ]x]z

We can determine a horizontal length scale for this
system by solving for it in terms of the other variables:

˜UHQ
6L ; ; 10 m,

fu

where

21 4 22U ; 10 m s , H ; 10 m, u ; 10 ,
24 21f ; 10 s .

Thus, the simple nonlinear system with a steady-state
ageostrophic component scales to the 1000-km scale. A
more complete analysis of this type is presented in
Browning and Kreiss (1986). The main point of the
discussision is to show that the quasi-nonhydrostatic
system should accomodate Rossby waves with ageo-
strophic secondary circulations and still have appropri-
ate horizontal length scales. A similar analysis with
heating included yields a horizontal length scale of 100
km, again unaffected by the quasi-nonhydrostatic pa-
rameter.

c. Gravity wave analysis

From the analysis in section 3a, dispersion equation
for gravity waves is given by

1/2
2 2 2N (k 1 l )

v 5 ,g 21 2 2 2[ ]a (k 1 l ) 1 m

where N 2 5 is the buoyancy or Brunt–Väisälä fre-gũ
quency, which are synonomous. The quasi-nonhydro-
static parameter shows up in the frequency of the gravity
modes for all of the variables, and in the amplitude of
the vertical velocity. To examine this effect, we define
a frequency reduction

NEv(a 5 1) 2 v(a 5 10 )
Frequency reduction 5 ,

v(a 5 1)
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FIG. 3. Reduction of the gravity wave frequency of an O(100-km) wave as a function of the vertical
wavelength. Line A–A–A would be for a 5 1021, line B–B–B for a 5 1022, line C–C–C for a 5 1023, and
line D–D–D for a 5 1024. The frequency of the gravity wave is quite accurate for all vertical wavelengths
for the QNH1 version of the model (line A–A–A). The QNH2 model (line B–B–B) is quite accurate for
vertical gravity waves of wavelength less than a few kilometers. It has about a 10% frequency reduction for
gravity waves of vertical wavelength 5 km and has nearly a 30% frequency reduction for wavelengths of the
full scale height of the atmosphere (10 km). The QNH3 and QNH4 models substantially decrease the fre-
quencies of gravity waves for all vertical wavelengths.

where NE 5 negative of the exponent of the quasi-
nonhydrostatic constant a.

The frequency reduction due to the quasi-nonhy-
drostatic parameter is a function of vertical wavelength.
Figure 3 shows the frequency reduction of an O(100-
km) horizontal gravity wave as a function of height for
different a’s. It is clear that when a 5 1022, the re-
ductions are quite small for vertical wavelengths on the
order of 1 km, while they become substantial for vertical
wavelengths approaching the scale height of the at-
mosphere. Free gravity waves, which will be discussed
in the remainder of this section, typically have small
vertical wavelengths, and associated small-frequency re-
duction. Terrain-forced gravity waves, discussed in sec-
tion 3e, have larger vertical wavelengths and larger fre-
quency reduction.

In order to determine the frequency reduction of free
gravity waves as a function of horizontal wavelength,
we must have an associated vertical wavelength. Gill
(1982) discusses and approximates the aspect ratio and
vertical wavelengths of atmospheric waves. Using Gill’s
scaling (e.g., his Table 2.1), the frequency reduction can
be calculated for various quasi-nonhydrostatic con-
stants. Figure 4 shows the frequency reduction of gravity
waves for QNH1 (a 5 1021), QNH2 (a 5 1022), QNH3
(a 5 1023), and QNH4 (a 5 1024) models. There are
substantial frequency reductions throughout the meso-

beta domain for the QNH4 model, as expected. The
QNH3 model has substantial reduction of frequency for
scales below 100 km. The QNH2 model, designed for
the mesobeta scale, has only about 1% reduction for the
100-km scale (as expected by the theory, Browning and
Kreiss 1986), with frequency reduction of less than 20%
for the smallest mesobeta-scale waves of length 20 km.
The QNH1 model is very accurate down to grid mesh
sizes of 2.5 km.

The effect of a in causing a frequency reduction of
the gravity waves is clearly shown in the above dis-
cussion of a linear system. However, the importance and
role of gravity waves in the middle wavelengths of the
mesoscale is complex. Browning and Kreiss (1997)
show that the energy in gravity waves at these scales is
quite small. They point out that it is difficult to distin-
guish phenomena due to forcing from heating from that
due to free gravity waves and argue that some obser-
vational studies have confused gravity and heat-forced
waves.

d. Heat-forced circulations

It is characteristic of the mesoscale that forcing such
as that due to heating and frictional effects is ubiquitous
and important. In real prediction models, circulations
can be created by sustained forcing, such as latent heat-
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FIG. 4. Reduction of frequency for free gravity waves with vertical wavelengths as scaled by Gill (1982). Line
A–A–A is for the QNH1 model, with a 5 1021, line B–B–B for the QNH2 model, line C–C–C for the QNH3
model, and line D–D–D for the QNH4 model. The QNH1 is accurate for free gravity waves at all wavelengths.
The QNH2, with a 5 1022 is quite accurate until horizontal wavelengths become less than 50 km. The QNH3
model shows a large decrease in free gravity wave frequency for waves less than 50-km wavelength. The QNH4
decreases free gravity wave frequencies for all wavelengths.

ing associated with a mesobeta-scale precipitation. In
addition, as higher and higher resolutions are used, there
are often strong impulses of heating due to convective
instabilities and other small-scale phenomena. In this
section, we examine the adjustment of a quasi-nonhy-
drostatic model to sustained forcing and in section 3f,
the responses to impules in forcing as well as pertur-
bations in initial conditions are discussed.

From a modeler’s viewpoint, the salient characteristic
of a quasi-nonydrostatic model is its smoothness and
stability. The fact that the model should be more stable
can be shown mathematically (e.g., Browning and
Kreiss 1985), but what is really happening? It will be
argued that vertical velocity gravity-mode response to
deep perturbations, either in initial conditions or forcing,
are decreased in frequency and smaller in amplitude,
and that this is the reason for the stability of the model
for appropriate length scales. This change in frequency
and amplitude of the small-scale, deep gravity waves
could be regarded as an error if deterministic prediction
of individual gravity waves was the goal, or if the effect
is to change the balanced state of the model away from
that appropriate to the Rossby waves, and forcing due
to terrain effects and heating. We argue here that the
quasi-nonhydrostatic parameter can be chosen such that
the model properly predicts the Rossby and forced cir-

culation for any length scale, while the high-frequency
gravity modes are suppressed.

It is important to make a distinction between stability,
error growth rates, and the accuracy of a model weather
forecast. As has been discussed, a quasi-nonhydrostatic
model should be more stable and have smaller error
growth rates than either hydrostatic models or pure non-
hydrostatic models. This does not always guarantee that
the quasi-nonhydrostatic model will make a more ac-
curate weather forecast. It could be made more accurate
if its inherent stability allowed the model integration to
occur with less dissipation, but that effect could be coun-
teracted by its artificially reduced rate of hydrostatic
adjustment.

We will discuss vertical velocity, which is very im-
portant because it is the dynamic field that is most close-
ly related to cloud and precipitation. The role of gravity
waves in slowly varying mesoscale motions has recently
been addressed by Browning and Kreiss (1997). They
derive a version of the dynamic equations that does not
admit gravity waves to show that the dominant com-
ponent of some slowly varying mesoscale motions is
not due to gravity waves, but rather is forced, typically
by heating. They show that gravity wave vertical ve-
locities are typically an order of magnitude smaller than
the heat-forced vertical velocity fields.
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In simple terms, gravity waves are related to the buoy-
ancy term in the vertical velocity equation, and the sta-
bility term in the thermodynamic equation. A simplified
version of these two equations, with the addition of a
heating term, is

Buoyancy Stability Heating
term term term

z z z]}} ]}} ]}}| | | | | |

dw a ]p du h
5 2 1 agu 5 2ũw 1 ,

dt r ]z dt C T0 p

where h is heating in W kg21. It is crucial to distinguish
between the gravity mode (buoyancy and stability
terms) and the balance that is possible between the heat-
ing term and the stability term in the thermodynamic
equation. Ignoring vertical pressure gradient and heat-
ing, the cross-diagonal buoyancy and stability terms
combine to give a wave equation with the buoyancy
frequency clearly in evidence:

2d w
25 2N w.

2dt

Typically, the frequency of gravity waves is N 5 1022

s21. The complete analysis, given in appendix A, shows
that this frequency is modified by the vertical and hor-
izontal wavelengths of the gravity wave. As pointed out
in Browning and Kreiss (1997), a slow mode circulation
can develop due to latent heat forcing, with a balance
being established between the heating term and the com-
pensating cooling due to upward motion:

h
ũw 5 . (13)

C Tp

While this is not a wave in the same sense as a gravity
wave, confusion between the two is common. Scale
analysis can be used to illustrate the balance between
the two terms. For deep tropospheric precipitation at a
rate of 5 mm h21 (1 W kg21) over a 100-km area, scaling
shows that

]u
27 26˜u ; 3 3 10 ; Qw ; 3 3 10 ;

]x

h
26; 3 3 10 .

C Tp

Note that u is perturbation potential temperature, as de-
fined in Section 2b. The heating and vertical velocity
terms are in balance, approximately one order of mag-
nitude larger than the potential temperature advection
term. It has been shown (Browning and Kreiss 1997)
that the response of a well-posed model to smooth forc-
ing, such as that resulting from precipitation-forced la-
tent heating, will be properly accommodated by the bal-
ance between the stability and heating terms in the ther-
modynamic equation.

We did an experiment with the full QNH model to
illustrate its adjustment to steady heating. A Gaussian

region of heating was applied for both a fully nonhy-
drostatic version of the model (QNH0) and for the model
that is appropriate for mesobeta scale use (QNH2). The
heating had an e-fold radius of 100 km in the horizontal,
and 4 km in the vertical, with an amplitude of 1 J kg21.
It was centered at 5500 m in the midtroposphere and
has an equilibrium vertical velocity of 33 cm s21. Figure
5a shows that the fully nonhydrostatic version of the
model adjusts to the proper vertical velocity in a little
more than 1 h. The vertical velocity is graphed through
6 h at the center point of the heating. Figure 5b shows
the vertical velocity for a QNH2 run. The effect of the
quasi-nonhydrostatic constant, a 5 1022, is to create a
slight overshoot and adjustment in the period between
1 and 3 h. It is notable that the rise of vertical velocity
during the first hour is almost identical in the two runs.
It is clear that the constant a does not have a significant
detrimental effect on the adjustment to forcing, as dis-
cussed above. A smaller quasi-nonhydrostatic constant
would result in a slower hydrostatic adjustment.

Although it is important that the model maintain a
proper balance between the heating and compensating
vertical motion, it is not a necessity that the balance
occur the same way in a model as in the real atmosphere.
It has been argued that the adjustment to heating occurs
through the action of gravity waves. Unless the purpose
is to deterministically predict the individual gravity
waves, the important thing for mesoscale models is that
the right adjustment takes place. In fact, many cases
where gravity waves have been identified as releasing
convective instability are cases where a QNH2 model
would have properly predicted the phenomenon, al-
though a QNH3, with its larger suppression of gravity
waves, may not have. For example, observational stud-
ies (Yang and Houze 1995) have shown gravity waves
playing a role in creating the multicell structure of squall
lines. A QNH1 model should properly accomodate such
a process, while a QNH2 should have reasonable heating
and precipitation, with lack of detail in the finescale
structure of squall lines.

Orlanski (1980) discussed the difficulties of hydro-
static models for mesoscale prediction of precipitation.
Starting with the full dispersion equation for gravity
waves, he showed that an effect of the hydrostatic as-
sumption is to make small-scale moist convection un-
stable in hydrostatic models. On this basis, it is regarded
that the quasi-nonhydrostatic approach should be better
for precipitation prediction than hydrostatic models. Or-
lanski (1980) used an expansion in terms of the aspect
ratio (equivalent to the square root of the quasi-non-
hydrostatic constant) to define a quasi-hydrostatic mod-
el. This is a different approach than that developed by
Browning and Kreiss (1986), but as shown in the paper,
has some of the advantages of the quasi-nonhydrostatic
approach. Specifically, the unstable character of the me-
sobeta-scale moist convection is ameliorated; however,
the quasi-hydrostatic approach is still ill posed and will
have associated and stability problems.
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TABLE 1. Effect of the quasi-nonhydrostatic constant, a, on terrain-
forced gravity waves. For terrain wavelength, the correct vertical
wavelength is given when a 5 1. The effect of a is to increase
vertical wavelength, resulting in ducting for waves generated by ter-
rain forcing of 60 km or less.

Terrain
wavelength (km)

Vertical
wavelength (m)

a 5 1

Vertical
wavelength (m)

a 5 0.01 Error (%)

20
40
60
80

100
120
140
160
180
200

6618
6362
6317
6303
6295
6292
6290
6288
6287
6286

(Ducted)
(Ducted)
(Ducted)

10150
8076
7375
7031
6832
6704
6618

—
—
—
61
28
17
12

9
7
5

e. Terrain-forced gravity waves

Terrain-forced gravity waveshave important effects
and are quite different from free gravity waves (e.g.,
they typically have larger vertical wavelengths). Effects
include flux of energy from the surface into the atmo-
sphere and downslope windstorms. There is also an ef-
fect on numerical prediction when gravity modes are
accommodated by model equation systems with inad-
equate spatial resolution, unstable amplification of er-
rors, or other approximations in formulation; the result
may be generation of fields that detract from the ac-
curacy of prediction. Operational models are only now
reaching the horizontal resolutions where terrain-forced
hydrostatic, nonrotating gravity waves can be properly
accommodated.

The frequency of gravity wave forcing from under-
lying terrain caused by uniform flow of air over it is

v 5 Uk,

where v is the frequency, U is the horizontal velocity,
and k is the horizontal wavenumber.

Setting the frequency forced by terrain equal to the
frequency for the linear solution gravity wave, and solv-
ing for the vertical wavenumber, m, gives

1/22 2N k
m 5 2 . (14)

21 2U a

This is the Scorer equation, modified by a. The effect
of decreasing a is to increase the vertical wavelength.
This can be seen by solving for the vertical wavelength

2 2 2 21/2L 5 [N /(2pU )] 2 1/[L a)] ,z x (15)

where Lz is the vertical wavelength, and Lx is the hor-
izontal wavelength.

Skamarock and Klemp (1994) have pointed out some
difficulties of the quasi-nonhydrostatic formulation with
hydrostatic terrain-forced gravity waves. It can be seen
from Eq. (14) that the effect of a is to make the terrain-
forced waves artificially nonhydrostatic, with a change
in the critical horizontal wavelength. The critical hor-
izontal wavelength is found by setting the argument of
the square root equal to zero, and solving for the hor-
izontal wavelength. If we assume N 2 5 1024, and U 5
10 m s21, the critical wavelength should be 6 km, but
is modified to 60 km when a 5 1022 and to about 200
km when a 5 1023. The effect of the quasi-nonhy-
drostatic parameter on the vertical wavelength of ter-
rain-forced waves can be seen from Eq. (15). Table 1
shows the correct vertical wavelength (i.e., with a 5
1) along with the vertical wavelength that pertains when
a 5 1022. It can be seen that the wavelength is fairly
accurate when Lx 5 200 km, becomes about 40% too
large when Lx 5 100 km, and artificially ducts when
the wavelength is 60 km or smaller. This analysis shows
significant problems with terrain-forced gravity waves,
in agreement with the analysis of Skamarock and Klemp
(1994).

In order to understand the effect of the quasi-non-
hydrostatic parameter on terrain-forced gravity waves,
we compared its solutions with the well-known Long
(1953) solution for steady-state hydrostatic waves. Fol-
lowing the approach of Klemp and Lilly (1978) and the
presentation by Pielke (1984), we used a Rieman sum
to iteratively solve Pielke’s Eqs. (12)–(32) that was sub-
stituted into Pielke’s Eqs. (12)–(25) for solution. To ob-
tain Long’s solution, we used a bell-shaped mountain
whose width was set to 100 km and height was set to
100 m. The Brunt–Väisälä frequency was set at N 5
1022 s21 and the horizontal velocity was initialized at
U 5 20 m s21. Both the analytic (numerically approx-
imated) solution to Long’s equation and that obtained
by the QNH model are shown in Fig. 6. Figure 6a is
the analytic solution for vertical velocity in cm s21

(*100). Beside it, Fig. 6b is the steady-state solution
obtained by running the model 12 h with the two-di-
mensional mountain profile. The two solutions are fairly
similar, with vertical velocities differing by a maximum
of 15% and a similar looking pattern with height. Close
inspection reveals that while Long’s solution has max-
ima and minima stacked very close to vertical, the
QNH2 model slopes the upper-tropospheric maximum
slightly to the east. The streamlines for the analytic and
QNH2 model are compared in Fig. 6c. At low levels
the solution is fairly accurate, but it departs significantly
in the upper troposphere. Even though there are errors
associated with the artificial ducting for horizontal
wavelengths less than 60 km inherent in the bell-moun-
tain shape, the overall negative effect on the solution is
not excessive.

A QNH3 model should have large errors for a 100-
km bell-shaped mountain because it makes the hydro-
static terrain-forced waves artificially duct throughout
the mesobeta scale. This was confirmed by running the
QNH3 model to obtain its steady state for the 100-km
bell-shaped mountain. The analytic solution, Fig. 6a,
can be compared with the QNH3 solution, Fig. 6d; its
vertical velocity magnitude and pattern is incorrect with
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a strong eastward slope and minimax values 50% small-
er than the analytic solution. This result is in accordance
with the Browning and Kreiss (1986) analysis that in-
dicates the QNH3 should be used for mesoalpha-scale
phenomena.

Despite these difficulties, we will now argue that
QNH3 models may be valuable for mesobeta-scale pre-
diction. As discussed in section 3c, the frequency re-
ductions associated with free gravity waves are much
smaller because their vertical scales are typically small-
er. It is noteworthy in passing that the diffusion effects
of semi-implicit formulations may make them inferior
to quasi-nonhydrostatic formulations for gravity waves
of small vertical wavelengths. The terrain-forced gravity
wave errors in quasi-nonhydrostatic models can be lim-
ited by doing a Fourier analysis on the terrain and drop-
ping the waves of smaller wavelength that will generate
terrain-forced gravity wave errors. This approach will
not generate deterministic prediction of small scale
O(100-km) mountain waves, but it will also not detract
from the accuracy by imposing an incorrect gravity
mode solution on the Rossby and heat-forced circula-
tions. In MacDonald et al. (2000), a QNH3 model with
small-scale terrain filtered out was used to predict a
winter storm. The resulting forecast showed that this
can give reasonable results for cloud and precipitation
with scales below 100 km.

A model that accurately accommodates mesobeta-
scale weather must have very high resolution in the
vertical O(200 m) and must have high-resolution terrain,
with features on the order of 20 km. The best approach,
for both quasi-nonhydrostatic models and nonhydro-
static models is to nest a higher-resolution domain over
areas where very accurate mountain wave prediction is
needed. As shown in MacDonald et al. (2000), the lim-
iting case of a fully nonhydrostatic model (QNH0) du-
plicates Smith’s (1980) linear three-dimensional solu-
tion for terrain-forced gravity waves.

f. Gravity mode response to perturbations

We now address an important difference between qua-
si-nonhydrostatic models and fully nonhydrostatic mod-
els. The two differ in their gravity wave response to
perturbations in initial temperature fields and to forcing.
In appendix B, the linearized quasi-nonhydrostatic equa-
tion system is analyzed for its response to a perturbation,
du, in the initial potential temperature field. By getting
a particular solution for this simple situation, it is found
that the model’s gravity wave frequency shows up in
both the amplitude and frequency of the gravity mode
of the vertical velocity response:

ŵ(t) 5 du vg cos(|vg |t).21ũ (16)

An analagous result can shown to hold in physical
space. The elegant and simple equation explains much
about the effect of a. It does not damp the gravity
waves (where damping can be thought of as a real

component of the eigenvalue), but rather, makes the
response of the model to initial perturbations less in
both frequency and amplitude than it would be for a
purely nonhydrostatic model. As shown below, a sim-
ilar result pertains for heat perturbations during the
model integration.

The difference in the amplitude as well as the fre-
quency of a gravity wave can be determined by com-
paring the eigenvalues of the vertical velocity solution
with a 5 1 (i.e., fully nonhydrostatic), and a equal to
other values (i.e., quasi-nonhydrostatic). In this analysis
we use the two-dimensional dispersion equation for sim-
plicity:

2 2 2 2 1/2k N 1 m f 
v 5 6 . g 2k 2 1 m

a 

It is clear that the presence of a reduces the amplitude
and frequency of the gravity wave. The physics pack-
ages in most models, including QNH, calculate heating
due to moisture phase change, radiation, and turbulence
in a column. Thus, perturbations often show vertical
coherence. We are interested in the response to a full
column perturbation in temperature or heat forcing. The
two can be compared by calculating the amplitude and
frequency reduction due to a as

vertical velocity perturbation response reduction

v (a 5 1) 2 v (a 5 N )g g
5 .

v (a 5 1)g

The reductions of amplitudes and frequencies of grav-
ity waves as a function of horizontal wavelength are
shown in Fig. 7. It can be seen that all of the QNH
models reduce the amplitudes and frequencies of the
vertical velocity gravity mode perturbations associated
with the smallest waves. For a wavelength of 20 km,
the bottom of the mesobeta scale, the QNH1 model
reduces amplitude by 50%, QNH2 by over 80%, and
QNH3 by over 90%. Each of the models reduce the
amplitude and frequencies of the gravity waves by in-
creasing amounts as the wavelengths get shorter. The
QNH2 model, which is designed for the mesobeta scale,
has approximately a 25% amplitude and frequency re-
duction for an O(100 km) wave, increasing as the wave-
length approaches the lower end.

An important effect of the quasi-nonhydrostatic con-
stant can be understood by examination of Fig. 7. The
constant can be used to selectively limit the small-scale
gravity wave modes that cause instability and errors,
while not affecting the larger scale modes that are im-
portant in the prediction. By definition, a fully non-
hydrostatic model has no amplitude or frequency re-
duction of this type. This is related to the concept of
roughness in the initial state and forcing that has been
discussed recently by Browning and Kreiss (1994a).
The initial-state perturbations of small horizontal
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FIG. 6. Solution of Long’s (1953) equation for vertically propagating, hydrostatic mountain waves.
(a) Analytic solution of vertical velocity (m s21 3 1000) for U 5 20 m s21, height of the mountain
of 100 m, and size of the bell-shaped mountain, ‘‘a’’ 5 100 km. The domain of simulation is 640
km in the horizontal and 13 km in the vertical. (b) Same as (a), except solution is from a QNH2
model. The model solution is surprisingly good, considering that waves of wavelength less than 60
km are artificially ducted. Streamlines (exaggerated in the vertical by a factor of 10) of the analytic
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FIG. 6. (Continued ) solution (solid lines) and the QNH2 solution (dashed lines). The flow is rea-
sonably accurate in the low levels but departs significantly in the upper levels. (d) Same as (a), except
from a QNH3 model. Comparing with the analytic vertical velocity in (a), it is clear that the magnitude
of the centers are 50% too small, and they are far out of phase. This shows that when a 5 1023,
terrain-forced, vertically propagating waves of horizontal scale O(100 km) will be improperly handled
by the model.

wavelength and deep vertical extent are in some sense
rough, and the effect of the quasi-nonhydrostatic con-
stant is to limit their amplitude and frequencies. The
bounded derivative initialization, the enforcement of
smoothness in the forcing and the constant, a, all work
to keep the the amount of energy in the fast modes
under control and well behaved. Browning and Kreiss
(1986, 1994a, 1997) fully explore these concepts. We
refer to the small-scale forcing as error modes; if ex-
plicit calculation of these modes is desired the hori-
zontal and vertical resolution of the model can be in-
creased, while making the quasi-nonhydrostatic param-
eter appropriately smaller.

We continue the discussion of the effect of the quasi-
nonhydrostatic constant on gravity waves with an ex-
ample of a perturbation of an initial field in a layer of
medium depth. We let the vertical wavelength, Lz be
equal to 4 km, and investigate how a quasi-nonhydro-
static constant of a 5 1022 affects gravity waves of
horizontal wavelengths at both ends of the mesobeta
scale, Lx 5 20 km and Lx 5 200 km. Perturbations of
this scale are common due to radiation and latent heating
effects. The result of the linear analysis of appendix B
can be written as

ŵ(t) 5 du Nb cos(|Nb|t),21ũ
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FIG. 7. Reduction of vertical velocity in response to perturbations in initial state, or to impulses in heating. It
is assumed that the impulse is approximately through the scale height of the atmosphere (10 km). The QNH1
model is shown as A–A–A, QNH2 is B–B–B, QNH3 is C–C–C, and QNH4 is D–D–D. Examining line B–B–B,
it is clear that a QNH model with a 5 1022 reduces responses to waves less than 100 km in wavelength quite
substantially, with smaller reductions for larger waves. Thus, a main effect of the quasi-nonhydrostatic parameter
is to decrease the vertical velocity in both frequency and amplitude in response to unbalanced initial conditions
and to impulses in forcing.

TABLE 2. Effect of the quasi-nonhydrostatic constant on gravity
mode vertical response to initial-state perturbation. The result is from
a linear analysis with an initial potential temperature perturbation of
3 K, and a vertical wavelength of 4 km.

Horizontal
wavelength a 5 1 a 5 0.01

Vertical velocity amplitude
Lx 5 200 km
Lx 5 20 km

20 cm s21

1.96 m s21

19.6 cm s21

0.89 m s21

Period of gravity wave
Lx 5 200 km
Lx 5 20 km

5000 s
510 s

5100 s
1118 s

where

1
b 5 .

21 2a 1 (L /L )x z

We assume that the initial perturbation du has an
amplitude of 3 K, the buoyancy freqency is N 5 1022 ,
s21 , the stability parameter is 5 1025 , and we cal-ũ
culate the amplitude and period of the response. The
result is shown in Table 2. At the upper end of the
mesobeta scale, Lx 5 200 km, there is only a small

change in the amplitude and period of the gravity wave.
At the smaller end of the mesobeta scale, Lx 5 20 km,
there is a very substantial decrease of the amplitude,
from nearly 2 m s21 to less than 1 m s21 , and increase
of the period from about 10 to 20 min. The choice of
a to correspond to an aspect ratio of 0.1 results in
preserving the gravity wave reponse to perturbations
of larger scale and decreasing the response to smaller
waves.

The linear analysis of the gravity mode vertical ve-
locity response to impulses in heating is detailed in ap-
pendix C. A solution of the inhomogenous system with
a short heating impulse is somewhat more complex that
the initial temperature perturbation analysis, but the re-
sult is similar:

ŵg(t) 5 H |vg|T0rein,21ũ

where r is the norm of [ 2 i cos(|vg |t)]v tge
2r 5 Ï1 1 2 sin(|v |t) cos(|v |t) 1 cos (|v |t)g g g

cos(|v |t)g
n 5 arccos .1 2r

In the equations above, H is the magnitude of the
heating impulse, T0 is the length of the impulse in time,
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FIG. 8. Response of vertical velocity (cm s21) to an initial 1-min
impulse in heating. The impulse is Gaussian in time and space, with
an e-fold radius of 40 km in the horizontal, and 4 km in the vertical,
and a peak value of 1 J kg21. (a) In the fully nonhydrostatic model,
there is a sharp rise and fall within the first hour of the gravity wave
component of the response. Superposed on the gravity wave is a high-
frequency acoustic wave that continues through time. (b) When a 5
1022, the frequency of the gravity wave is slowed down so that it
exists while damping for several hours. The acoustic response is
greatly decreased. Notice that the amplitude of the gravity mode
response is also decreased, reaching over 0.6 cm s21 in the fully
nonhydrostatic run, but limited to less than 0.4 cm s21 in the QNH2
run. The decrease of the amplitude and frequency of high-frequency
waves clearly evident in comparing these two graphs reveals an im-
portant effect of the quasi-nonhydrostatic parameter.

and vg is the gravity mode frequency that has been
discussed earlier. It is clear that the response to heating
impulses of the gravity mode of the vertical velocity is
decreased with a functional dependance similar to that
shown in Fig. 7. The amplitude and frequency are both
reduced, with the smallest-scale perturbations being de-
creased the most.

An experiment was conducted to illustrate the effect
of a rough heating impulse in the QNH model. The
impulse was Gaussian in time and space, with rise and
fall times of 1 min, and an e-fold radius of 40 km in
the horizontal and 4 km in the vertical. Figure 8a shows
the vertical velocity response to the impulse in a fully
nonhydrostatic version of the model, and Fig. 8b shows
the response when a 5 1022. The large-amplitude wave
in both runs is the forced wave response. Note that the
amplitude of the response for the QNH2 run is reduced
and that the frequency of the reponse is also significantly
reduced, as would be expected from the linear analysis
of appendix C. The fully nonhydrostatic run has a much
stronger high-frequency component, which are gravity
waves. Figure 8 is the best illustration of the advantages
and disadvantages of the quasi-nonhydrostatic model.
The advantage—stability—is evident in the great re-
duction of small-scale gravity wave energy. The dis-
advantage—slower hydrostatic adjustment—is evident
in the damped oscillation seen over several hours in Fig.
8b.

It may seem inconsistent to emphasize the accuracy
of a QNH2 model gravity waves in the section on free
gravity waves, while emphasizing the reduction of
unwanted gravity wave energy in this section; how-
ever, the two differ in their vertical length scale. It
has been shown that the model is quite accurate for
free gravity waves with typical scale heights of about
a kilometer, while at the same time it decreases re-
sponse to deep perturbations of the order of 10 km in
the vertical.

4. Conclusions

This paper has presented a discussion of the theory
of quasi-nonhydrostatic models. It has been argued that
such models should be superior to hydrostatic models,
which are ill posed for limited domains and unstable
for small-scale moist convection. It is further argued
that when the proper quasi-nonhydrostatic parameter is
used, these models should be more stable and resistant
to growth of errors in small-scale fast modes than fully
nonhydrostatic models. Most significantly, it has been
shown that the effect of the quasi-nonhydrostatic pa-
rameter is to decrease the frequency and amplitude of
the small-scale gravity-mode response to forcing. Their
ability to make better weather predictions than fully
nonhydrostatic models is yet to be determined. Their
stability should allow model integrations with less dis-
sipation and therefore less negative impact in structures
of interest such as Rossby waves. However, as the quasi-
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nonhydrostatic parameter becomes smaller, it slows
down hydrostatic adjustment. The trade-off between
these two effects is an important issue that can only be
evaluated by extensive comparisons of full physics ver-
sions of both types of model making real weather pre-
dictions.

Although we have referred to realizations of the qua-
si-nonhydrostatic model as ‘‘different’’ models, it is not
difficult to convert from one (e.g., QNH2) to another
(e.g., QNH3). The programs are written so that the qua-
si-nonhydrostatic parameter may be simply changed. A
more challenging issue is to tailor the physics packages
to the phenomena and scales of interest. The quasi-non-
hydrostatic parameter allows the modeler to choose the
phenomena of interest, and suppress explicit phenomena
of smaller time- and space scales.

For mesoscale prediction, the theory indicates that a
QNH3 model should be accurate for cloud and precip-
itation prediction throughout the mesoalpha scale, and
well into the mesobeta scale, but will not handle small-
scale terrain-forced gravity waves. It should have very
smooth evolution of mesoscale features such as upslope
precipitation, as is shown for the winter storm case pre-
sented in MacDonald et al. (2000). A QNH2 model can
accommodate cloud and precipitation down to O(10 km)
and will give reasonably accurate prediction of terrain-
forced gravity wave phenomena such as hydrostatic,
nonrotating waves of scales of 100 km and larger. It
should be better than a QNH3 model in its response to
small-scale local forcing, such as those caused by sur-
face inhomogeneities like land–water contrasts. Inertia–
gravity waves with effects such as trapping and vertical
energy propagation should be acceptably predicted with
a QNH2 model. As predicted by the theory, our expe-
rience indicates that the QNH2 model is excellent for
mesobeta-scale prediction of forced phenomena, such
as sea breezes and small-scale terrain flow, as well as
its design goal of smoothly evolving vertical velocity
fields and precipitation.

It is concluded that the implementation of a quasi-
nonhydrostatic mesoscale weather prediction model
based on the theory of Browning and Kreiss (1986) is
feasible and that such a model may have a number of
advantages such as improved prediction of clouds and
precipitation.
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APPENDIX A

Eigenanalysis for a Linearized
Quasi-Nonhydrostatic System

In this appendix, we analyze a simplified form of the
quasi-nonhydrostatic equation set to illustrate the char-

acteristics of Rossby, gravity, and acoustic waves for a
linear system. It will be shown that the quasi-nonhy-
drostatic constant does not affect the Rossby waves but
has an effect on the small-scale gravity waves and ver-
tical sound waves, similar to that of Browning and
Kreiss (1985). This analysis leads to an analysis of the
effect of perturbations of initial state (appendix B) and
in forcing (appendix C).

We start with a linearized, somewhat simplified ver-
sion of Eqs. (1)–(5) that is presented in Eqs. (8)–(12).
Note that two dynamic terms were dropped, which are
lower order, from the w and p equations. These can be
shown as small terms in a scale analysis, and so do not
change the linear wave analysis. In addition, we drop
the mean flow to simplify the wave analysis.

From section 2a, the eigenmatrix of a linearized
QNH is

(A 2 vI)
212v f 0 2ikr 0 0

212 f 2v 0 2ilr 00 
215 0 0 2v 2imar ag . 0

2gp ik 2gp il 2gp im 2v 00 0 0 
0 0 2ũ 0 2v 

Setting its determinant to zero gives the characteristic
equation

5 2 21 2 2 21 2 2 3v 1 [ f 1 r gp (k 1 l ) 1 r gp am 1 aN ]v0 0 0 0

2 2 21 2 2 2 21 2 21 [ f aN 1 r gp (k 1 l )aN 1 r gp am f ]v0 0 0 0

5 0, (A1)

where N 2 5 is the square of the Brunt–Väisälä fre-gũ
quency. Solving this polynomial gives the eigenvalues
as follows:

v 5 0 (A2)Rossby

22C 1 ÏC 2 4C1 1 2v 5 6 (A3)gravity6 ! 2

22C 2 ÏC 2 4C1 1 2v 5 6 , (A4)sound6 ! 2

where

21 2 2 21 2 2 2C 5 r gp (k 1 l ) 1 r gp am 1 aN 1 f (A5)1 0 0 0 0

2 21 2 2 2C 5 f agũ 1 r gp aN (k 1 l )2 0 0

21 2 21 r gp am f . (A6)0 0

Expression C1 can be interpreted as sum of the squares
of each of three frequencies: the first term being the
sound waves (modified in the vertical by a), the second
term the buoyancy frequency (also multiplied by a),
and the third term the Rossby wave frequency. It is clear
from scaling considerations for the mesoscale that the
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Coriolis term and the buoyancy term can be dropped
from C1 as well as C2. That is,

21 2 2 21 2C . r gp (k 1 l ) 1 r gp am (A7)1 0 0 0 0

21 2 2 2C . r gp aN (k 1 l ). (A8)2 0 0

It is obvious that C2 K C1 and then D 5 (4C2)/ is2C1

small and

22C 1 ÏC 2 4C 2C 1 C Ï1 2 D1 1 2 1 1v [ 5g ! !2 2

D
2C 1 C 1 21 11 22 C D C1 2Î. 5 i 5 i! !2 4 C1

2 2 2N (k 1 l )
. i (A9)

21 2 2 2!a (k 1 l ) 1 m

22C 2 ÏC 2 4C1 1 2v [ . iÏCs 1! 2

21 2 2 2 1/25 [r gp (k 1 l 1 am )] .0 0 (A10)

To obtain the eigenvectors, we solve the following
system by setting one component of the eigenvector to
1, and computing the remaining components:

(A 2 vI)V̂ 5 0,

where V̂T 5 . Here we set 5 1.(û, ŷ , ŵ, p̂, û) û

21 21û 2v ir kp̂   0

21 21ŷ 2v ir lp̂0   
21ŵ 5 2ũ v ,   

p̂ p̂j   
û 1   

where

p̂j 5 ( am21(ag 1 v2)21 21ir ũ0

5 ( m)21(g 1 a21v2).21 21ir ũ0 (A11)

For the Rossby wave, we can easily show that
5 (l, 2k, 0, 0 0) is its eigenvector.(û, ŷ , ŵ, p̂, û)

Define the eigenvector matrix X as

21 21 21 21 21 21 21 21l 2v ir kp̂ 2v ir kp̂ 2v ir kp̂ 2v ir kp̂ 2 0 2 3 0 3 4 0 4 5 0 5

21 21 21 21 21 21 21 212k 2v ir lp̂ 2v ir lp̂ 2v ir lp̂ 2v ir lp̂2 0 2 3 0 3 4 0 4 5 0 5 
21 21 21 21X 5 0 2ũ v 2ũ v 2ũ v 2ũ v . 2 3 4 5

0 p̂ p̂ p̂ p̂2 3 4 5 
0 1 1 1 1 

Since v2 5 2v4, v35 2v5 and p̂2 5 p̂4, p̂3 5 p̂5,
21 21 21 21 21 21 21 21l 2v ir kp̂ 2v ir kp̂ v ir kp̂ v ir kp̂ 2 0 2 3 0 3 2 0 2 3 0 3

21 21 21 21 21 21 21 212k 2v ir lp̂ 2v ir lp̂ v ir lp̂ v ir lp̂2 0 2 3 0 3 2 0 2 3 0 3 
21 21 21 21X 5 0 2ũ v 2ũ v ũ v ũ v . 2 3 2 3

0 p̂ p̂ p̂ p̂2 3 4 3 
0 1 1 1 1 

The general solution of the system is
5

v tjY 5 h e X , (A12)O j j
j51

where v1 5 vRossby, v2 5 vg, v4 5 2vg and v3 5 vs,
v5 5 2vs.

APPENDIX B

Particular Solution for Perturbation in Initial
Potential Temperature

In this appendix, we derive a particular solution
that has a perturbation of potential temperature in the

initial condition. Assume du is the perturbation at the
initial time. From the general solution of the system,
we have

5

Y(0) 5 h X 5 XVO j j
j51

where V 5 (h1, h2, h3, h4, h5). If we choose Y(0) 5
(0, 0, 0, 0, du),

XV 5 (0, 0, 0, 0, du).

To solve this system, we perform Gaussian elimination
on the augmented system:
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21 21 21 21 21 21 21 21l 2v ir kp̂ 2v ir kp̂ v ir kp̂ v ir kp̂ 0 2 0 2 3 0 3 2 0 2 3 0 3

21 21 21 21 21 21 21 212k 2v ir lp̂ 2v ir lp̂ v ir lp̂ v ir lp̂ 02 0 2 3 0 3 2 0 2 3 0 3 
21 21 21 210 2ũ v 2ũ v ũ v ũ v 0 2 3 2 3

0 p̂ p̂ p̂ p̂ 02 3 2 3 
0 1 1 1 1 du 

and obtain the following matrix
21 21 21 21 21 21 21 21l 2v ir kp̂ 2v ir kp̂ v ir kp̂ v ir kp̂ 0 2 0 2 3 0 3 2 0 2 3 0 3

210 0 d 0 d duv p̂1 2 2 2

2 2v p̂ v p̂2 3 2 30 0 v 2 0 2v 1 0 3 3v p̂ v p̂3 2 3 2 , 

v v2 20 0 p̂ 1 2 2p̂ p̂ 1 1 03 2 31 2 1 2v v3 3 
0 1 1 1 1 du 

where

v221 21 21d 5 2v p̂ 1 v p̂ 2 v p̂ 1 21 3 3 2 2 2 31 2v3

v221 21 21d 5 v p̂ 1 v p̂ 2 v p̂ 1 1 .2 3 3 2 2 2 31 2v3

The third row implies that h3 5 h5 and then the second
row gives

du p̂221 212v ( p̂ 2 p̂ )h 5 duv p̂ h 5 .2 2 3 3 2 2 3 2 p̂ 2 p̂2 3

And from the fourth row,

2p̂2h4 1 2p̂3h3 5 0,

which implies

p̂ p̂ du p̂ du p̂3 3 2 3h 5 2 h 5 2 5 2 .4 3p̂ p̂ 2 p̂ 2 p̂ 2 p̂ 2 p̂2 2 2 3 2 3

By the definition of p̂j, we know that p̂2 K p̂3 and p̂2/p̂2

2 p̂3 . 21 and therefore

du p̂ du2h . 2 h . .3 42 p̂ 23

From the fifth row,

du
h 5 du 2 2h 2 h . .2 3 4 2

Consider the gravity mode of the w component
21 v t 2v t2 2ŵ (t) 5 2ũ v (h e 1 h e )g 2 2 4

du
21 v t 2v t 212 2. ũ v (e 1 e ) 5 ũ v du cos(|v |t).2 g g2

This is the main result from the particular solution of

the response of the gravity mode of vertical velocity to
a perturbation in the initial potential temperature; it
shows how both the amplitude and frequency are af-
fected by the modified gravity wave frequency:

2 2 2N (k 1 l )
v 5 i .g 21 2 2 2!a (k 1 l ) 1 m

By Parseval’s relation, we know that the same conclu-
sion conerning the amplitude of the gravity wave in the
ŵ component also holds in physical space.

APPENDIX C

Solution of Inhomogeneous System Response to
Heating Impulse

We now want to solve the inhomogeneous, linear qua-
si-nonhydrostatic equation system to determine the re-
sponse of the system to an impulse in heating. Assume
H is the heating function that is a function of time, H
5 H(t). From ordinary differential equation theory, we
assume h j 5 h j(t).

Taking hj as a function of t and putting the general
solution (28) into the system

]Y
5 AY 1 F ,

]t

where F 5 (0, 0, 0, 0, H)T, and we have
5 5

v t v tj jh9e X 1 h v e X 5 AY 1 FO Oj j j j j
j51 j51

5 5

v t v tj jh9e X 1 h e AX 5 AY 1 FO Oj j j j
j51 j51

5

v tjh9e X 1 AY 5 AY 1 F .O j j
j51
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This implies

v t1h9e 1

v t2h9e2 
v t3X h9e 5 F 3

v t4h9e4 
v t5h9e 5

and then

XV 5 F,

where V 5 (y 1, y 2, y 3, y 4, y 5)T 5 ( , ,v t v t1 2h9e h9e1 2

, , ). Using the result of the Gaussianv t v t v t3 4 5h9e h9e h9e3 4 5

elimination in appendix B on the augmented system
(X | F),

21 21 21 21 21 21 21 21l 2v ir kp̂ 2v ir kp̂ v ir kp̂ v ir kp̂ 0 2 0 2 3 0 3 2 0 2 3 0 3

210 0 d 0 d Hv p̂1 2 2 2

2 2v p̂ v p̂2 3 2 30 0 v 2 0 2v 1 0 3 3v p̂ v p̂3 2 3 2 . 

v v2 20 0 p̂ 1 2 2p̂ p̂ 1 1 03 2 31 2 1 2v v3 3 
0 1 1 1 1 H 

Similar to appendix B by simply replacing du by H, we
have

H H
y . y 5 .2 22 2

or by defining

t

2v zˆ iH 5 He dz,i E
0

we have equations for h2 and h4

ˆ ˆH H2 4h (t) 2 h (0) . h (t) 2 h (0) . .2 2 4 42 2

Consider the gravity wave mode of the w component:

21 v t 2v t2 2ŵ (t) 5 2ũ v (h (t)e 1 h (t)e )g 2 2 4

21 v t 2v t2 25 2ũ v h (0)e 1 h (0)e2 2 45
p̂ p̂2 3 v tˆ 21 1 2 2 H e21 2[ p̂ 2 p̂ 2( p̂ 2 p̂ )2 3 2 3

p̂3 2v tˆ 22 H e .4 6]2( p̂ 2 p̂ )2 3

Consider a case with initial condition Y(0) 5 0 that
implies hj(0) 5 0 for j 5 1, . . . , 5. That is, the gravity
mode of the ŵ component is

p̂ 1321 v t v t 2v tˆ ˆ ˆ2 2 2ŵ (t) 5 2ũ v H e 2 (H e 1 H e ) .g 2 2 2 4[ ]p̂ 2 p̂ 22 3

Now consider a case where H is an impulse function,
that is,

0 t . T0H 5 H(t 2 T ) 50 1 5H t # T ,0

where H is a constant that is the amplitude of the im-
pulse. An example of such a heating impulse is the initial
1 min of heating that was described in section 3f and
shown in Fig. 8. We then get

t

v t v t 2v zˆ2 2 2e H 5 e He dz2 E
0

t
v t 2v z2 2He e dz t # TE 0

05
T0

v t 2v z2 2He e dz t . T E 0
 0

v t2 e
2v z t22H e | t # T0 0 v25

v t2e
2v z T2 02H e | t . T0 0v 2

v t2 e
2v t2H [1 2 e ] t # T0 v25

v t2e
2v T2 0H [1 2 e ] t . T .0v 2
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Similarly, as v4 5 2v2,

t

v t 2v t 2v t v zˆ ˆ4 2 2 2e H 5 e H 5 e He dz4 4 E
0

t
2v t v z2 2He e dz t # TE 0

05
T0

2v t v z2 2He e dz t . T E 0
 0

2v t2 e
v t2H [e 2 1] t # T0 v25

2v t2e
v T2 0H [e 2 1] t . T .0v 2

Thus, as v2 is pure imaginary,

v t v tˆ ˆ2 4H e 1 H e2 4

 H
v t 2v t2 2[e 2 e ] t # T0v25

H
v t 2v t v (t2T ) 2v (t2T )2 2 2 0 2 0 [e 2 e 2 e 1 e ] t . T0v 2

2iH
sin(|v |t) t # T2 0 v25

2iH [sin(|v |t) 2 sin(|v |(t 2 T ))] t . T .2 2 0 0v 2

The gravity mode of the ŵ component becomes

21 v t2ũ H [e 2 1 2 i sin(|v |t)] t # T2 0ŵ (t) 5g 21 v t v (t2T )5 2 2 0ũ H [e 2 e 2 i(sin(|v |t) 2 sin(|v |(t 2 T ))] t . T .2 2 0 0

Thus for a small T0,

v t v (t2T ) v t2 2 0 2e 2 e . |v |T e2 0

sin(|v |t) 2 sin(|v |(t 2 T )) . |v |T cos(|v |t)2 2 0 2 0 2

and therefore, for t . T0,

ŵg(t) . H |v2|T0[ 2 i cos(|v2|t)]21 v t2ũ e

5 H |v2|T0rein,21ũ

where r is the norm of [ 2 i cos(|v2 |t)]v t2e

2r 5 Ï1 1 2 sin(|v |t) cos(|v |t) 1 cos (|v |t)2 2 2

cos(|v |t)2n 5 arccos .1 2r

That is, the magnitude of ŵg(t) is proportional to a if
the duration of heating is for a fairly short time. Al-
though this was done for an initial impulse of heating,
the generalization to an impulse of heating at any time
during the integration is straightforward.

By Parseval’s relation, we know the amplitude of the
ŵ component of the gravity waves in physical space are
also reduced as long as T0 is small.

The results of the particular solution for perturbation
of potential temperature at the initial time and the in-
homogeneous solution for an impulse of heating during
the model integration are similar. They both show that
the effect of the quasi-nonhydrostatic constant, a, is to
decrease both the frequency and amplitude of the gravity
mode vertical velocity reponse. The effect is largest for
deep waves of small horizontal extent.
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