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Abstract.– This paper derives a good approach to approximating the expected inventory level per
unit time for the continuous review perishable inventory system. Three existing approximation
approaches are examined and compared with the proposed approach. Three stockout cases, including
the full backorder, the partial backorder, and the full lost sales cases, which customers or material
users generally use to respond to a stockout condition are considered. This study reveals the
fact that the proposed approximation is simple yet good and suitable for incorporation into the

perishable inventory model to determine the best ordering policy. The results from numerical
examples and a sensitivity analysis indicate that severe underestimation or overestimation of the
expected inventory level per unit time due to the use of an inappropriate approximation approach
would result in great distortion in the determination of the best ordering policy.
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Résuḿe. – Cet article développe une bonne fa¸con d’approximer le niveau moyen de stock par
unité de temps pour le syst`eme d’inventaire permanent dans le cas des denr´ees périssables.
Nous examinons trois approches existantes et les comparons avec celle qui est propos´ee ici.
Nous consid´erons trois cas de ruptures de stock : celui du r´eapprovisionnement total, celui du
réapprovisionnement partiel, et celui o`u toute demande non satisfaite est enti`erement perdue ;
ce sont les cas les plus g´enéralement rencontr´es. L’étude révèle que l’approximation propos´ee
est simple, et cependant bonne et appropri´ee à une incorporation dans le mod`ele pour
la détermination de la meilleure politique de r´eapprovisionnement. Les r´esultats des exemples
numériques et une ´etude de sensibilit´e indiquent que d’une sous-estimation ou d’une surestimation
sévère du niveau moyen du stock par unit´e de temps, caus´ee par l’utilisation d’une m´ethode
inappropriée d’approximation, r´esulterait une grande distorsion dans la d´etermination de la
meilleure politique de r´eapprovisionnement.
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1. INTRODUCTION

The study of the determination of the optimal or the best ordering policies
for perishable or deteriorating inventory systems has received a significant
amount of attention in the past three decades. Comprehensive reviews in this
area can be found in Nahmias [13] and Raafat [17]. Typically, goods having
finite lifetimes are subject to either perishability or decay. A perishable
inventory is one in which all the units of one material item remaining in
stock will simultaneously lose their utility. The remaining units must be
discarded if they have not yet been used (deterministic or random demand)
after storage for a fixed period of time. Common examples of perishable
inventories are fashion garments, blood, and foodstuffs. On the other hand,
a decaying or deteriorating inventory generally has a random lifetime. It can
be defined as one in which a fraction of the units of an item remaining in
stock loses its utility (e.g., radioactive materials and gasoline) or in which
the utility of each unit decreases over time (e.g., fruits and vegetables).

In this paper, the primary focus is placed on the continuous review
(order quantity/reorder point) perishable inventory system. Nahmias

[11, 12] and most of the other previous studies such as those of Cohen [4],
Chazan and Gal [2], and Nandakumar and Morton[14] have concentrated
on the periodic review and multi-period lifetime problem with zero lead
time. Their considerable efforts have been spent on the development of good
approximations of the exact expected outdating (i.e., the expected perished
units of an item during a time interval). This is because it is extremely
difficult to obtain the optimal expected outdating for a long lifetime item. In
fact, this requires solving a multi-dimensional program with corresponding
quantities for various ages at the beginning of each period, which involves
complex recursive computation. As far as we know, few papers have dealt
with the continuous review perishable inventory model, which is
known to be an intractable problem. Schmidt and Nahmias [20] commented
that the perishable problem appears to be extremely difficult when a positive
lead time is introduced. The difficulty is that perishability can only be
applied to units on hand, not on order.

Recently, this author [3] developed a simple yet good approximation of the
expected outdating for a fixed-life perishable inventory model with
a positive lead time. This author used an extremely rough approximation of
the expected inventory level per unit time since both the expected outdating
of the current order size and the expected shortage quantity per cycle are
assumed to be negligible in the calculation of the expected stock level.
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Though this strong assumption can help simplify computation of the holding
cost, distortion in determining a best ordering policy may arise.
Brown et al. [1] also demonstrated that the penalty associated with ordering
is related to not only the lot-size error but also to the holding cost function.
Therefore, the derivation of a good approximation of the stock level function
to reduce this ordering distortion and cost penalty to a minimum is the
focus of this study.

The literature on the inventory system with random demand
includes the classical models presented in Hadley and Whitin [6,
Sections 4-2 and 4-3]. They discussed the backorder and lost sales cases
under the assumption that perishability or decay is not allowed. The optimal
policy is that when the inventory position (on hand plus on order stock)
reaches the reorder point,, an order of size units is placed. Silver
[22] classified inventory management problems into an enormous variety of
research schemes. The inventory system with probabilistic lead time
demand, stockout, and item shelf-life considerations is of interest for future
application. He pointed out that commonly used distributions of lead time
demand are the Normal, Gamma, and Poisson distributions. However, there
always is a small probability that the lead time demand will be negative
when a normal distribution is used for the lead time demand. In this case,
a truncated normal distribution is recommended, but this may make the
computation difficult. Later, Das [5] introduced a inventory model
with time-weighted (time-proportional) backorders. Several inventory
models with a mixture of backorders and lost sales were proposed by Posner
and Yansouni [16], Montgomeryet al. [10], Matthews [9], Rosenberg [19],
Park [15] and Kin and Park [7]. Almost all the previous research works used

, a fraction of the unsatisfied demand backordered (the remaining fraction
1- completely lost), to model partial backorders. Recently, Rabinowitzet al.
[18] modeled a inventory system using a control variable, which limits
the maximum number of backorder allowed to accumulate during a cycle.
Obviously, these previous research works did not include the underlying
perishability assumption in their model formulations.

In general, the cost of a shortage can be assumed to be the time-
independent stockout cost ($/unit), the time-proportional shortage cost
($/stockout duration/unit), or the stockout cost per outage. The time-weighted
shortage cost is proportional to the duration of a stockout. On the other hand,
if the shortage cost is based on an outage, then according to Tersine [23,
p. 218], an outage can be defined as one time of the stockout without
regard to the number of units out of stock during a replenishment cycle.
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In this paper, three stockout cases in which customers or material users
can choose to react to a stockout condition are considered. As previously
stated, the three stockout cases are the full backorder, the full lost sales,
and the partial backorder cases, which influence computation of the expected
inventory levels per unit time and, then, the holding costs. Here, we assume
that both the backorder and lost sales costs are independent of the duration
of the stockout. In addition, other important assumptions are the stochastic
demand, fixed item lifetime, backorder fraction, and no quantity discounts.
Therefore, the proposed perishable inventory model is different from
Shiue’s [21] model and the above mentioned models.

In this paper, we will examine three existing approximations and derive a
new one to approximate the expected inventory level per unit time:

(1) An extremely rough approximation, as adopted by this author [3, p. 97,
equation (7)] and Hadley and Whitin [6, p. 156, equation (4-1)].

(2) An approximation without considering the stockout duration and the
outdate condition, as introduced by Wagner [24, p. 825, equation (14)].

(3) An approximation considering the stockout duration but excluding the
outdate condition, as proposed by Kin and Park [7, p. 233, equation (5)].

(4) A good approximation based on our [3, p. 96, equation (4)] approximate
expected outdating, as developed in this study.

2. PROBLEM DESCRIPTION

In this paper, only one perishable item (or product) is considered. Each unit
of the item has a fixed lifetime equal to. The inventory level is reviewed
continuously and decreased by a satisfaction of demand or by disposal of
perished units. An order size of is placed when the inventory level reaches
the reorder point, . There is a positive leadtime,, for each replenishment,
and a fixed ordering cost, , is incurred. All the units of a replenishment
order arrive fresh or new. Each unit does not lose or decrease in utility before
its useful lifetime ends, but it must be discarded if it has not been used before
the expiration date. An outdate cost equal to per unit is charged. The
demand in unit time, 1, is a nonnegative random variable. Assume that it
follows a specific continuous or discrete distribution with density or mass
function 1 1 and mean . We also assume that if

is cumulative demand by time, then is a stochastic process with
stationary, independent increments. This implies that has density or
mass m m and mean . In other words,
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has density or mass
m+L m+L and mean .

Units are always depleted according to an FIPO (i.e., First into stock are
consumed first) issuing policy.

The notation to be used throughout this paper is defined as follows:

Order quantity.

Reorder point.

Fixed lifetime of the perishable item.

Positive order lead time.

L Demand during lead time with probability functionL
L and mean , where L is an -fold convolution

of 1 .

Replenishment cost per unit.

Holding cost per unit per unit time.

Fixed ordering cost per order.

Outdate cost per unit.

Backorder cost per unit.

Lost sales cost per unit.

A fraction of the excess (unsatisfied) demand per replenishment cycle
can be backordered, and the remaining fraction is lost.

Expected cycle length.

Expected inventory level per unit time.

Expected outdate quantity of the current order size.

Expected shortage quantity per cycle.

Additionnal notations will be introduced later when needed. Figure 1
shows a perishable inventory model with a mixture of backorders
and lost sales.

3. CHIU’S EXPECTED OUTDATING APPROXIMATION

Just as demonstrated by Nahmias [13], who dealt with the periodic review
and multi-period lifetime problem with zero order lead time, avoidance of
complex computation requires developing a good approximation of the exact
expected outdating. The continuous review perishable inventory problem
with positive order lead time also involves complex computation, as stated
by Schmidt and Nahmias [20] and mentioned before. Thus, this author [3]
presented a simple yet good approximation to the expected outdating for the
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Figure 1.

continuous review perishable inventory system with positive order
lead time . Our approximate expected outdating of the current order size

is given by

r+Q

0
m+L
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0
m+L

m+L

u<r+Q

m+L

u<r

m+L

m+L

(1)

where m+L is the probability function of the random variablem+L
(i.e., the demand during time units). Equation (1) has been shown
to be a fairly acceptable approximation of the exact expected outdating in
the situation where the continuous review strategy is used. It should be
noted here that equation (1) is analogous to presented in
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Nahmias [11, p. 1004, equation (2-1)] with, , and replaced by , ,
and , respectively. How equation (1) can approximate the expected
outdating effectively has been discussed in more detail elsewhere [3]. In the
following three sections, our attention will be focused on the derivations
and comparisons of the expected inventory levels per unit time for the three
stockout cases.

4. FULL BACKORDER CASE

With full backorders, there is no loss of sales since customers or material
users are willing to wait for the arrival of the next order or an outstanding
order. The unsatisfied demand is then filled by the arrived order immediately.
Four approaches can be used to approximate the expected inventory level
per unit time in the perishable inventory system:

(1) Extremely rough approximation

This approach assumes that the values of and are considerably
smaller than the current order size,. Hence, and can be neglected,
and the expected inventory level per unit time is

r (2)
Equation (2) implies that there are no differences among the three stockout
cases. As mentioned earlier, this approach has been adopted by this author
as well as by Hadley and Whitin [6]. However, stock level was not correctly
accounted for when there was a depletion case (i.e., an out of stock condition).

(2) Wagner approximation

In contrast to extremely rough approximation, Wagner [24] considered both
the depletion case and the non-depletion case during a lead time. Suppose
that is much smaller than and can be ignored in this approximation.
Then, Wagner introduced

w (3)
where

1

r

L

L

x>r

L

L

(4)
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The function L in equation (4) is the probability function of the
random variable L. In equation (3), is called the correction
term of the expected inventory level per unit time. Clearly, this approximation
is reduced to the extremely rough approach when is ignored. However,
this approach does not take into account the duration of the stockout since
it assumes that whenL , the inventory level becomes zero just before
the replenishment arrives. The purpose of this approximation is to make the
holding cost formulas uncomplicated.

(3) Modified Wagner approximation

w in equation (3), which will be demonstrated in Section 6, is an
overestimation of due to neglect of the stockout duration and the outdate
condition. In this paper, the Kin and Park approximation [7] without the
outdate condition is called the modified Wagner approximation. Referring
to the derivation of the average carrying inventory in Kin and Park, the
expected inventory level per unit time of the modified Wagner model can
be expressed by

m

1

r

2
L (5)

If the right side of the equal sign in equation (5) is multiplied by, then
the result is equivalent to Kin and Park’s [7, p. 233, equation (5)] full
backorder model with . After further manipulation, equation (5) can
be rewritten as

m

1

r

L (6)

where is from equation (4). Note that in equations (5) and (6), the
integral notation should be replaced with the summation notation if the
lead time demand, L, is a discrete random variable. Also, it should be
emphasized here that only equations used in the continuous random variable
case will be presented later.

(4) Chiu approximation

It is a fact that equation (5) is derived under the assumption that
is considerably smaller than and can be neglected. Inevitably, this will
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result in an inaccurate value of obtained by using the modified Wagner
approach. Now, let

1 expected average inventory level during a lead time;
2 expected average inventory level after order arrival until next

reorder.

In order to simplify the derivation of the expected inventory level per unit
time, it is assumed that whenL , the inventory level becomes zero just
before the ordered units arrive. Then,

1

r

0

L

1

r

L (7)

In fact, equation (7) can be further simplified to

1

r

0

L (8)

In equation (8), r

0 L can be easily proved to equal
. On the other hand, 2 can be approximated precisely

by considering a rectangle, a triangle, and a parallelogram as shown in
Figure 1. Thus,

2 (9)

where,
(10)

is from equation (1), and denotes the expected number of
replenishment cycles that the item lifetime can over; moreover,

. In other words, the lifetime of time units
consists of replenishment cycles, where denotes the greatest
integer less than or equal to. For example, in Figure 1, we setequal to 1.
In addition, m represents an outdate point of time dropped in a given cycle,
which depends on the actual demand during an time unit interval.

Clearly, equation (8) must be weighted by (due to
). Correspondingly, equation (9) should be weighted

by . Multiplying the two equations by the two weights,
respectively, the expected inventory level per unit time has the following
form:

c

r

0

L

(11)
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After some manipulations, it is given by

c

(12)

Note that c is reduced to w if is ignored (that is, is set to
zero). Furthermore, c becomes r when both and are neglected.
The last two terms in equation (12) are the correction terms used to make this
approximation more effective. In order to reduce the computational effort, it
is reasonable to setm to the middle point of the time length .
As a result, becomes 1/2; thus,

c (13)

From equations (2), (3), and (6), we conclude that

r m w (14)

In general, we have . Thus,
since . Equations (2), (3), and (13) imply that

r c w (15)

However, it is difficult to compare c with m. We find that m c

when the value of is very small in equation (13). This can be seen by
comparing equation (13) with equation (6) directly. Now, the total expected
average cost per unit time for the full backorder case is given by

(16)

where is one of the above four approximations. It is noted that,
as given in equation (10), is also a function of the current order size,,
and the reorder point,

5. PARTIAL BACKORDER AND FULL LOST SALES CASES

In a full lost sales situation, any unsatisfied demand is completely lost,
and the customer or material user has presumably filled her or his need
from other sources. However, in most practical situations, when the item
is out of stock, some customers or material users are patiently waiting for
their demand to be satisfied upon initial receipt of the next order while
others are impatient and make purchases from other sources to fill their

Recherche oṕerationnelle/Operations Research



A GOOD APPROXIMATION OF THE INVENTORY LEVEL 39

demand. Under these circumstances, it is reasonable to assume that only a
fraction, , of the shortage quantity is backordered, and that
the remaining fraction, , is lost forever. The derivation of the expected
inventory levels per unit time for the two stockout cases is similar to that in
the full backorder case. The major difference between the full backorder and
the partial backorder cases is that in the partial backorder case, on average,

units are required in each replenishment cycle, as compared
to only units in the full backorder case. It should be noted that the
quantity of (including units backordered) is satisfied while that of

is lost forever. As a result, the extremely rough approximation
remains unchanged, and the other three approximations can easily be derived
by simply substituting for in the relevant equations of the
full backorder case. The resultant equations for the partial backorder case are:

r

w

m

1

r

L

and

c

(20)

where is from equation (1), and is from equation (4). At one
extreme, , the partial backorder case reduces to the full lost sales
case. At another extreme, , it reduces to the full backorder case.
Analogously, the partial backorder and the full lost sales cases have the
same properties as expressed in relations (14) and (15). The total expected
average cost per unit time for the partial backorder case is given by

(21)

where
(22)
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6. NUMERICAL EXAMPLES AND SENSITIVITY ANALYSIS

In this section, numerical examples will be given and the results of
sensitivity analysis will be presented. Twenty-four test problems which
appeared in Chiu [3] were used and are listed in Table 1.

TABLE 1
Cost parameters and relevant data of 24 test problems.

Test problem No. Cost parameter

1 5 20 10 5
2 5 20 50 5
3 5 20 100 5
4 5 40 10 5
5 5 40 50 5
6 5 40 100 5
7 15 20 10 5
8 15 20 50 5
9 15 20 100 5

10 15 40 10 5
11 15 40 50 5
12 15 40 100 5
13 5 20 10 15
14 5 20 50 15
15 5 20 100 15
16 5 40 10 15
17 5 40 50 15
18 5 40 100 15
19 15 20 10 15
20 15 20 50 15
21 15 20 100 15
22 15 40 10 15
23 15 40 50 15
24 15 40 100 15

, , , , and 1 Poisson with .

For the purpose of illustration, Test Problem 1 in Table 1 was chosen.
Then, the relevant equations of the proposed approach (including equations
(1), (4), and (20)-(22)) were applied for , 0.5, and 0, respectively. After
solving this test problem with Gino [8], a summary of the final solution was
a given in Table 2.

It can be seen from Table 2 that the values ofc are 11.4899, 11.4080,
and 11.0981 for , 0.5, and 0, respectively. We may conclude here
that the expected inventory level per unit time decreases as the fraction
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TABLE 2
Summary of results using the proposed approximation and Test Problem 1 for, and .

Final
solution (Full backorder) (Partial backorder) (Full lost sales)

13.8417 13.9178 13.6224
14.5414 14.3792 14.1564

c 11.4899 11.4080 11.0981
0.0571 0.0549 0.0431
0.1331 0.1471 0.1693
1.3785 1.3936 1.3749

71.0898 70.8247 70.5319

decreases. A more detailed analysis to verify this conclusion was further
conducted in this study.

Table 3 presents the solution values of c using the proposed
approximation and Test Problem 1 for various values of. The results
indicate that for each fraction of, the expected inventory level per unit
time converges to a fixed value when the lifetime,, increases to a large
value (this value of is five in this example). The longer the lifetime
of a perishable item has, the greater is the tendency that the perishability
assumption being released. This implies that as the lifetime, ,
increases to a sufficently large value, and that equation (20) then approaches
equation (18). Consequently, the perishable inventory model reduces
to the no-outdating model in the extremely long lifetime situation.

TABLE 3
Solution values of using the proposed approximation

and Test Problem 1 for various values of.

2 8.7777 8.5570 8.4990
3 11.4899 11.4080 11.0981
4 12.5202 12.3676 12.1288
5 12.5803 12.4032 12.1890
6 12.5803 12.4032 12.1890
7 12.5803 12.4032 12.1890

A question arises about whether careless approximation of the expected
inventory level per unit time has a significant impact on determination of
the ordering policy . Table 4 presents a summary of the results of
sensitivity analysis in which 24 test problems, given in Table 1, were used.

Each average percentage in Table 4 is the result of, first, subtracting
the policy parameter (e.g., ) which was obtained using the proposed
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TABLE 4
Average percentages for ordering policy deviations.

Approximation
approach

Extremely – 0.10% – 0.53% + 0.10% – 0.84% + 0.29% – 0.92% + 0.54% – 1.82%
rough

Modified – 0.14% – 0.49% – 0.24% – 0.37% + 0.82% – 1.20% – 0.52% – 0.40%
Wagner

Wagner – 0.03% – 0.52% – 0.35% – 0.18% – 0.16% – 0.03% – 0.07% – 0.19%

approximation from the policy parameter which was obtained using one of
the other three approximations, and then dividing this value by the proposed
policy parameter. A positive average percentage shows the extent to which
the policy parameter obtained by using an approximation approach has been
overestimated while a negative one means that the policy parameter obtained
has been underestimated. Some important conclusions drawn from Table 4
are as follows:

(1) For each fraction of , the reorder points obtained by using the
extremely rough, modified Wagner, and Wagner approaches are consistently
underestimated.

(2) In the full lost sales case , deviations on the order quantity
are greater than those in the full backorder case . This may be

because order quantity,, does not include the backordered quantity of
in the full lost sales case.

(3) Most of the policy parameters obtained by using the Wagner approach
have much smaller deviations than do those obtained using the extremely
rough and modified Wagner approximations. Presumedly, the main reason
is that the solution value of is very small (one example is shown
in Table 2). Thus, equation (18) is almost identical to equation (20).
Nevertheless, all policy parameters determined by using the Wagner approach
are underestimated.

Table 5 presents the sums of 24 solution values of. Figure 2 gives
the associated graph which shows the relative values offor the four
approximations and three stockout cases. Here, we conclude that the expected
inventory level per unit time decreases with the decrease of the fraction,.
It is also evident that Relations (14) and (15) are consistent with the results
shown in Table 5 or Figure 2. Furthermore, just as expected, the values of

obtained by using the modified Wagner approximation are smaller than
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those obtained using the proposed approximation since the solution values
of are very small in this analysis.

TABLE 5
Total solution values of (24 test problems).

Approximation approach

Extremely rough 299.4603 293.4229 283.7080 268.7160
Modified Wagner 299.5945 295.4538 290.4995 283.3413
Chiu 301.2300 297.8750 293.2553 286.8325
Wagner 302.4031 298.7430 294.8651 287.9539

Figure 2.

7. CONCLUSIONS

This paper has presented a good approach to approximation of the expected
inventory level per unit time for the perishable inventory system. Three
stockout cases which customers or material users may adopt in response
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to a stockout condition have been considered. The study has compared
the proposed approximation approach with three existing approaches which
have been used in a situation where persishability or decay is not allowed.
Obviously, the proposed approximation is much simpler than the modified
Wagner approach. This can be observed by comparing equation (20)
with equation (19). It is not complicated, as compared with the Wagner
approximation. Therefore, equation (20) is a practical formula, suitable for
incorporation into the perishable inventory model, which can be
formulated in the form of equations (21), (22), (1), and (4). The best
ordering policy can, thereby, be obtained correctly, and distortion in
determining and can be reduced to a minimum.

In addition, results from numerical examples and a sensitivity analysis
indicate that the solution values of are underestimated when the extremely
rough approach and the modified Wagner approach are used. This result
often causes deviations in the policy parameters. More importantly, severe
underestimation of due to the use of the extremely rough approach
will result in great distortion when determining the best ordering policy.
It is worth noting here, as pointed out by Brownet al. [1, p. 607], that
the importance of accurately estimating the holding cost function is readily
apparent for decision makers whose firms operate in an environment of
diseconomies of scale (e.g., perishability, decay, or deterioration).
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