## 1. Introduction to neural networks

## 1.1 What is a Neural Network?

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurones) working in unison to solve specific problems. ANNs, like people, learn by example. An ANN is configured for a specific application, such as pattern recognition or data classification, through a learning process. Learning in biological systems involves adjustments to the synaptic connections that exist between the neurones. This is true of ANNs as well.

## 1.3 Why use neural networks?

Neural networks, with their remarkable ability to derive meaning from complicated or imprecise data, can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. A trained neural network can be thought of as an "expert" in the category of information it has been given to analyse. This expert can then be used to provide projections given new situations of interest and answer "what if" questions. Other advantages include:

- 1. Adaptive learning: An ability to learn how to do tasks based on the data given for training or initial experience.
- 2. Self-Organisation: An ANN can create its own organisation or representation of the information it receives during learning time.
- 3. Real Time Operation: ANN computations may be carried out in parallel, and special hardware devices are being designed and manufactured which take advantage of this capability.
- 4. Fault Tolerance via Redundant Information Coding: Partial destruction of a network leads to the corresponding degradation of performance. However, some network capabilities may be retained even with major network damage.

## 1.4 Neural networks versus conventional computers

Neural networks process information in a similar way the human brain does. The network is composed of a large number of highly interconnected processing elements(neurones) working in parallel to solve a specific problem. Neural networks learn by example. They cannot be programmed to perform a specific task. The examples must be selected carefully otherwise useful time is wasted or even worse the network might be functioning incorrectly. The disadvantage is that because the network finds out how to solve the problem by itself, its operation can be unpredictable.

On the other hand, conventional computers use a cognitive approach to problem solving; the way the problem is to solved must be known and stated in small unambiguous instructions. These instructions are then converted to a high level language program and then into machine code that the computer can understand. These machines are totally predictable; if anything goes wrong is due to a software or hardware fault.

Neural networks and conventional algorithmic computers are not in competition but complement each other. There are tasks are more suited to an algorithmic approach like arithmetic operations and tasks that are more suited to neural networks. Even more, a large number of tasks, require systems that use a combination of the two approaches (normally a conventional computer is used to supervise the neural network) in order to perform at maximum efficiency.

*Neural networks do not perform miracles. But if used sensibly they can produce some amazing results.* 

# 2. Human and Artificial Neurones - investigating the similarities

## 2.1 How the Human Brain Learns?

Much is still unknown about how the brain trains itself to process information, so theories abound. In the human brain, a typical neuron collects signals from others through a host of fine structures called *dendrites*. The neuron sends out spikes of electrical activity through a long, thin stand known as an *axon*, which splits into thousands of branches. At the end of each branch, a structure called a *synapse* converts the activity from the axon into electrical effects that inhibit or excite activity from the axon into electrical effects that inhibit or excite activity from the axon into electrical effects that inhibit or excite activity in the connected neurones. When a neuron receives excitatory input that is sufficiently large compared with its inhibitory input, it sends a spike of electrical activity down its axon. Learning occurs by changing the effectiveness of the synapses so that the influence of one neuron on another changes.



## 3. An engineering approach

#### 3.1 A simple neuron

An artificial neuron is a device with many inputs and one output. The neuron has two modes of operation; the training mode and the using mode. In the training mode, the neuron can be trained to fire (or not), for particular input patterns. In the using mode, when a taught input pattern is detected at the input, its associated output becomes the current output. If the input pattern does not belong in the taught list of input patterns, the firing rule is used to determine whether to fire or not.



## 4 Architecture of neural networks

#### 4.2 Feedback networks

Feedback networks (figure 1) can have signals travelling in both directions by introducing loops in the network. Feedback networks are very powerful and can get extremely complicated. Feedback networks are dynamic; their 'state' is changing continuously until they reach an equilibrium point. They remain at the equilibrium point until the input changes and a new equilibrium needs to be found. Feedback architectures are also referred to as interactive or recurrent, although the latter term is often used to denote feedback connections in single-layer organisations.



Figure 4.2 An example of a complicated network

#### 4.4 Perceptrons

The most influential work on neural nets in the 60's went under the heading of 'perceptrons' a term coined by Frank Rosenblatt. The perceptron (figure 4.4) turns out to be an MCP model ( neuron with weighted inputs ) with some additional, fixed, pre--processing. Units labelled A1, A2, Aj, Ap are called association units and their task is to extract specific, localised featured from the input images. Perceptrons mimic the basic idea behind the mammalian visual system. They were mainly used in pattern recognition even though their capabilities extended a lot more.



Figure 4.4

In 1969 Minsky and Papert wrote a book in which they described the limitations of single layer Perceptrons. The impact that the book had was tremendous and caused a lot of neural network researchers to loose their interest. The book was very well written and showed mathematically that *single layer* perceptrons could not do some basic pattern recognition operations like determining the parity of a shape or determining whether a shape is connected or not. What they did not realised, until the 80's, is that given the appropriate training, multilevel perceptrons can do these operations.

## Historical background in detail

The history of neural networks that was described above can be divided into several periods:

- First Attempts: There were some initial simulations using formal logic. McCulloch and Pitts (1943) developed models of neural networks based on their understanding of neurology. These models made several assumptions about how neurons worked. Their networks were based on simple neurons which were considered to be binary devices with fixed thresholds. The results of their model were simple logic functions such as "a or b" and "a and b". Another attempt was by using computer simulations. Two groups (Farley and Clark, 1954; Rochester, Holland, Haibit and Duda, 1956). The first group (IBM reserchers) maintained closed contact with neuroscientists at McGill University. So whenever their models did not work, they consulted the neuroscientists. This interaction established a multidiscilinary trend which continues to the present day.
- 2. Promising & Emerging Technology: Not only was neroscience influential in the development of neural networks, but psychologists and engineers also contributed to the progress of neural network simulations. Rosenblatt (1958) stirred considerable interest and activity in the field when he designed and developed the Perceptron. The Perceptron had three layers with the middle layer known as the association layer. This system could learn to connect or associate a given input to a random output unit. Another system was the ADALINE (ADAptive LInear Element) which was developed in 1960 by Widrow and Hoff (of Stanford University). The ADALINE was an analogue electronic device made from simple components. The method used for learning was different to that of the Perceptron, it employed the Least-Mean-Squares (LMS) learning rule.
- 3. **Period of Frustration & Disrepute:** In 1969 Minsky and Papert wrote a book in which they generalised the limitations of single layer Perceptrons to multilayered systems. In the book they said: "...our intuitive judgment that the extension (to multilayer systems) is sterile". The significant result of their book was to eliminate funding for research with

neural network simulations. The conclusions supported the disenhantment of reserchers in the field. As a result, considerable prejudice against this field was activated.

4. **Innovation:** Although public interest and available funding were minimal, several researchers continued working to develop neuromorphically based computational methods for problems such as pattern recognition.

During this period several paradigms were generated which modern work continues to enhance. Grossberg's (Steve Grossberg and Gail Carpenter in 1988) influence founded a school of thought which explores resonating algorithms. They developed the ART (Adaptive Resonance Theory) networks based on biologically plausible models. Anderson and Kohonen developed associative techniques independent of each other. Klopf (A. Henry Klopf) in 1972, developed a basis for learning in artificial neurons based on a biological principle for neuronal learning called heterostasis.

Werbos (Paul Werbos 1974) developed and used the back-propagation learning method, however several years passed before this approach was popularized. Back-propagation nets are probably the most well known and widely applied of the neural networks today. In essence, the back-propagation net. is a Perceptron with multiple layers, a different thershold function in the artificial neuron, and a more robust and capable learning rule.

Amari (A. Shun-Ichi 1967) was involved with theoretical developments: he published a paper which established a mathematical theory for a learning basis (error-correction method) dealing with adaptive patern classification. While Fukushima (F. Kunihiko) developed a step wise trained multilayered neural network for interpretation of handwritten characters. The original network was published in 1975 and was called the Cognitron.

5. **Today:** Significant progress has been made in the field of neural networks-enough to attract a great deal of attention and fund further research. Advancement beyond current commercial applications appears to be possible, and research is advancing the field on many fronts. Neurally based chips are emerging and applications to complex problems developing. Clearly, today is a period of transition for neural network technology.