
1

RT-level ITC’99 benchmarks and first
ATPG results

Fulvio Corno, Matteo Sonza Reorda, Giovanni Squillero

Politecnico di Torino

Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24

10129 Torino, Italy

http://www.cad.polito.it/

Abstract

Effective high-level ATPG tools are increasingly needed, as an essential element in
the quest for reducing as much as possible the designer work on gate-level
descriptions. We propose a new set of benchmark circuits targeted to researchers
working in the area of RT-level automatic test sequence generation. The developed
benchmarks share the characteristics of typical synthesizable blocks, are available as
both RTL VHDL descriptions and gate level netlists, and allow the evaluation of the
quality of test sequences generated from RT-level descriptions in terms of attained
coverage of gate-level stuck-at faults. Exploiting these benchmarks, we analyzed the
effectiveness of a prototypical ATPG tool (called ARTIST) suitable to generate test
sequences starting from synthesizable RT-level VHDL descriptions. ARTIST
overcomes several limitations inherent with previously proposed approaches,
especially in terms of accepted descriptions and level of automation. Also, ARTIST
was extremely useful in eliminating some bugs in the benchmarks. The results
gathered on the new benchmark suite show that this ATPG was able to generate
sequences whose quality is comparable with those generated by a state-of-the-art
gate-level ATPG, thus showing the feasibility of RT-level test pattern generation. RT-
level ATPGs will make it feasible for designers to evaluate the testability of their
circuits before the synthesis step is performed, and to reduce the cost of the gate-level
ATPG step.

1. Introduction

One of the crucial parameters for speeding-up and making more effective the

evolution process in any technical research area is the availability of suitable and

meaningful benchmarks, since they allow an easier and unbiased evaluation of new

2

ideas, accelerating the process towards the selection of those proposals that can most

effectively be adopted in the industrial practice.

In the area of digital circuit testing, ISCAS’85 [BrFu85] and ISCAS’89 [BBKo89]

gate-level benchmarks were introduced to evaluate combinational and sequential

ATPG tools more than a decade ago. Afterwards, despite their initial purpose, they

have been used for almost all applications in the field of test, and also for assessing

the effectiveness of new methods in other areas, including logic optimization, power

estimation, and partitioning. Today, this kind of benchmarks are still essential to

develop, test and improve CAD algorithms and tools, but are gradually losing their

importance, due to the introduction of new design techniques. For this reason, new

benchmarks need to be developed and distributed, that more closely reflect current

design needs.

Current and future CAD tools must face a new generation of systems-on-chip,

whose complexity increases in several directions, such as:

• the incorporation of large portions of imported blocks, such as memories,

processor cores, IP blocks;

• the presence of particular architectural issues, such as internal busses, test

access logic (boundary scan, scan chains) and test execution logic (BIST),

power management logic, multiple clock frequencies and clock domains;

• the increasing adoption of fault-tolerant structures, now essential even in

consumer electronic products as circuit density increases;

• the higher level of abstraction, since in many cases most of the circuit is

described at the RT-level in Verilog or VHDL languages.

Benchmark circuits donated by industrial entities contain all these issues, but are

largely dissimilar in terms of description levels and styles, adopted libraries, test

strategy, etc., thus creating difficulties for researchers to develop new techniques and

test them over a series of circuit instances. While current design tools cannot ignore

all the complexity aspects, for developing core algorithms a simpler set of

benchmarks is more useful. ATPG algorithms, in particular, as it already happened for

gate-level circuits, are easier to develop, optimize and improve when first applied to

simplified circuits (i.e., single-clock, synchronous, with simple libraries) and later

3

adapted to general circuits by means of both algorithm extensions and circuit/library

transformations. In fact, while the new generation of test tools able to deal with RT-

level descriptions (the last issue in the above list) represents a major conceptual

problem, most of the former issues can be considered separately or added at a later

stage. This paper therefore concentrates on benchmarks described at the RT-level and

ignores the other complexity sources.

The need for test tools working on high-level descriptions has been reported since

more than two decades ago, and it is now an increasingly accepted idea that the

availability of effective high-level test tools would be very beneficial for improving

the design process [ITC99a]. The main resistance to this concept comes from the

unproven belief that the lack of structural information makes it impossible to generate

effective test sequences starting from high-level descriptions. It is true that some fault

effects can only be modeled at the lower abstraction levels, but this may be balanced

by the advantages coming to the high-level ATPG process from working on more

compact descriptions, containing also information about the functional behavior of the

composing modules. Some structural faults may be missed, but a larger set of system

configurations is more readily accessible [SGTT00]. Whether automatic test

generation can effectively be performed on RT-level descriptions is therefore an open

question, which strongly needs a widely accepted suite of neutral but representative

benchmarks. Since the common practice in industrial testing is still to evaluate the

goodness of generated sequences on gate-level descriptions and fault lists, the

availability of both the RT- and the corresponding synthesized gate-level descriptions

is crucial for the success of this suite.

These considerations motivated us to develop a set of RT-level benchmarks and to

contribute it to the ITC’99 benchmark set [ITC99b]. These benchmarks lack many

characteristics of industrial circuits, but offer a wide set of test cases, of different

complexity, with uniform characteristics. At the same time, we started developing an

ATPG environment able to generate test sequences starting from synthesizable RT-

level descriptions. The goal of this effort was to prove that test sequences generated

by RT-level ATPGs can reach a stuck-at fault coverage on the corresponding gate-

level circuits at least comparable with the one obtained by traditional gate-level tools.

RT-level ATPGs can be useful to designers mainly because they allow to identify

hardly testable circuits (or circuit components) early in the design flow (i.e., before

4

the logic synthesis step), while this check is now performed at the gate-level only,

thus requiring a design re-cycle in case of negative result. Moreover, for some circuits

the test sequences generated at the RT-level are so effective, that the gate-level ATPG

step can be completely avoided. For the purpose of this work, we assume that the

circuits do not exploit any Design for Testability mechanism (e.g., full- or partial-

scan).

The main portion of this paper introduces the suite of RT-level benchmarks we

developed, providing general information about their characteristics and about the

standards we adopted for their description. As a second contribution, this paper

outlines the RT-level ATPG we developed, called ARTIST, and reports a first set of

experimental data, that have been gathered using its prototypical implementation;

these results can represent a reference point for those working in the area of high-level

ATPG algorithms, and should contribute to demonstrate that RT-level ATPG and

design validation are feasible.

The paper is organized in the following way: Section 2 describes the Politecnico di

Torino benchmarks, and reports information about both the circuits and the process

followed for their construction. Section 3 first outlines the ARTIST algorithm and the

environment implementing it; then it provides experimental results assessing its

effectiveness on the previously introduced benchmarks. Section 3 also describes the

use we made of the sequences generated by ARTIST for debugging the benchmarks

themselves. Section 4 finally draws some conclusions.

2. Benchmark circuits development

Among the ITC’99 benchmark suite, 22 circuits were contributed by our team at

Politecnico di Torino; these circuits are aimed at researchers developing algorithms

working on RT-level circuits described in VHDL, and consist of VHDL sources in a

standardized format and of the corresponding gate-level netlists and fault lists. The

benchmarks are representative of typical circuits, or circuit parts, that can be

automatically synthesized as a whole with current tools, and share the following

properties:

5

• Circuits are described in synthesizable1 VHDL at the RT-level. No VHDL

packages are used, except IEEE standard logic and arithmetic ones. The code

is in prevalence behavioral, with one or more concurrent processes, but some

circuits also contain structural code. For simpler parsing, no concurrent

statements appear outside processes.

• Gate-level descriptions are available, in simplified flattened EDIF format and

in ISCAS’89 bench format, and have been obtained via logic synthesis over a

library compatible with ISCAS’89 elementary gates.

• Fault lists (complete and collapsed for single stuck-at faults) are available,

generated by an industry-standard tool and in an easily readable format.

• Circuits behave in a purely synchronous way: only one single-phase clock

signal is present, that goes directly to all memory elements without intervening

logic. This constraint simplifies the timing model under which the circuits

operate, but also increases the predictability of the synthesis process.

• A global reset signal is available, that allows a trivial initialization sequence to

be valid for all benchmarks. Differently from gate-level circuits, RT-level

VHDL descriptions always require an initialization sequence to simulate

properly (if simulated from an undetermined state, the VHDL simulation

semantics for behavioral statements does not allow to propagate undefined

values as one would expect while maintaining synthesizability), so the

presence of a global reset signal acts just as a syntactic simplification.

• No internal memories (except register banks), three-state busses, or wired

connections are present.

• The 22 circuits cover wide size and complexity ranges: from 1 to 37 primary

inputs (plus the ubiquitous clock and reset signals), from 1 to 97 primary

outputs, from 1 to 33 VHDL processes, from 68 to 1,613 VHDL lines, from 4

to 3,320 flip-flops, from 46 to 68,752 combinational gates. One of the circuits

(b16) is parametric and can be synthesized to different sizes. The largest

1 when different synthesizers required different styles, we followed Synopsys Design

Compiler description styles. However, we explicitly avoided any compiler specific directive.

6

circuit (b18), with its 68K gates and 430K faults (190K collapsed) is much

larger that the largest ISCAS’89 benchmark.

The development process of the benchmarks is shown in Fig. 1. We started from a

set of VHDL descriptions collected from various sources, and we modified them to

comply with our desired characteristics. The initial VHDL files were taken from

public archives over the Internet and from class works developed by students at our

institution. Larger benchmarks were obtained by structurally combining smaller ones,

or slight variations of smaller ones. Modifications aimed at guaranteeing sincronicity

and at increasing syntactical uniformity, and included adding reset signals, moving or

removing wait statements, adding and/or joining clock signals, eliminating

redundant hierarchy levels, eliminating references to external packages, and other

minor corrections. In this process, the original behavior has been sacrificed in favor of

uniformity of description. The circuits have finally been synthesized with Synopsys

Design Compiler v. 1998.08 over a library composed of 1- to 5-input simple gates and

D-type flip-flops.

The circuits have been publicly available since 1997, and first results were

published in [CPSo97]. However, in early 1999 they have been revised, since some

semantic errors were found thanks to the application of an automatic validation tool

[CMPS00]; such errors were not evident in the first release, since in many cases they

led to out of range conditions on some signals, that occurred only on very particular

conditions. More details about the use of a high level ATPG for design validation are

given in Section 3.5.

7

Internet VHDL
archives

Class works

Collect and
select suitable

Modify for
uniformity and
synthesizability

Combine
variants

Smaller benchmarks

Larger
benchmarks

public
release

stuck-at
fault list

gate-level EDIF
benchmarks

RT-level VHDL
benchmarks

Fault list
generation

Automatic
synthesis

Automatic
validation

Manual
corrections

Figure 1: Benchmark development process

Tab. 1 reports, for each benchmark, the number of primary inputs (PI), primary

outputs (PO), VHDL lines, and VHDL processes. The number of PIs do not include

the clock and reset input signals, existing in all the benchmark circuits. Results after

synthesis are given in terms of combinational gates and flip-flops. Being intended for

the evaluation of purely sequential ATPGs, the circuits do not include any Design for

Testability structure (e.g., full- or partial-scan), although scan can be easily inserted

thanks to the simple clocking structure. To allow the generation of independent and

quantitative measures about circuit testability, we generated complete and collapsed

stuck-at fault lists with the “faultlist” tool of the Synopsys Testgen package v. 3.0.2.

The fault lists, whose size is also indicated in Tab. 1, are distributed with the

benchmarks. The last column finally reports some indication about the inherent

testability of the benchmarks, expressed as the average fault coverage attained by the

application of 10 sequences of 10,000 pseudo random patterns each at the circuit

primary inputs.

8

Circuit VHDL Gate-level Fault list Random
name PI PO #line #proc #gate #FF complete collapsed testability
b01 2 2 110 1 46 5 258 127 98.95
b02 1 1 70 1 28 4 150 64 99.33
b03 4 4 141 1 149 30 822 382 74.82
b04 11 8 102 1 597 66 3,356 1,477 85.88
b05 1 36 332 3 935 34 5,552 2,553 33.44
b06 2 6 128 1 60 9 302 151 95.09
b07 1 8 92 1 420 49 2,404 1,120 58.28
b08 9 4 89 1 167 21 918 439 98.17
b09 1 1 103 1 159 28 900 417 87.49
b10 11 6 167 1 189 17 1,054 468 90.59
b11 7 6 118 1 481 31 2,868 1,308 91.81
b12 5 6 569 4 1,036 121 6,084 2,777 21.21
b13 10 10 296 5 339 53 1818 835 56.55
b14 32 54 509 1 4,775 245 28,990 12,643 81.25
b15 36 70 671 3 8,893 449 55,568 23,316 13.69
b16 M+1 1 68 N f(N,M) N f(N,M) f(N,M) f(N,M)
b17 37 97 810 15 24,194 1,415 152,808 65,324 8.83
b18 36 23 1,424 33 68,752 3,320 429,712 188,458 1.34
b20 32 22 1,085 3 9,419 490 57,794 25,274 81.91
b21 32 22 1,089 3 9,803 490 60,052 26,516 85.20
b22 32 22 1,613 4 15,071 735 92,536 40,200 81.30

Table 1: Benchmark characteristics

To help researchers understand their results with the benchmarks, Tab. 2 shows a

hint about the circuit function of the original VHDL description. However, while the

benchmarks are syntactically correct and their simulation does not produce any error,

due to their development process, and there is no guarantee that current VHDL

descriptions are functionally meaningful.

Since their first appearance, people from over 170 institutions2 already downloaded

the benchmarks set from our web site, and some published results are beginning to

appear [ITC99b]. We encourage researchers to download [Benc99] and use the

circuits, and possibly to generate new ones with the same characteristics in order to

increase the availability of test cases to the research community. Furthermore, if

authors notify us of the publication of some result concerning the benchmarks, we

will maintain and publish a list of pointers to such references.

2 estimated from the different domain names on the web access log

9

Circuit
name Original function

b01 Finite state machine (FSM) comparing serial flows
b02 FSM that recognizes BCD numbers
b03 Resource arbiter
b04 Compute min and max
b05 Elaborate the contents of a memory
b06 Interrupt handler
b07 Count points on a straight line
b08 Find inclusions in sequences of numbers
b09 Serial to serial converter
b10 Voting system
b11 Scramble string with variable cipher
b12 1-player game (guess a sequence)
b13 Interface to meteo sensors
b14 Viper processor (subset)
b15 80386 processor (subset)
b16 Hard to initialize circuit (parametric)
b17 Three copies of b15
b18 Two copies of b14 and 2 of b17
b20 A copy of b14 and a modified version of b14
b21 Two copies of b14
b22 A copy of b14 and two modified versions of b14

Table 2: Original functions

3. The ARTIST ATPG system

In this Section we briefly overview the ARTIST (Automatic RT-level Input

Sequence generator for Test purposes) test pattern generation system. The goal of

ARTIST is to implement an RT-level ATPG, i.e., a tool able to generate input

sequences, starting from a synthesizable RT-level description, that attain a high fault

coverage with respect to the standard stuck-at fault list when fault simulated on the

corresponding gate-level description. The reported experimental results, together with

the research results recently presented in the literature, support the claim that RT-level

test sequence generation is now feasible.

Although other proposals exist in the literature to attack similar problems, ARTIST

adopts an original solution compared to previous approaches. Most previously

published papers on the subject (see for example [MAHo96] [ChKr96] [FFSc98]) are

10

much less general in terms of accepted circuit descriptions, and much more complex

to use. Due to the approach it is based on, ARTIST can produce sequences for more

general synthesizable VHDL description, with few limitations in size, complexity, or

characteristics, and does not require any effort to the designer for re-modeling the

circuit or extracting special information from it. ARTIST shares some common ideas

with the RAGE tool [CPSR97], but, when compared to RAGE, ARTIST is much

more powerful both in terms of accepted descriptions (most of the limitations existing

in RAGE have been removed) and of quality of the produced results. The reader

interested in further details about the ARTIST algorithm can refer to [CSSq00]

3.1. System Overview

The ARTIST system implements a simulation-based approach, inspired by the

success of gate-level ATPG based on Genetic Algorithms. Some (initially random)

input sequences are simulated, and their coverage characteristics are iteratively

improved by analyzing the simulation trace.

The system is able to process structural and behavioral synthesizable VHDL

descriptions at the RT-level and is composed of four main components (Figure 2):

• a Genetic Algorithm (GA) whose goal is to cultivate test sequences, improving

their value under the selected metric. In this context, a sequence is a series of

vectors, to be applied at consecutive clock cycles;

• a Commercial VHDL Simulator that simulates the sequences computed by the

GA;

• an Analyzer that examines the VHDL control and data dependencies to

identify basic blocks (i.e., jump-free consecutive sequences of statements), to

compute control and data dependencies, correlation probabilities, and to

generate the list of high-level faults to cover;

• a Code Instrumentation tool that modifies the original VHDL description by

inserting always-false assert statements, that allow the GA to determine the

actual sequence of executed basic blocks.

11

In order to improve sequences, the GA analyzes the trace of the executed

instructions and computes a fitness function that quantifies the goodness of each

sequence. Such fitness function is based on the list of executed basic blocks and on

the correlation probabilities among basic blocks.

ANALYZER INSTRUMENTER

GENETIC
ALGORITHM

COMMERCIAL
SIMULATOR

trace

seqs

VHDL

Figure 2: ARTIST structure

ARTIST adopts a testability metric derived from statement coverage. The metric

was enhanced for observability to lead the ATPG first to excite (i.e., execute) each

basic block in the description, then to observe it (i.e., propagate to some primary

output the values assigned in the block). The criteria used for observability are

detailed in Section 3.2. The ARTIST algorithm implements two different phases:

• In the first phase all basic blocks are considered simultaneously. The goal is to

generate a set of sequences S that activate most of the blocks. They are used to

initialize the genetic population in the second phase and are not necessarily

included in the final test set. The fitness function is the ratio of activated

blocks:

blockstot
SS

_
)_blocks(activated)fitness(=

• In the second phase each block is targeted separately. For each target block T,

the goal is to generate a sequence S able to test it. In this phase the activated

blocks are weighted by their correlation probability with the target (term “+O”

takes into account observability and is described in Section 3.2):

OTbTS
Sb

+= ∑
∈)(bbactivated_

),n(correlatio),fitness(

The algorithm stops when all target basic blocks have been considered.

12

3.2. Observability issues

When RT-level test pattern generation is targeted at design validation tasks,

traditional branch coverage metrics are usually considered satisfactory. Even if

moving to more complex metrics, such as path coverage, the main goal during design

verification is just to excite all behaviors, since their observation is guaranteed thanks

to the simulation environment, where the designer can inspect all internal values of

the design.

However, when dealing with production testing, but also for black box verification,

the effects of observability can not be neglected [DGKe96]: all activated instructions

must be observed at the circuit primary outputs. In the ARTIST framework, the

generated sequences must observe a block after having executed it; to lead the GA to

this goal we add to the fitness equation the term “+O,” that measures how close the

sequence is to observe the target.

The exact computation of this term would require complete integration with an

RT-level fault simulator. Since satisfactory commercial fault simulation solutions do

not exist yet, and due to the inherent overhead introduced by fault simulation of

VHDL code, we approximate the observability term with a computational cost as

close as possible to that of simulating the fault-free system. A good example of this

approach is in [FADe99], where analysis of data dependencies across conditional

statements helps estimating the set of signals affected by an assignment. In ARTIST,

we implemented an observability strategy more approximate than the one proposed in

[DGKe96] and [FADe99] due to the looser integration with the simulator in our case.

ARTIST explicitly traces the set of variables and signals to which the target fault

has been propagated by analyzing the simulation trace, with the knowledge of the data

transfers performed in each basic block.

This analysis is exact, except for dependencies where a variable is assigned

depending on a conditional, where we optimistically assume that variables in

conditional expressions are observed on all signals and variables assigned within the

conditioned blocks.

Finally, the value of the term “+O” is the weighted sum of the execution counts of

the variables or signals to which the target fault effects have been propagated.

13

Weights are determined as the distance between the statement and the nearest primary

output. A more detailed discussion about the observability term in ARTIST can be

found in [CSSq00].

3.3. Implementation Details

The above described method has been implemented in a prototypical environment

which consists of a mix of commercial and in-house developed tools.

The preliminary VHDL code analysis process exploits the GraphGen option of the

LEDA LVS toolkit. For simulating RT-level descriptions we resort to the V-System

5.3 VHDL simulator by Model Technology. The code instrumentation process uses

the reverse analysis option of the LVS toolkit. The implementation consists of about

4,700 lines of C code for VHDL code analysis and instrumentation, linked to the

LEDA LPI interface, and of 3,500 lines of C code for the Genetic Algorithm and the

interface to the simulator.

3.4. Experimental Results for ATPG

In this sub-section we report experimental data gathered by running ARTIST on

the benchmarks and by evaluating the ability of the generated sequences in covering

the stuck-at faults on the corresponding gate-level descriptions.

The parameters of the Genetic Algorithm in both phases were set as follows. The

genetic population is composed of 50 individuals and in each generation 30 new

sequences are first generated, then selection is performed on the whole set of

individuals. Individuals are selected for reproduction using their linearized fitness. In

30% of the cases, the new individual is built mutating a single parent: the original

sequence can be shortened, or enlarged, or some bits may be flipped. In 70% of the

cases, the new individual is built mating two different parents: the offspring sequence

can inherit the beginning from one parent and the end from the other, or some entire

bit column from each parent.

Table 3 reports the results obtained by running ARTIST on a Sun Ultra 5 working

at 333 MHz with 256MB memory. For allowing an easy evaluation of the

14

effectiveness of the generated sequences, we reported in the table also the results

obtained by running a state-of-the-art commercial gate-level ATPG on the gate-level

version of the same benchmarks. The first column reports the CPU time of the ATPG

run. The second column shows the attained fault coverage at the gate-level using the

stuck-at fault model. When ARTIST is considered, this means that first the tool is run

on the RT-level description, then the produced sequences are fault simulated on the

corresponding gate-level description to obtain their percent stuck-at fault coverage.

The third column reports the length of the test in clock cycles.

The results show that:

• ARTIST generates test sequences whose gate-level fault coverage is generally

comparable with that obtained by the gate-level ATPG; there are a few circuits

for which the latter performs substantially better (e.g., b08, b09, and b14), but

there are others for which the reverse is true (e.g., b11, b12, b13, b15, b17 and

b20 through b22). By analyzing the benchmarks which proved to be critical

for ARTIST, we found that their test requires very specific sequences, that can

hardly be found using a genetic approach such as the ARTIST one.

• For the smallest circuits, ARTIST has much higher CPU time requirements

than the gate-level ATPG, while for the largest benchmarks the CPU time

requirements of the two tools are comparable.

• The length of the sequences generated by ARTIST is higher than those

generated by the gate-level ATPG. This is mainly due to the fact that no test

compaction mechanism is currently implemented, not even a basic fault

dropping one.

According to these results we can conclude that, starting from RT-level

descriptions, ARTIST is generally able to produce test sequences whose quality is

comparable with that of the sequences generated by a state-of-the-art gate-level

ATPG, thus reducing the cost of running a gate-level ATPG step.

15

ARTIST Gate-level ATPG Circ
CPU FC% LEN CPU FC% LEN

b01 4,118 100.00 1,061 < 1 100.00 129
b02 1,731 99.33 940 < 1 99.33 60
b03 5,131 74.33 374 5,356 74.82 245
b04 6,905 89.42 427 2,359 91.51 558
b05 33,393 33.50 2,800 51,467 33.38 223
b06 2,315 97.02 62 < 1 97.35 118
b07 2,251 57.53 461 33,415 57.28 148
b08 2,106 86.27 329 12 98.15 582
b09 9,054 81.33 1,187 3,624 90.56 967
b10 10,851 90.42 586 919 92.22 416
b11 5,092 85.98 532 24,198 81.00 228
b12 67,575 45.99 5,541 77,297 21.17 276
b13 43,450 68.37 4,538 23,625 59.19 300
b14 55,240 79.65 4,743 14,014 95.04 7,728
b15 60,990 31.96 2,733 50,822 16.26 66
b17 14,475 15.50 1,197 38,245 2.07 16
b18 278,338 1.50 279 >500,000 0.62 10
b20 128,193 79.99 7,825 29,961 26.57 112
b21 74,845 82.61 6,376 46,202 55.14 148
b22 149,544 71.59 2,582 31,323 55.79 102

Table 3: Gate-level quality of RT-level generated sequences.

3.5. Exploiting RT-level sequences for design validation

At the RT-level, there is a strong link between test pattern generation for physical

faults and pattern generation for functional validation. The fault detection metric used

in ARTIST subsumes branch coverage, that is frequently used for design validation

and software testing [Beiz90]. Moreover, ARTIST takes into account observability,

which has been proved to be crucial for effective test bench generation [TAZa99]. For

these reasons, sequences generated by ARTIST can fruitfully be exploited during

design validation, and they proved to be very effective in pinpointing critical sections

in the VHDL code, from the syntactical and semantic points of view.

In particular, ARTIST is able, when generating test patterns, to identify the VHDL

entities, processes, or statements that are poorly controllable or observable, and those

for which it was not able to generate any test pattern: this information is vital for

design validation. In many cases, while testing ARTIST, we found that the statements

that it was not able to cover were effectively unreachable: we discovered some design

16

errors in our benchmarks while generating test patterns. As an example, we found that

a common design error corresponds to missing or incorrect bounds checking: in this

case ARTIST found some overflow conditions (mainly sums or increments that were

not truncated nor wrapped to the allowed range of values) that escaped manual

simulation. These conditions allowed us to correct the ITC’99 VHDL benchmarks,

that in their previous release contained those bugs. Further details about the usage of

the ARTIST system for design validation can be found in [CMPS00].

4. Conclusions

We presented the Politecnico di Torino circuits belonging to the ITC’99

benchmark suite. These circuits are mainly intended to support the research in the area

of high-level ATPG, and correspond to synthesizable RT-level descriptions of

different size, complexity, and type. For ease of development of new test tools at the

RT-level, the benchmarks have been standardized in terms of description styles and

language, and do not contain rarely used statements nor system-level structures. The

VHDL language has been adopted, and for every circuit the corresponding gate-level

description and fault list are also available.

Exploiting these circuits, we evaluated a new RT-level ATPG named ARTIST,

based on a Genetic Algorithm interacting with a commercial VHDL simulator.

Experimental results on the benchmarks show that the generated sequences reach a

percent coverage of the gate-level stuck-at faults comparable with that obtained by a

state-of-the-art gate-level ATPG. This means that RT-level ATPG is now feasible,

and designers can exploit it to evaluate the testability of their descriptions before the

synthesis step is performed, thus significantly improving the effectiveness of the

whole design flow.

Although ARTIST has been developed under the hypothesis that no Design for

Testability technique is adopted (i.e., a purely sequential ATPG approach is followed)

the method can be fruitfully extended to the case of partial-scan circuits, or to circuits

including some BIST portion. Moreover, the proposed ATPG technique can be

successfully adopted for other purposes outside the test area, e.g., for generating test

benches for design validation or for verifying properties of the design (model

checking).

17

5. References

[BBKo89] F.Brglez, D.Bryan, K.Kozminski: Combinatorial Profiles of Sequential

Benchmark Circuits, Proc. IEEE Int. Symposium on Circuits and

Systems, 1989, pp. 1929-1934

[Beiz90] B. Beizer, Software Testing Techniques (2nd ed.), Van Nostrand

Rheinold, New York, 1990

[Benc99] Politecnico di Torino ITC’99 benchkmarks, downloadable at the URL

http://www.cad.polito.it/tools/itc99.html

[BrFu85] F. Brglez, H. Fujiwara: A neutral netlist of 10 combinational benchmark

circuits and a target translator in Fortran, Proc. IEEE Int. Symposium

on Circuits And Systems, June 1985

[ChKr96] K.-T. Cheng, A.S. Khrishnakumar, “Automatic Generation of Functional

Vectors Using the Extended Finite State Machine Model,” ACM Trans.

On Design Automation of Electronic Systems, Vol. 1, No. 1, Jan. 1996,

pp. 57-79

[CPSo97] F. Corno, P. Prinetto, M. Sonza Reorda, “Testability analysis and ATPG

on behavioral RT-level VHDL,” Proceedings IEEE International Test

Conference, 1997, pp. 753-759

[CMPS00] F. Corno, A. Manzone, A. Pincetti, M. Sonza Reorda, G. Squillero,

Automatic Test Bench Generation for Validation of RT-level

Descriptions: an Industrial Experience, DATE-2000: IEEE Design,

Automation and Test in Europe, Paris (F), March 2000, pp. 385-389

[CSSq00] F. Corno, M. Sonza Reorda, G. Squillero, High-Level Observability for

Effective High-Level ATPG, VTS-2000: 18th IEEE VLSI Test

Symposium, Montreal (CA), May 2000, pp. 411-416

[DGKe96] S. Devadas, A. Ghosh, K. Keutzer, “An Observability-Based Code

Coverage Metric for Functional Simulation,” Proceedings IEEE/ACM

International Conference on Computer Aided Design, 1996

18

[FADe99] F. Fallah, P. Ashar, S. Devadas, “Simulation Vector Generation from

HDL Descriptions for Observability-Enhanced Statement Coverage,”

Proceedings 35th Design Automation Conference, 1999, pp. 666-671

[FFSc98] F. Ferrandi, F. Fummi, D. Sciuto, “Implicit Test Generation for

Behavioral VHDL Models,” Proceedings IEEE International. Test

Conference, 1998

[ITC99a] High Time for High-Level Test Generation, Panel at ITC99:

International Test Conference, 1999, pp. 1112-1119

[ITC99b] ITC’99 Benchmark Circuits - Preliminary Results, Panel at ITC99:

International Test Conference, 1999, pp. 1125-1130

[MAHo96] D. Moundanos, J. A. Abraham, Y. V. Hoskote, “A Unified Framework

for Design Validation and Manifacturing Test,” Proceedings IEEE

International Test Conference, 1996, pp. 875-884

[SGTT00] M. B. Santos, F. M. Gonçalves, I. C. Teixeira, J. P. Teixeira, RTL-based

Functional Test Generation For High Defect Coverage in Digital SoCs,

IEEE European Test Workshop, Cascais (P), May 2000

[TAZa99] P. A. Thaker, V. D. Agrawal, M. E. Zaghloul, “Validation Vector Grade

(VVG): A New Coverage Metric fo Validation and Test,” Proceedings

15th IEEE VLSI Test Symposium, 1999, pp. 182-188

