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Abstract 

Effective high-level ATPG tools are increasingly needed, as an essential element in 
the quest for reducing as much as possible the designer work on gate-level 
descriptions. We propose a new set of benchmark circuits targeted to researchers 
working in the area of RT-level automatic test sequence generation. The developed 
benchmarks share the characteristics of typical synthesizable blocks, are available as 
both RTL VHDL descriptions and gate level netlists, and allow the evaluation of the 
quality of test sequences generated from RT-level descriptions in terms of attained 
coverage of gate-level stuck-at faults. Exploiting these benchmarks, we analyzed the 
effectiveness of a prototypical ATPG tool (called ARTIST) suitable to generate test 
sequences starting from synthesizable RT-level VHDL descriptions. ARTIST 
overcomes several limitations inherent with previously proposed approaches, 
especially in terms of accepted descriptions and level of automation. Also, ARTIST 
was extremely useful in eliminating some bugs in the benchmarks. The results 
gathered on the new benchmark suite show that this ATPG was able to generate 
sequences whose quality is comparable with those generated by a state-of-the-art 
gate-level ATPG, thus showing the feasibility of RT-level test pattern generation. RT-
level ATPGs will make it feasible for designers to evaluate the testability of their 
circuits before the synthesis step is performed, and to reduce the cost of the gate-level 
ATPG step. 

1. Introduction 

One of the crucial parameters for speeding-up and making more effective the 

evolution process in any technical research area is the availability of suitable and 

meaningful benchmarks, since they allow an easier and unbiased evaluation of new 
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ideas, accelerating the process towards the selection of those proposals that can most 

effectively be adopted in the industrial practice. 

In the area of digital circuit testing, ISCAS’85 [BrFu85] and ISCAS’89 [BBKo89] 

gate-level benchmarks were introduced to evaluate combinational and sequential 

ATPG tools more than a decade ago. Afterwards, despite their initial purpose, they 

have been used for almost all applications in the field of test, and also for assessing 

the effectiveness of new methods in other areas, including logic optimization, power 

estimation, and partitioning. Today, this kind of benchmarks are still essential to 

develop, test and improve CAD algorithms and tools, but are gradually losing their 

importance, due to the introduction of new design techniques. For this reason, new 

benchmarks need to be developed and distributed, that more closely reflect current 

design needs. 

Current and future CAD tools must face a new generation of systems-on-chip, 

whose complexity increases in several directions, such as: 

• the incorporation of large portions of imported blocks, such as memories, 

processor cores, IP blocks; 

• the presence of particular architectural issues, such as internal busses, test 

access logic (boundary scan, scan chains) and test execution logic (BIST), 

power management logic, multiple clock frequencies and clock domains; 

• the increasing adoption of fault-tolerant structures, now essential even in 

consumer electronic products as circuit density increases; 

• the higher level of abstraction, since in many cases most of the circuit is 

described at the RT-level in Verilog or VHDL languages. 

Benchmark circuits donated by industrial entities contain all these issues, but are 

largely dissimilar in terms of description levels and styles, adopted libraries, test 

strategy, etc., thus creating difficulties for researchers to develop new techniques and 

test them over a series of circuit instances. While current design tools cannot ignore 

all the complexity aspects, for developing core algorithms a simpler set of 

benchmarks is more useful. ATPG algorithms, in particular, as it already happened for 

gate-level circuits, are easier to develop, optimize and improve when first applied to 

simplified circuits (i.e., single-clock, synchronous, with simple libraries) and later 
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adapted to general circuits by means of both algorithm extensions and circuit/library 

transformations. In fact, while the new generation of test tools able to deal with RT-

level descriptions (the last issue in the above list) represents a major conceptual 

problem, most of the former issues can be considered separately or added at a later 

stage. This paper therefore concentrates on benchmarks described at the RT-level and 

ignores the other complexity sources. 

The need for test tools working on high-level descriptions has been reported since 

more than two decades ago, and it is now an increasingly accepted idea that the 

availability of effective high-level test tools would be very beneficial for improving 

the design process [ITC99a]. The main resistance to this concept comes from the 

unproven belief that the lack of structural information makes it impossible to generate 

effective test sequences starting from high-level descriptions. It is true that some fault 

effects can only be modeled at the lower abstraction levels, but this may be balanced 

by the advantages coming to the high-level ATPG process from working on more 

compact descriptions, containing also information about the functional behavior of the 

composing modules. Some structural faults may be missed, but a larger set of system 

configurations is more readily accessible [SGTT00]. Whether automatic test 

generation can effectively be performed on RT-level descriptions is therefore an open 

question, which strongly needs a widely accepted suite of neutral but representative 

benchmarks. Since the common practice in industrial testing is still to evaluate the 

goodness of generated sequences on gate-level descriptions and fault lists, the 

availability of both the RT- and the corresponding synthesized gate-level descriptions 

is crucial for the success of this suite. 

These considerations motivated us to develop a set of RT-level benchmarks and to 

contribute it to the ITC’99 benchmark set [ITC99b]. These benchmarks lack many 

characteristics of  industrial circuits, but offer a wide set of test cases, of different 

complexity, with uniform characteristics. At the same time, we started developing an 

ATPG environment able to generate test sequences starting from synthesizable RT-

level descriptions. The goal of this effort was to prove that test sequences generated 

by RT-level ATPGs can reach a stuck-at fault coverage on the corresponding gate-

level circuits at least comparable with the one obtained by traditional gate-level tools. 

RT-level ATPGs can be useful to designers mainly because they allow to identify 

hardly testable circuits (or circuit components) early in the design flow (i.e., before 
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the logic synthesis step), while this check is now performed at the gate-level only, 

thus requiring a design re-cycle in case of negative result. Moreover, for some circuits 

the test sequences generated at the RT-level are so effective, that the gate-level ATPG 

step can be completely avoided. For the purpose of this work, we assume that the 

circuits do not exploit any Design for Testability mechanism (e.g., full- or partial-

scan). 

The main portion of this paper introduces the suite of RT-level benchmarks we 

developed, providing general information about their characteristics and about the 

standards we adopted for their description. As a second contribution, this paper 

outlines the RT-level ATPG we developed, called ARTIST, and reports a first set of 

experimental data, that have been gathered using its prototypical implementation; 

these results can represent a reference point for those working in the area of high-level 

ATPG algorithms, and should contribute to demonstrate that RT-level ATPG and 

design validation are feasible. 

The paper is organized in the following way: Section 2 describes the Politecnico di 

Torino benchmarks, and reports information about both the circuits and the process 

followed for their construction. Section 3 first outlines the ARTIST algorithm and the 

environment implementing it; then it provides experimental results assessing its 

effectiveness on the previously introduced benchmarks. Section 3 also describes the 

use we made of the sequences generated by ARTIST for debugging the benchmarks 

themselves. Section 4 finally draws some conclusions. 

2. Benchmark circuits development 

Among the ITC’99 benchmark suite, 22 circuits were contributed by our team at 

Politecnico di Torino; these circuits are aimed at researchers developing algorithms 

working on RT-level circuits described in VHDL, and consist of VHDL sources in a 

standardized format and of the corresponding gate-level netlists and fault lists. The 

benchmarks are representative of typical circuits, or circuit parts, that can be 

automatically synthesized as a whole with current tools, and share the following 

properties: 
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• Circuits are described in synthesizable1 VHDL at the RT-level. No VHDL 

packages are used, except IEEE standard logic and arithmetic ones. The code 

is in prevalence behavioral, with one or more concurrent processes, but some 

circuits also contain structural code. For simpler parsing, no concurrent 

statements appear outside processes. 

• Gate-level descriptions are available, in simplified flattened EDIF format and 

in ISCAS’89 bench format, and have been obtained via logic synthesis over a 

library compatible with ISCAS’89 elementary gates. 

• Fault lists (complete and collapsed for single stuck-at faults) are available, 

generated by an industry-standard tool and in an easily readable format. 

• Circuits behave in a purely synchronous way: only one single-phase clock 

signal is present, that goes directly to all memory elements without intervening 

logic. This constraint simplifies the timing model under which the circuits 

operate, but also increases the predictability of the synthesis process. 

• A global reset signal is available, that allows a trivial initialization sequence to 

be valid for all benchmarks. Differently from gate-level circuits, RT-level 

VHDL descriptions always require an initialization sequence to simulate 

properly (if simulated from an undetermined state, the VHDL simulation 

semantics for behavioral statements does not allow to propagate undefined 

values as one would expect while maintaining synthesizability), so the 

presence of a global reset signal acts just as a syntactic simplification. 

• No internal memories (except register banks), three-state busses, or wired 

connections are present. 

• The 22 circuits cover wide size and complexity ranges: from 1 to 37 primary 

inputs (plus the ubiquitous clock and reset signals), from 1 to 97 primary 

outputs, from 1 to 33 VHDL processes, from 68 to 1,613 VHDL lines, from 4 

to 3,320 flip-flops, from 46 to 68,752 combinational gates. One of the circuits 

(b16) is parametric and can be synthesized to different sizes. The largest 

                                                

1 when different synthesizers required different styles, we followed Synopsys Design 

Compiler description styles. However, we explicitly avoided any compiler specific directive. 
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circuit (b18), with its 68K gates and 430K faults (190K collapsed) is much 

larger that the largest ISCAS’89 benchmark. 

The development process of the benchmarks is shown in Fig. 1. We started from a 

set of VHDL descriptions collected from various sources, and we modified them to 

comply with our desired characteristics. The initial VHDL files were taken from 

public archives over the Internet and from class works developed by students at our 

institution. Larger benchmarks were obtained by structurally combining smaller ones, 

or slight variations of smaller ones. Modifications aimed at guaranteeing sincronicity 

and at increasing syntactical uniformity, and included adding reset signals, moving or 

removing wait statements, adding and/or joining clock signals, eliminating 

redundant hierarchy levels, eliminating references to external packages, and other 

minor corrections. In this process, the original behavior has been sacrificed in favor of 

uniformity of description. The circuits have finally been synthesized with Synopsys 

Design Compiler v. 1998.08 over a library composed of 1- to 5-input simple gates and 

D-type flip-flops. 

The circuits have been publicly available since 1997, and first results were 

published in [CPSo97]. However, in early 1999 they have been revised, since some 

semantic errors were found thanks to the application of an automatic validation tool 

[CMPS00]; such errors were not evident in the first release, since in many cases they 

led to out of range conditions on some signals, that occurred only on very particular 

conditions. More details about the use of a high level ATPG for design validation are 

given in Section 3.5. 
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Figure 1: Benchmark development process 

Tab. 1 reports, for each benchmark, the number of primary inputs (PI), primary 

outputs (PO), VHDL lines, and VHDL processes. The number of PIs do not include 

the clock and reset input signals, existing in all the benchmark circuits. Results after 

synthesis are given in terms of combinational gates and flip-flops. Being intended for 

the evaluation of purely sequential ATPGs, the circuits do not include any Design for 

Testability structure (e.g., full- or partial-scan), although scan can be easily inserted 

thanks to the simple clocking structure. To allow the generation of independent and 

quantitative measures about circuit testability, we generated complete and collapsed 

stuck-at fault lists with the “faultlist” tool of the Synopsys Testgen package v. 3.0.2. 

The fault lists, whose size is also indicated in Tab. 1, are distributed with the 

benchmarks. The last column finally reports some indication about the inherent 

testability of the benchmarks, expressed as the average fault coverage attained by the 

application of 10 sequences of 10,000 pseudo random patterns each at the circuit 

primary inputs. 
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Circuit VHDL Gate-level Fault list Random 
name PI PO #line #proc #gate #FF complete collapsed testability 
b01 2 2 110 1 46 5 258 127 98.95 
b02 1 1 70 1 28 4 150 64 99.33 
b03 4 4 141 1 149 30 822 382 74.82 
b04 11 8 102 1 597 66 3,356 1,477 85.88 
b05 1 36 332 3 935 34 5,552 2,553 33.44 
b06 2 6 128 1 60 9 302 151 95.09 
b07 1 8 92 1 420 49 2,404 1,120 58.28 
b08 9 4 89 1 167 21 918 439 98.17 
b09 1 1 103 1 159 28 900 417 87.49 
b10 11 6 167 1 189 17 1,054 468 90.59 
b11 7 6 118 1 481 31 2,868 1,308 91.81 
b12 5 6 569 4 1,036 121 6,084 2,777 21.21 
b13 10 10 296 5 339 53 1818 835 56.55 
b14 32 54 509 1 4,775 245 28,990 12,643 81.25 
b15 36 70 671 3 8,893 449 55,568 23,316 13.69 
b16 M+1 1 68 N f(N,M) N f(N,M) f(N,M) f(N,M) 
b17 37 97 810 15 24,194 1,415 152,808 65,324 8.83 
b18 36 23 1,424 33 68,752 3,320 429,712 188,458 1.34 
b20 32 22 1,085 3 9,419 490 57,794 25,274 81.91 
b21 32 22 1,089 3 9,803 490 60,052 26,516 85.20 
b22 32 22 1,613 4 15,071 735 92,536 40,200 81.30 

Table 1: Benchmark characteristics 

To help researchers understand their results with the benchmarks, Tab. 2 shows a 

hint about the circuit function of the original VHDL description. However, while the 

benchmarks are syntactically correct and their simulation does not produce any error, 

due to their development process, and there is no guarantee that current VHDL 

descriptions are functionally meaningful. 

Since their first appearance, people from over 170 institutions2 already downloaded 

the benchmarks set from our web site, and some published results are beginning to 

appear [ITC99b]. We encourage researchers to download [Benc99] and use the 

circuits, and possibly to generate new ones with the same characteristics in order to 

increase the availability of test cases to the research community. Furthermore, if 

authors notify us of the publication of some result concerning the benchmarks, we 

will maintain and publish a list of pointers to such references. 

                                                

2 estimated from the different domain names on the web access log 
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Circuit 
name Original function 

b01 Finite state machine (FSM) comparing serial flows 
b02 FSM that recognizes BCD numbers 
b03 Resource arbiter 
b04 Compute min and max 
b05 Elaborate the contents of a memory 
b06 Interrupt handler 
b07 Count points on a straight line 
b08 Find inclusions in sequences of numbers 
b09 Serial to serial converter 
b10 Voting system 
b11 Scramble string with variable cipher 
b12 1-player game (guess a sequence) 
b13 Interface to meteo sensors 
b14 Viper processor (subset) 
b15 80386 processor (subset) 
b16 Hard to initialize circuit (parametric) 
b17 Three copies of b15 
b18 Two copies of b14 and 2 of b17 
b20 A copy of b14 and a modified version of b14 
b21 Two copies of b14 
b22 A copy of b14 and two modified versions of b14 

Table 2: Original functions 

3. The ARTIST ATPG system 

In this Section we briefly overview the ARTIST (Automatic RT-level Input 

Sequence generator for Test purposes) test pattern generation system. The goal of 

ARTIST is to implement an RT-level ATPG, i.e., a tool able to generate input 

sequences, starting from a synthesizable RT-level description, that attain a high fault 

coverage with respect to the standard stuck-at fault list when fault simulated on the 

corresponding gate-level description. The reported experimental results, together with 

the research results recently presented in the literature, support the claim that RT-level 

test sequence generation is now feasible. 

Although other proposals exist in the literature to attack similar problems, ARTIST 

adopts an original solution compared to previous approaches. Most previously 

published papers on the subject (see for example [MAHo96] [ChKr96] [FFSc98]) are 
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much less general in terms of accepted circuit descriptions, and much more complex 

to use. Due to the approach it is based on, ARTIST can produce sequences for more 

general synthesizable VHDL description, with few limitations in size, complexity, or 

characteristics, and does not require any effort to the designer for re-modeling the 

circuit or extracting special information from it. ARTIST shares some common ideas 

with the RAGE tool [CPSR97], but, when compared to RAGE, ARTIST is much 

more powerful both in terms of accepted descriptions (most of the limitations existing 

in RAGE have been removed) and of quality of the produced results. The reader 

interested in further details about the ARTIST algorithm can refer to [CSSq00] 

3.1. System Overview 

The ARTIST system implements a simulation-based approach, inspired by the 

success of gate-level ATPG based on Genetic Algorithms. Some (initially random) 

input sequences are simulated, and their coverage characteristics are iteratively 

improved by analyzing the simulation trace. 

The system is able to process structural and behavioral synthesizable VHDL 

descriptions at the RT-level and is composed of four main components (Figure 2): 

• a Genetic Algorithm (GA) whose goal is to cultivate test sequences, improving 

their value under the selected metric. In this context, a sequence is a series of 

vectors, to be applied at consecutive clock cycles; 

• a Commercial VHDL Simulator that simulates the sequences computed by the 

GA; 

• an Analyzer that examines the VHDL control and data dependencies to 

identify basic blocks (i.e., jump-free consecutive sequences of statements), to 

compute control and data dependencies, correlation probabilities, and to 

generate the list of high-level faults to cover; 

• a Code Instrumentation tool that modifies the original VHDL description by 

inserting always-false assert statements, that allow the GA to determine the 

actual sequence of executed basic blocks. 
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In order to improve sequences, the GA analyzes the trace of the executed 

instructions and computes a fitness function that quantifies the goodness of each 

sequence. Such fitness function is based on the list of executed basic blocks and on 

the correlation probabilities among basic blocks.  
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Figure 2: ARTIST structure 

ARTIST adopts a testability metric derived from statement coverage. The metric 

was enhanced for observability to lead the ATPG first to excite (i.e., execute) each 

basic block in the description, then to observe it (i.e., propagate to some primary 

output the values assigned in the block). The criteria used for observability are 

detailed in Section 3.2. The ARTIST algorithm implements two different phases:  

• In the first phase all basic blocks are considered simultaneously. The goal is to 

generate a set of sequences S that activate most of the blocks. They are used to 

initialize the genetic population in the second phase and are not necessarily 

included in the final test set. The fitness function is the ratio of activated 

blocks: 

blockstot
SS

_
)_blocks(activated)fitness( =  

• In the second phase each block is targeted separately. For each target block T, 

the goal is to generate a sequence S able to test it. In this phase the activated 

blocks are weighted by their correlation probability with the target (term “+O” 

takes into account observability and is described in Section 3.2): 

OTbTS
Sb

+= ∑
∈ )(bbactivated_

),n(correlatio),fitness(  

The algorithm stops when all target basic blocks have been considered. 
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3.2. Observability issues 

When RT-level test pattern generation is targeted at design validation tasks, 

traditional branch coverage metrics are usually considered satisfactory. Even if 

moving to more complex metrics, such as path coverage, the main goal during design 

verification is just to excite all behaviors, since their observation is guaranteed thanks 

to the simulation environment, where the designer can inspect all internal values of 

the design. 

However, when dealing with production testing, but also for black box verification, 

the effects of observability can not be neglected [DGKe96]: all activated instructions 

must be observed at the circuit primary outputs. In the ARTIST framework, the 

generated sequences must observe a block after having executed it; to lead the GA to 

this goal we add to the fitness equation the term “+O,” that measures how close the 

sequence is to observe the target. 

The exact computation of this term would require complete integration with an 

RT-level fault simulator. Since satisfactory commercial fault simulation solutions do 

not exist yet, and due to the inherent overhead introduced by fault simulation of 

VHDL code, we approximate the observability term with a computational cost as 

close as possible to that of simulating the fault-free system. A good example of this 

approach is in [FADe99], where analysis of data dependencies across conditional 

statements helps estimating the set of signals affected by an assignment. In ARTIST, 

we implemented an observability strategy more approximate than the one proposed in 

[DGKe96] and [FADe99] due to the looser integration with the simulator in our case. 

ARTIST explicitly traces the set of variables and signals to which the target fault 

has been propagated by analyzing the simulation trace, with the knowledge of the data 

transfers performed in each basic block. 

This analysis is exact, except for dependencies where a variable is assigned 

depending on a conditional, where we optimistically assume that variables in 

conditional expressions are observed on all signals and variables assigned within the 

conditioned blocks. 

Finally, the value of the term “+O” is the weighted sum of the execution counts of 

the variables or signals to which the target fault effects have been propagated. 
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Weights are determined as the distance between the statement and the nearest primary 

output. A more detailed discussion about the observability term in ARTIST can be 

found in [CSSq00]. 

3.3. Implementation Details 

The above described method has been implemented in a prototypical environment 

which consists of a mix of commercial and in-house developed tools.  

The preliminary VHDL code analysis process exploits the GraphGen option of the 

LEDA LVS toolkit. For simulating RT-level descriptions we resort to the V-System 

5.3 VHDL simulator by Model Technology. The code instrumentation process uses 

the reverse analysis option of the LVS toolkit. The implementation consists of about 

4,700 lines of C code for VHDL code analysis and instrumentation, linked to the 

LEDA LPI interface, and of 3,500 lines of C code for the Genetic Algorithm and the 

interface to the simulator. 

3.4. Experimental Results for ATPG 

In this sub-section we report experimental data gathered by running ARTIST on 

the benchmarks and by evaluating the ability of the generated sequences in covering 

the stuck-at faults on the corresponding gate-level descriptions. 

The parameters of the Genetic Algorithm in both phases were set as follows. The 

genetic population is composed of 50 individuals and in each generation 30 new 

sequences are first generated, then selection is performed on the whole set of 

individuals. Individuals are selected for reproduction using their linearized fitness. In 

30% of the cases, the new individual is built mutating a single parent: the original 

sequence can be shortened, or enlarged, or some bits may be flipped. In 70% of the 

cases, the new individual is built mating two different parents: the offspring sequence 

can inherit the beginning from one parent and the end from the other, or some entire 

bit column from each parent. 

Table 3 reports the results obtained by running ARTIST on a Sun Ultra 5 working 

at 333 MHz with 256MB memory. For allowing an easy evaluation of the 
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effectiveness of the generated sequences, we reported in the table also the results 

obtained by running a state-of-the-art commercial gate-level ATPG on the gate-level 

version of the same benchmarks. The first column reports the CPU time of the ATPG 

run. The second column shows the attained fault coverage at the gate-level using the 

stuck-at fault model. When ARTIST is considered, this means that first the tool is run 

on the RT-level description, then the produced sequences are fault simulated on the 

corresponding gate-level description to obtain their percent stuck-at fault coverage. 

The third column reports the length of the test in clock cycles. 

The results show that: 

• ARTIST generates test sequences whose gate-level fault coverage is generally 

comparable with that obtained by the gate-level ATPG; there are a few circuits 

for which the latter performs substantially better (e.g., b08, b09, and b14), but 

there are others for which the reverse is true (e.g., b11, b12, b13, b15, b17 and 

b20 through b22). By analyzing the benchmarks which proved to be critical 

for ARTIST, we found that their test requires very specific sequences, that can 

hardly be found using a genetic approach such as the ARTIST one. 

• For the smallest circuits, ARTIST has much higher CPU time requirements 

than the gate-level ATPG, while for the largest benchmarks the CPU time 

requirements of the two tools are comparable. 

• The length of the sequences generated by ARTIST is higher than those 

generated by the gate-level ATPG. This is mainly due to the fact that no test 

compaction mechanism is currently implemented, not even a basic fault 

dropping one. 

According to these results we can conclude that, starting from RT-level 

descriptions, ARTIST is generally able to produce test sequences whose quality is 

comparable with that of the sequences generated by a state-of-the-art gate-level 

ATPG, thus reducing the cost of running a gate-level ATPG step. 
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ARTIST Gate-level ATPG Circ 
CPU FC% LEN CPU FC% LEN 

b01 4,118 100.00 1,061 < 1 100.00 129 
b02 1,731 99.33 940 < 1 99.33 60 
b03 5,131 74.33 374 5,356 74.82 245 
b04 6,905 89.42 427 2,359 91.51 558 
b05 33,393 33.50 2,800 51,467 33.38 223 
b06 2,315 97.02 62 < 1 97.35 118 
b07 2,251 57.53 461 33,415 57.28 148 
b08 2,106 86.27 329 12 98.15 582 
b09 9,054 81.33 1,187 3,624 90.56 967 
b10 10,851 90.42 586 919 92.22 416 
b11 5,092 85.98 532 24,198 81.00 228 
b12 67,575 45.99 5,541 77,297 21.17 276 
b13 43,450 68.37 4,538 23,625 59.19 300 
b14 55,240 79.65 4,743 14,014 95.04 7,728 
b15 60,990 31.96 2,733 50,822 16.26 66 
b17 14,475 15.50 1,197 38,245 2.07 16 
b18 278,338 1.50 279 >500,000 0.62 10 
b20 128,193 79.99 7,825 29,961 26.57 112 
b21 74,845 82.61 6,376 46,202 55.14 148 
b22 149,544 71.59 2,582 31,323 55.79 102 

Table 3: Gate-level quality of RT-level generated sequences. 

3.5. Exploiting RT-level sequences for design validation 

At the RT-level, there is a strong link between test pattern generation for physical 

faults and pattern generation for functional validation. The fault detection metric used 

in ARTIST subsumes branch coverage, that is frequently used for design validation 

and software testing [Beiz90]. Moreover, ARTIST takes into account observability, 

which has been proved to be crucial for effective test bench generation [TAZa99]. For 

these reasons, sequences generated by ARTIST can fruitfully be exploited during 

design validation, and they proved to be very effective in pinpointing critical sections 

in the VHDL code, from the syntactical and semantic points of view. 

In particular, ARTIST is able, when generating test patterns, to identify the VHDL 

entities, processes, or statements that are poorly controllable or observable, and those 

for which it was not able to generate any test pattern: this information is vital for 

design validation. In many cases, while testing ARTIST, we found that the statements 

that it was not able to cover were effectively unreachable: we discovered some design 
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errors in our benchmarks while generating test patterns. As an example, we found that 

a common design error corresponds to missing or incorrect bounds checking: in this 

case ARTIST found some overflow conditions (mainly sums or increments that were 

not truncated nor wrapped to the allowed range of values) that escaped manual 

simulation. These conditions allowed us to correct the ITC’99 VHDL benchmarks, 

that in their previous release contained those bugs. Further details about the usage of 

the ARTIST system for design validation can be found in [CMPS00]. 

4. Conclusions 

We presented the Politecnico di Torino circuits belonging to the ITC’99 

benchmark suite. These circuits are mainly intended to support the research in the area 

of high-level ATPG, and correspond to synthesizable RT-level descriptions of 

different size, complexity, and type. For ease of development of new test tools at the 

RT-level, the benchmarks have been standardized in terms of description styles and 

language, and do not contain rarely used statements nor system-level structures. The 

VHDL language has been adopted, and for every circuit the corresponding gate-level 

description and fault list are also available. 

Exploiting these circuits, we evaluated a new RT-level ATPG named ARTIST, 

based on a Genetic Algorithm interacting with a commercial VHDL simulator. 

Experimental results on the benchmarks show that the generated sequences reach a 

percent coverage of the gate-level stuck-at faults comparable with that obtained by a 

state-of-the-art gate-level ATPG. This means that RT-level ATPG is now feasible, 

and designers can exploit it to evaluate the testability of their descriptions before the 

synthesis step is performed, thus significantly improving the effectiveness of the 

whole design flow. 

Although ARTIST has been developed under the hypothesis that no Design for 

Testability technique is adopted (i.e., a purely sequential ATPG approach is followed) 

the method can be fruitfully extended to the case of partial-scan circuits, or to circuits 

including some BIST portion. Moreover, the proposed ATPG technique can be 

successfully adopted for other purposes outside the test area, e.g., for generating test 

benches for design validation or for verifying properties of the design (model 

checking). 
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