
A Signal Correlation Guided ATPG Solver And Its
Applications For Solving Difficult Industrial Cases�

Feng Lu, Li-C. Wang, K.-T. (Tim) Cheng
Department of ECE

University of California at Santa Barbara
�lufeng, licwang, timcheng�@ece.ucsb.edu

John Moondanos and Ziyad Hanna
Design Technology
INTEL Corporation

�john.moondanos,ziyad.hanna�@intel.com

ABSTRACT
The developments of efficient SAT solvers have attracted tremendous
research interest in recent years. The merits of these solvers are often
compared in terms of their performance based upon a wide spread of
benchmarks. In this paper, we extend an earlier-proposed solver de-
sign concept called (SCGL) Signal Correlation Guided Learning that
is ATPG-based into a family of heuristics. Along with this SCGL fam-
ily of heuristics, we classify benchmark examples according to their
performance using the SCGL heuristics. With this study, we identify
the class of problems that are uniquely suitable to be solved by using
the SCGL approach. In particular, for solving difficult circuit-based
problems at INTEL, our SCGL-based ATPG solver is able to achieve
at least an order of magnitude speedup over the state-of-the-art SAT
solvers. Our conclusion is that SCGL is an unique solver design con-
cept that can complement heuristics proposed by others for solving
circuit-oriented difficult problems.

Categories and Subject Descriptors
B.7.2 [Hardware]: Design Aids

General Terms
Verification, Algorithm

Keywords
Boolean Satisfiability, Boolean Equivalence Checking, ATPG

1. INTRODUCTION
Boolean Satistifiability has attracted tremendous research effort in

recent years, resulting in the developments of various efficient SAT
solver packages. Based upon particular SAT package architectures, re-
searchers have tried to develop better heuristics to enhance SAT solver
efficiency, by either speeding up the Boolean Constraint Propagation
(BCP) procedure or finding a better decision ordering (or both).

Popular SAT solvers [1, 2, 3, 4] are designed based upon the Con-
junctive Normal Form (CNF) representation. For many applications in
CAD, applying SAT to solve a circuit-oriented problem often requires
transformation of the circuit gate-level netlist into its corresponding
CNF format [5]. In this circuit-to-CNF transformation, the topological
ordering among the internal signals is obscured. All signals become
(input) variables in the CNF format.

For solving circuit-oriented CAD problems, circuit structural infor-
mation can be very useful. For example, researchers have developed

�
This work was supported in part by INTEL/MICRO Project #01-016 and in part by the

MARCO/DARPA Gigascale Silicon Research Center (http://www.gigascale.org).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003 June 2–6, 2003, Anaheim, California, USA
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

various SAT solvers able to utilize circuit-related information to speed
up the state-of-the-art SAT solver performance [6, 7, 8].

Recently, a circuit-based SAT solver was proposed in [9]. This
ATPG-based solver utilized signal topological ordering and signal cor-
relation guided learning (SCGL) to identify an effective decision or-
dering in the SAT search process. The main ideas were:

(1). If a group of signals can be identified in advance as highly
correlated, then in the solver’s decision variable selection, they can be
grouped together. (2). When solving a SAT problem originating from a
circuit, sometimes we can solve the problem more easily by following
the topological structure. (3). When deciding value assignments to
signals, it is more effective for the solver to select those values that are
more likely to cause conflicts.

The ATPG-based solver includes two types of the SCGL heuristics:
implicit learning and explicit learning [9] which differ in how they
affect the decision ordering. In implicit learning, correlated signals
are grouped together in the decision variable selection, and correla-
tion information is used to guide the solver to assign values that are
more likely to cause conflicts. In explicit learning, a set of K signals
�s1� � � � �sK� are pre-selected based upon signal correlations. The deci-
sion ordering of these signals based on their topological order. Value
assignments �s1 � v1� � � � �sk � vK� are pre-determined so that solving
each sub-problem ”si � vi” (1 � i � K) is likely to cause conflicts.
Moreover, the solver starts by explicitly following the topological or-
der to solve each sub-problem in �s1 � v1� � � � �sk � vK�, and then solve
the original SAT problem.

In this paper, we extend SCGL into a family of heuristics �SCGL0,
SCGL1, � � �, SCGLe� based upon the degree of SCGL learning. In
the two extreme cases, SCGL0 involves no signal correlation learn-
ing while SCGLe follows the explicit learning approach where deci-
sion ordering is highly biased by the signal correlation information. In
other words, the decision ordering in SCGLi is less biased by the signal
correlation information than SCGLi�1. We then apply this family of
heuristics to different groups of benchmark examples. Our goal is first
to demonstrate the following two principles:

(1). When circuit information is available and signal correlations are
accurate, the more we use SCGL to guide the decision ordering, the
better the results will be. (2). When circuit information is not avail-
able and as a result, signal correlations may not be accurate, SCGL
becomes an overhead. The less we use SCGL to guide the decision
ordering, the better the results will be.

Based upon these two principles, we can ask the following funda-
mental question: Does there exist a class of problems that are highly
suited for applying the SCGL heuristics? From our experimental anal-
ysis, we concluded that indeed there exists such a class of circuit-based
problem instances. They originate from the application of equivalence
checking, and SCGL provides a very efficient solution for them. To
demonstrate the effectiveness of our solver on this class of testcases,
we conducted extensive experiments using units from an INTEL de-
sign in the Pentium class of microprocessors. For these testcases, an

27.3

436

advanced equivalence check point matching approach [12] [13] did
not work, and our solver achieves at least an order of magnitude per-
formance improvement over a state-of-the-art SAT solver.

The rest of the paper is organized as follows: In Section 2, we ex-
plain the key ideas in SCGL and present the original implicit and ex-
plicit learning. Section 3 extends SCGL into a family of heuristics.
In Section 4, we describe the implementation details of our solver. In
Section 5 we present general experimental results and summarize our
findings. In Section 6, we focus on specific experimental results ob-
tained by applying our solver to difficult combinational equivalence
problems at INTEL. Finally, in Section 7 we conclude by offering
some comprehensive comments of the results in this paper and a pre-
view of our future work.

2. SIGNAL CORRELATION GUIDED LEARN-
ING (SCGL)

Most SAT problems encountered in CAD originate from circuits. In
the traditional approach, a circuit is transformed into its CNF-equivalent
form [5] and then a SAT solver is applied on the circuit in CNF. The
major disadvantage of this transformation is the loss of the circuit
structural information, specifically the topological ordering among the
signals. When solving a circuit-originating problem, the topological
information can be very useful, and with a CNF netlist, it is not easy
to fully take advantage of this information.

2.1 An Illustrative Example

C

a=1 b=0
c=1A

B

Figure 1: A SAT Process Following Topological Order

Consider the circuit in Figure 1. Suppose we want to solve a circuit
SAT problem with the output objective ”c � 1.” If we apply SAT to
prove c � 1, then potentially, the search space is the entire circuit.
Now suppose we can identify, in advance, two internal signals a and b
such that ”a� 1” and ”b� 0” individually are very unlikely to happen.
Then, we can divide the original problem into three sub-problems: 1)
solving ”a � 1,” 2) solving ”b � 0,” and then 3) solving ”c � 1.”

Since ”a � 1” is unlikely to happen, conflicts are more likely to oc-
cur during the solving process. As a result, information can be learned
more effectively. In a SAT solver, this information is stored as learned
clauses, each of which represents a functional sub-space containing no
solution. From another point of view, each learned clause specifies a
constraint on a set of circuit signals, which has to be true based upon
the circuit structure.

a=1

x1
x2
x3

xn

1
1

1

11

...
.

apply

SAT...
. AA

Figure 2: Learned Gates Accumulated by Solving ”a � 1”

Most importantly, if we assume that solving ”a � 1” is done only
based upon the cone of logic headed by the signal ”a” (the shaded area
A in Figures 1 and 2) then the learned clauses will be based upon the
signals contained in the area A only. Figure 2 illustrates the results of
applying SAT for solving ”a � 1.” Regardless of whether the problem

is satisfiable or not, a set of learned clauses can be collected. In Fig-
ure 2, they are represented as the learned AND gates whose outputs
are 1.

As the solver finishes solving ”a � 1” and starts solving ”b � 0,”
all the learned information regarding the circuit area A can be used
to help solving ”b � 0.” In addition, if ”a � 1” is indeed unsatisfiable,
then signal ”a” can be assigned with 0 when solving ”b� 0.” Similarly,
learned information from solving ”a � 1” and ”b � 0” can be used to
help solving ”c � 1.”

Intuitively, solving the three sub-problems would be much faster
than solving the original problem. This is because when solving ”b �
0,” hopefully much fewer (or no) decisions are required to go into area
A. Hence, the search space is more restricted within the area B of
Figure 1. Similarly, solving ”c � 1” requires focusing the decision
making only on area C. Moreover, the learned clauses accumulated
by solving ”a � 1” would be shorter because they are based upon the
signals on area A only. Similar, the learned clauses accumulated by
solving ”b � 0” would be shorter because fewer decisions are made
on area A. Therefore, conceptually, this strategy allows us to solve a
complex problem incrementally.

We make two key observations: 1) the incremental process suggests
that we should guide a solver to solve a sequence of pre-selected sub-
problems following their topological ordering, and 2) the selection of
the sub-problems such as ”a � 1” and ”b � 0” should be those most
likely to be unsatisfiable. Intuitively, the search space for a likely un-
satisfiable problem instance is more constrained and hence, conflict
analysis can be more effective and more information can be accumu-
lated in the learned clauses.

2.2 Potential Issues
If solving ”a � 1” and ”b � 0” does not cause many conflicts, then

there is not much information to be learned from the solving processes.
In this case, the above strategy may incur some overhead. Usually, this
indicates the ineffectiveness of the method used to ”guess” that ”a� 1”
and ”b � 0” are unlikely to happen. Moreover, if solving ”c � 1”
does not depend on signals a and b much, then the above strategy can
also incur overhead. To reduce the overheads, one can use the signal
correlation information such as ”a � 1” and ”b � 0” implicitly rather
than explicitly as described above. Implicitly, we can simply bias the
value assignments more toward ”a� 1” and ”b� 0” during the solving
of ”c � 1” without first solving the sub-problems.

We note that intuitively, the above incremental strategy would not be
effective for solving circuit satisfiability if its CNF form is used. This
happens because with a 2-level OR-AND CNF structure, the topolog-
ical ordering among the signals is lost. With a 2-level structure, the
incremental strategy has very little room to proceed. Moreover, since
both a and b are primary inputs in the 2-level OR-AND CNF circuit,
the order of solving the sub-problems may become solving ”b � 0”
followed by solving ”a � 1.”

In addition to the signal correlations such as ”a � 1” and ”b � 0”
pair-wise correlations of the forms ”signal1 � signal2” and ”signal1 ��
signal2” are also possible [9]. Then, the key issue becomes how to
identify in advance those signal correlations for a given problem in-
stance. One straightforward approach would be to utilize a random
simulation approach [9].

2.3 Identifying Signal Correlations
Let �s1� � � � �sn� be n signals in a given circuit instance. Our goal is

to identify four types of signal correlations ”si � 0,” ”si � 1,” ”si � s j ,”
and ”si �� s j” for all i and all i �� j. For simplicity, we refer to these
four types of correlation using the forms ”a � b” and ”a �� b” with the
understanding that b can be a signal or the constant ”0.”

In Algorithm 2.1, we demonstrate a simple procedure to compute
the set of equivalence correlations (i.e. ”si � s j”) using random simu-
lation. To identify the remaining types of correlations ”si � 0,” ”si �

437

1,” and ”si �� s j” we employ similar procedures.
In the algorithm, an equivalence class is a subset of signals mutually

having the equivalence relationship. Accordingly, two signals will be
classified into the same class if their simulation results from all the
simulated assignments are identical.

Algorithm 2.1: RANDOM SIMULATION(Circuit)

comment: C is the initial equivalence class.

i� 0;C � set of all signals;
S � �C�;while �i � 4� and �S �� S��

do

���������
��������

S� � S;
Produce 32 random input assignments;
Perform parallel logic simulation [14];
Based upon the simulation results and
the current equivalence classes,
compute the new equivalence classes;

S ��the new equivalence classes�;
i � i�1;

return �S�
We note that deciding the equivalence classes among all signals can

be achieved quite efficiently with a hash table. Hence, run time is
actually close to linear instead of quadratic on the number of signals
under consideration.

Our random simulation is simple. Each time 32 random input as-
signments are simulated together using a word (32 bits) in parallel
logic simulation [14]. If repeating the simulation step several times
does not lead to identifying any new equivalence class(es), then the
simulation stops, and the set of the equivalence classes is returned.

2.4 Implicit Learning
There are two ways to utilize the signal correlation information dis-

covered by the random simulation: implicit learning and explicit learn-
ing. In explicit learning, the solver explicitly creates a sequence of
sub-problems based upon the signal correlations and solves them one
by one following the topological order. As mentioned earlier, this strat-
egy may be too biased and incur unnecessary overhead depending on
the characteristics of the problem instance. To avoid such bias, in im-
plicit learning, signal correlations are used to influence the decision
variable selection and variable value assignment. This means that in-
stead of creating a sequence of likely unsatisfiable sub-problems for
the solver to solve explicitly one by one, correlation information is
used only within the decision variable selection procedure.

Suppose we are given a solver without any SCGL heuristics. Usu-
ally, a solver comes with its own heuristics to select the decision vari-
ables. For example, in the latest Chaff package ZChaff [1], VSIDS is
used in the selection. With implicit learning, we can add the signal
correlations on top of the VSIDS decision variable selection.

For example, suppose a signal si is correlated with signal s j as
”si �� s j.” During the solving process, whenever si gets to be assigned
a value, we want to ”immediately” make the decision to assign the
same value to s j. In this way, we ”group” the two signals together
in the solver’s value-assignment process, and values are assigned in
such a way that they are most likely to cause conflicts. Algorithm 2.2
describes a way to adopt the implicit learning.
Algorithm 2.2: SELECT DECISION VARIABLE(variables)

Suppose s is just being assigned a value v by implication (BCP)
if ��s��s� is correlated with s� and �s�has not yet been assigned a value�

then

���
��

select s�as the next decision signal
if �it is equivalence correlation�

then s� � v
else s� � v

else

���
��

use VSIDS (or other heuristics) to select a signals�

if �s� is correlated with 0�

then
�

s� � 1 if it is equivalence correlation, or
s� � 0 otherwise

return �s��

2.5 Explicit Learning
In explicit learning, a sequence of likely unsatisfiable sub-problems

are created based upon the signal correlations identified by the random
simulation. Internally, the solver would try to solve each sub-problem
one by one following the topological order. After finishing solving all
the sub-problems, all the learned information is stored in the learned
gates (learned clauses) which are then used to solve the original SAT
objective.

When solving each sub-problem, we need to decide whether or not
to complete the solving. To limit the sub-problem solving process,
one can count the number of learned gates accumulated. For exam-
ple, the solver can move on to the next sub-problem whenever k new
learned gates are found. If we allow the solver to complete for each
sub-problem, then explicit learning becomes more like a commonly-
used equivalence check point matching approach for solving equiva-
lence checking problem. In check point matching, potential equivalent
points are identified in advance. And then, following the topological
order, each set of potential equivalent points are checked whether they
are equivalent and if they are, to get merged together.

3. THE FAMILY OF SCGL HEURISTICS
Implicit learning and explicit learning are two SCGL approaches.

However, depending on the degree of biasing the decision variable se-
lection toward the signal correlations, we can derive a family of heuris-
tics based upon these two approaches.

Limit the correlation size For equivalence correlation, ”si � s j”, the
simulation may identify a group of more than two mutually equiv-
alent signals. For simplicity, we call this group size the corre-
lation size. If the correlation size of a group is large, this may
be due to the ineffectiveness of the random simulation. Hence,
whether or not to use the correlations becomes questionable. In
this case, we can limit the correlation size to a small number
such as 3. For those groups whose correlation sizes are larger
than 3, they are ignored.

Limit the location of correlations Suppose two signals have the cor-
relations ”s1 � a” and ”s2 � b” and topologically, one is on the
path of the other. Then, it is possible that one is the cause of the
other. Hence, apply explicit learning to solve both sub-problems
become redundant and may incur unnecessary overhead. To
limit this overhead, one can identify a cut of the circuit and ap-
ply explicit learning to only those signals that fall between the
primary inputs and the cut points. Another reason to use such a
cut is that for a circuit with a long depth, it is unlikely that ran-
dom simulation can uncover true signal correlations for signals
close to the primary outputs. Hence, a cut will ensure that we
do not apply explicit learning to those signal correlations falsely
identified by the random simulation.

SCGLi In the case of implicit learning, suppose k signals are mutually
equivalent. In Algorithm 2.2, if one signal is selected, there are
k� 1 possible signals to be selected. To exhaust the learning
from this k-signal correlation, the variable selection may be in-
voked �k��k� 1� times. This is because there are �k��k� 1��2
pairs and for each pair, there are two ways to assign the pair of
signals with different values. As described earlier, depending on
the characteristics of a given problem instance, using signal cor-
relations can be beneficial or can be an overhead. To avoid the
bias of using signal correlations too much, we can further limit
the implicit learning. In SCGLi heuristic, a group of correlated
signals can only be used in the variable selection procedure for
no more than i times.

For example, SCGL0 does not involve the implicit learning at all
and hence, depends only on the original decision variable selec-
tion heuristic such as VSIDS. In SCGL1, each group of corre-
lated signals can only be used once. Once it is used, regardless

438

of which signals are selected, the group of correlated signals is
dropped and will never be used again in Algorithm 2.2.

use SCGL more

SCGL ei

SCGLe

SCGLeicut

SCGLecut

SCGL

SCGL

SCGL

SCGL

SCGL0

1

2

4

k

use SCGL less

Figure 3: The Family of SCGL Heuristics

Figure 3 summarizes the family of SCGL heuristics discussed above.
The more we go to the left, the less the signal correlation informa-
tion would affect the decision variable selection. In the extreme case,
SCGLei combines both explicit learning and implicit learning without
any limit.

� SCGL0: This is the baseline solver without using any SCGL
information.

� SCGL1�2�4�k: Each group of correlated signals can only be used
1,2,or 4 times in the decision selection procedure. Then, it is
dropped. SCGLk has no such limit and hence it is the original
implicit learning. The maximum group size considered is 3.

� SCGLecut�eicut: A cut is enforced to avoid learning on signals
close to primary outputs. No limit on the group size. ecut does
not combine with implicit learning while eicut does.

� SCGLe�ei: e and ei are similar to ecut and eicut, respectively
except that no cut is enforced.

4. IMPLEMETATION DETAIL
The latest Chaff package ZChaff provided the baseline for our de-

velopment. In our baseline solver, we implemented all the ideas in
ZChaff, including the VSIDS decision variable selection, clause re-
moval, watched literal [1], and UIP based conflict analysis [2]. In ad-
dition, our solver adds the justification frontier (J-node) [14] into the
consideration of decision variable selection. Although our baseline
solver borrows almost all the ideas from ZChaff, the implementation
is different from ZChaff in several aspects:

� The input to the solver is assumed to be in a circuit format (such
as the ”.bench” format). After the circuit is read in, we trans-
formed it into a netlist based upon only the 2-input AND prim-
itive. In the netlist, we allow inverters to be associated with the
AND gate inputs as attributes. Lookup tables are used for fast
implications on the AND primitive [8].

If an input is in its CNF form, we first convert it into a 2-level
OR-AND circuit. Then, the circuit will be given to our circuit
solver. We note that this could add some overhead to the repre-
sentation of the problem.

� Since our ultimate goal is to develop a circuit SAT solver ap-
plicable to sequential circuits directly, internal circuit represen-
tation and data structures were designed for later extension to
the sequential domain. For instance, ”FRAME” objects were
used to contain dynamic information that is valid within a time
frame during sequential time frame expansion [14]. This adds
additional overhead to our code, as comparing to ZChaff.

� We implement restart based upon the number of backtracks.
When this number exceed 211 the solver will restart.

� In ATPG terminology, a justification frontier (J-node) is a gate
whose output has received a value, and some of its inputs need
further decision(s) to justify the value[14]. In our implemen-
tation, only inputs to J-nodes are considered in the calculation
of VSIDS for decision variable selection. However, we note
that our definition of the J-node includes all the learned gates.

Therefore, initially the restriction on J-nodes for decision mak-
ing would make our solver behave differently from the ZChaff.
However, after many learned gates are accumulated, effectively
the two would follow the same VSIDS heuristic. Nevertheless,
we note that since our solver makes different decisions at the be-
ginning, the entire decision sequence can be very different from
ZChaff.

5. EXPERIMENTAL RESULTS
For initial experiments, we collect three groups of examples. A ”C-

” example is originated from an ISCAS benchmark circuit. In the case
denoted as ”C-.eq” we constructed an equivalence checking circuit
model by taking two copies of the same circuit. Each pair of corre-
sponding primary outputs are XORed and all the outputs of the XOR
go to an AND gate. The SAT problem is to ask if the output of the
AND gate is 1. In each case, it is unsatisfiable. In the case denoted
as ”C-.opt” the two copies are structurally different where one copy
is logically optimized with a synthesis tool. A ”V-” example is a sat-
isfiable testcase taken from [10]. A ”P-” example is an unsatisfiable
testcase taken from [10]. All experiments ran on a Pentium-4 2.4G
machine with 1.5G RAM under Linux Mandrake 2.4.3.

5.1 Results on "C-" Testcases
SCGL Family

Cases ZChaff 0 1 2 4 k ecut eicut e ei
c3540.opt 26 97 66 58 115 11 0.2 0.2 0.3 0.3
c5315.opt 84 35 22 37 20 15 0.3 0.3 0.3 0.3
c7552.opt 262 60 50 37 25 13 1.2 1.2 1.2 1.1
c3540.eq 35 105 82 78 54 27 0.2 0.2 0.3 0.3
c5315.eq 39 23 53 49 13 6 0.4 0.5 0.2 0.2
c7552.eq 190 46 34 43 37 16 1.3 1.3 0.9 0.8
s38417.eq 420 124 90 85 82 78 11 11 4 5
s38584.eq 316 152 143 144 141 148 54 55 40 41
Total 1372 642 540 531 487 314 68.6 69.7 47.2 49
c6288.eq * * * * * * 0.2 0.2 0.9 0.9
*Aborted after 1 hours.

Table 1: Results (secs) For UNSAT ”C-” Testcases

Table 1 summarizes the results on ”C-” testcases. The performance
trend from the SCGL family of heuristics can clearly be observed.
Based upon this trend and the illustration in Figure 3, we can con-
clude that this class of the examples are suitable for using the SCGL
heuristics. ”c6288.eq” represents an extreme case where only explicit
learning heuristics can solve it. And when a right heuristic is applied,
the run time is only less than a second.

5.2 Results on "V-" and "P-" Testcases
SCGL Family

Cases ZChaff 0 1 2 4 k ecut eicut e ei
Vliw001 356 124 393 196 296 176 648 534 670 748
Vliw002 336 200 324 112 352 500 272 1510 615 1147
Vliw003 381 233 252 237 328 364 608 820 682 1070
Vliw005 1088 244 93 977 249 382 375 786 709 1129
Vliw006 308 428 310 348 310 572 434 755 789 1016
Vliw008 550 153 46 184 433 287 256 461 700 1243
Vliw011 305 150 98 65 63 125 242 633 525 893
Total 3324 1532 1516 2119 2031 2406 2835 5499 4690 7246
*Aborted after 1 hours.

Table 2: Results (secs) For SAT ”V-” Testcases

Table 2 summarizes the results on the ”V-” testcases. It is interesting
to observe that the trend reverses in these examples. Based upon this
reversing trend, we conclude that SCGL heuristics are not feasible for
them. Hence, the more we depend on the SCGL, the worse the results
would be. We note that since the input format of these examples con-
tains CNF formulae, it is possible that our solver could not utilize the
circuit topological information properly.

Table 3 summarizes the results for ”P-” testcases. In this table, no
trend can be observed. This can be due to three reasons: 1) This class

439

SCGL Family
Cases ZChaff 0 1 2 4 k ecut eicut e ei
3Pipe1 62 90 86 88 75 87 40 65 40 65
3Pipe2 87 154 168 171 177 126 139 125 127 143
4Pipe1 753 1207 1313 1465 1306 1606 777 1966 1518 2520
4Pipe2 2505 3533 3151 3006 2820 * * * 2936 *
4Pipe3 * * * * * * * 1919 * *
*Aborted after 1 hours.

Table 3: Results (secs) For UNSAT ”P-” Testcases

of the examples are not suitable for SCGL heuristics. 2) Since the in-
put format of these examples are not entirely circuit-based, it is unclear
that the topological ordering used in our solver is indeed the topologi-
cal ordering in the original circuits where those testcases were derived
from. From our past experience [9], correct topological ordering in-
formation is crucial for identifying the correlations in the random sim-
ulation as well as for explicit learning. 3) We discovered that most of
the correlations identified in the random simulation for these examples
are false correlations. Hence, the random behavior can be a result of
the ineffectiveness of the random simulation for uncovering the signal
correlations for these examples.

One may argue that for those ”C-” testcases, although SCGL heuris-
tics are effective, these examples are ”easy” problems if an advance
equivalence check point matching approach [13] is used. We empha-
size that our SCGL heuristics are different from equivalence check
point matching. However, the fundamental question remains: Does
there exist a class of problems where the SCGL heuristics provide a
better solution while the equivalence check point matching does not
work? In Section 6, this class of testcases will be discussed.

5.3 A different implementation
In Table 4, we alter our baseline solver by two ideas borrowed from

Berkmin. First, the variable count used to select decision variable is
based upon the number of learned gates that the variable has partic-
ipated to produce (not the variable appears in). Second, the re-start
strategy and clause removal follow the more aggressive strategies as
those in Berkmin [11]. In table 4, we summarize the comparison re-
sults by using Berkmin’s equivalence learning (EL) heuristic. Berk-
min’s results are slightly better than our new baseline, comparable to
implicit learning heuristics but worse than our explicit learning heuris-
tics. However, when comparing its results to ZChaff’s, the speedup is
noticeable.

SCGL Family
Cases ZChaff Berkmin 0 k ecut eicut e ei
c3540.opt 26 2 40 3.3 0.2 0.2 0.3 0.3
c5315.opt 84 3 9 2.3 0.3 0.3 0.3 0.3
c7552.opt 262 6.5 34 5.6 1.2 1.2 1.2 1.1
c3540.eq 35 2.8 23 4.3 0.2 0.2 0.3 0.3
c5315.eq 39 3.4 6 2.2 0.4 0.5 0.2 0.2
c7552.eq 190 7 26 5.1 1.3 1.3 0.9 0.8
s38417.eq 420 116 79 69 11 11 4 5
s38584.eq 316 145 138 126 54 55 40 41
Total 1372 285.7 355 217.8 68.6 69.7 47.2 49
c6288.eq — — — — 0.2 0.2 0.9 0.9
*Aborted after 1 hours.

Table 4: Results (secs) For UNSAT ”C-” Testcases

In table 5, we discover that in general, for ”V-” testcases, the run
times improve significantly if the solver depends less on the SCGL.
EL is not used in the Berkmin results. This further confirms the infea-
sibility of these testcases for using the SCGL heuristics.

6. SOLVING HARD INDUSTRIAL CASES
In this section, we report our experience with applying the SCGL

solver to difficult test cases from an INTEL Pentium III class micro-
processor. These testcases come from hard Combinational Equiva-
lence Checking (CEC) problems of HDL specifications against their
gate level implementation. In particular, from the generic results of

SCGL Family
Cases Berkmin 0 1 2 4 k
Vliw001 165 227 462 230 354 429
Vliw002 117 47 186 160 177 351
Vliw003 213 15 202 168 472 339
Vliw005 96 61 132 213 217 316
Vliw006 150 126 168 303 260 420
Vliw008 103 11 87 102 168 256
Vliw011 68 40 67 160 64 323
Total 912 527 1304 1336 1712 2434
*Aborted after 1 hours.

Table 5: Results (secs) For SAT ”V-” Testcases

the previous section, we decided to limit the following evaluation only
to the SCGLeicut heuristic.

Circuit Characteristics: With recent advancements in the field of
CEC [12, 13] one does not expect to see many difficult signals in a mi-
croprocessor for CEC. The number of logic levels that can exist within
a pipestage of modern microprocessor designs is limited and therefore
sophisticated CEC techniques prove highly efficient. However with in-
creased market segmentation for microprocessors, our experience has
been that a few specific signals can prove particularly hard for certain
CEC technologies. Here, we studied the performance of our SCGL
solver on testcases coming from four units of an INTEL microproces-
sor design of the Pentium class. These test cases were derived from
combinational equivalence checking of RTL against gate level imple-
mentations of signals in these four units that belong to the memory
cluster. Circuit Cm is a memory address generation circuit which con-
tains multiple arithmetic units such as adders and multipliers. Circuit
Cn performs memory address translation based on operand type, while
circuit Co implements a read-only interface to memory. Finally, circuit
Ca performs memory command stream control.

Why They Are Difficult: These combinational equivalence prob-
lems have proven particularly difficult for BDD based techniques. Tra-
ditional monolithic BDD comparison does not work regardless of com-
plicated variable ordering schemes including dynamic re-ordering. This
is reasonable given the arithmetic logic that is included in these cir-
cuits. In addition, divide and conquer techniques based on BDDs
which incorporate key point matching have also failed on many sig-
nals in these circuits. Intuitively, this is due to the fact that these
circuits contain many re-convergent signals which create false nega-
tives for cut-point techniques that do not offer false negative elimina-
tion. On the other hand, employing cut-point based techniques that of-
fer false-negative elimination by employing parametric representations
for functions, such as normalized BBDs [13], does not work because
of the degree of reconvergence. However, the existence of significant
reconvergence is a clear indication that signals in the netlists are highly
correlated and this is something that should be exploited to speed up
the process of a decision procedure. Also there is no significant struc-
tural similarity between the two netlists being compared because the
one is coming from the RTL compilation process and the other is com-
ing from the actual gate-level netlist.

Results Comparison: For the plots in Figures 4 and 5 we have to
mention that the horizontal axis corresponds to a numerical index that
was assigned to the various CEC problems in Cm�Co�Ca and Cn, so that
they would appear with increasing time requirement for the SCGLeicut
heuristic. The plot in Figure 4 depicts the time performance compari-
son between our SCGL ATPG- based solver, ZChaff and Berkmin (the
latter using the strategy for equivalence problems, i.e. ”s 1”). The com-
parison takes into account only those pairs of signals that gave rise to
extremely difficult combinational equivalence problems. In particular,
the signals that appear in the plots of this section are only those that
ZChaff, Berkmin and SCGLeicut could finish within 2 hours of CPU
time. The experiments were conducted using Pentium III workstations
running Red Hat Linux 6.2 with 4G of RAM. From the graphs one can
conclude that the performance of SCGLeicut is at least two orders of
magnitude better than the performance of ZChaff and at least one or-

440

der of magnitude faster than Berkmin. We can also see that SCGLeicut
could finish 40% more signals than ZChaff and 8% more signals than
Berkmin.

0.1

1

10

100

1000

10000

0 50 100 150 200 250 300

C
P

U
 s

ec

Signal Id

zchaff
eicut

berkmin

Figure 4: SCGL vs. ZCHAFF vs. Berkmin CPU time comparison
on hard signals form circuit Cm�Co�Ca and Cn

We also include the plot of Figure 5 where we compare the num-
ber of decisions that were required by ZChaff vs. the corresponding
number for the SCGLeicut heuristic. Unfortunately, this number does
not get reported by Berkmin in the information it prints. Clearly we
would like to eliminate the possibility to attribute the results of Fig-
ure 4 to an extremely efficient coding implementation of SCGLeicut .
So we examined the number of decisions that each tool requires to
prove that the signals are equivalent. As we see from Figure 5, the im-
proved time performance of SCGLeicut can be directly attributed to the
reduced number of decisions it requires. Evidently, the clauses learned
by SCGLeicut bound the search space very efficiently, so that we could
derive the equality of the outputs more efficiently by using far fewer
decisions. By observing the similar shapes of the graphs in Figures 4
and 5 we can validate the conjecture that it is exactly the number of de-
cisions in the solvers that determines the actual run-time requirements.
Due to lack of space, we are omitting corresponding graphs compar-
ing the number of implications and the number of learned clauses, but
suffice it to say that they were found to be similar to those graphs in
Figure 5.

1000

10000

100000

1e+006

1e+007

0 50 100 150 200 250 300

N
um

be
r

of
 D

ec
is

io
ns

Signal Id

zchaff
eicut

Figure 5: Number of decisions for SCGL vs. ZCHAFF on hard
signals form circuit Cm�Co�Ca and Cn

Finally, we must remind that in Figures 4 and 5 we have presented
only comparisons based on CEC problems involving signals that were
equivalent. We have also conducted experiments, on signals from the
pre-tape-out versions of the four units we have been examining in this

section, which were not equivalent due to design errors. Although
BDD based techniques were failing on these signals as well, both
ZChaff and SCGLeicut were able to handle them within a few seconds,
without any tool showing any appreciable advantage over the other in
those testcases.

7. CONCLUSION AND FUTURE WORK
In conclusion, this paper describes our implementation of an ATPG-

based SAT solver whose design philosophy is to take advantage of the
signal correlations and circuit topological information. We propose
a new solver design concept called incremental learn-from-conflict
where the solver learning process is carefully guided by signal cor-
relations. We differentiate between the implicit learning and the ex-
plicit learning approaches both implemented in our solver. We dis-
cuss their strengths and weaknesses, and compare their performance
to other state-of-the-art SAT solvers. Although we do not consider
that our ATPG-based solver is superior to ZChaff (and Berkmin) in
general on solving all problem instances (especially if the input format
is CNF-based), we do conclude that if our solver is able to take ad-
vantage of the circuit structural information, significant performance
improvements can be obtained. For the future work, we will continue
the development of our ATPG-based solver to handle sequential cir-
cuits directly.

8. REFERENCES
[1] M.Moskewicz, C.Madigan, Y.Zhao, L.Zhang, and S.Malik,

Chaff: Engineering an efficient SAT solver. Proc. DAC 2001.
[2] L.Zhang, C.Madigan, M.Moskewicz, and S.Malik. Efficient

conflict driven learning in a Boolean satisfiability solver.
ICCAD 2001.

[3] H. Zhang. SATO: An Efficient Propositional Prover. Proc. of
International Conference on Automated Deduction, Vol 1249,
LNAI, 1997, pp. 272-275

[4] J.P.Marques-Silva and K.A.Sakallah. GRASP: A Search
Algorithm for Propositional Satisfiability. IEEE Trans on
Computers, vol.48, pp. 506-521 1999.

[5] T. Larrabee. Test Pattern Generation Using Boolean
Satisfiability. In IEEE Transactions on Computer-Aided Design,
pages 4-15, Jan, 1992.

[6] A.Kuehlmann, M.Ganai, and V.Paruthi. Circuit-based Boolean
Reasoning. DAC 2001.

[7] Slawomir Pilarski and Gracia Hu. SAT with Partial Clauses and
Back-Leaps. In Proc. ACM/IEEE Design Automation
Conference 2002

[8] M.K.Ganai, L.Zhang, P.Ashar, A.Gupta, and S.Malik.
Combining strengths of circuit-based and CNF-based algorithms
for a high-performance SAT solver. In Proc. DAC 2002

[9] Feng Lu, Li-C. Wang, Kwang-Ting Cheng, and Ric Huang. A
circuit SAT solver with signal correlation guided learning. In
Proc. European Design and Test Conference 2003

[10] M.N. Velev. http://www.ece.cmu.edu/ mvelev Benchmark
Suites, October 2000.

[11] Evgueni Goldberg, Yakov Novikov. BerkMin: A fast and robust
Sat Solver. DATE, pages 142-149, March 2002.

[12] A. Kuhlmann and F. Krohm. Equivalence Checking using Cuts
and Heaps. Proceedings Design Automation Conference, 1997.

[13] John Moondanos, Carl Seger, Ziyad Hanna and Daher Kaiss.
CLEVER: Divide and Conquer Combinational Logic
Equivalence VERification with False Negative Elimination.
Proceedings Computer-Aided Verification Conference, 2001.

[14] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman,
Chapters 3,5, and 6: Logic Simulation, Fault Simulation, Test
Generation, Digital Systems Testing and Testable Design,
W.H.Freeman, 1990.

441

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

