
1 of 2

A Constraint Programming Approach
to Model ATPG Related Problems

Francisco Azevedo & Pedro Barahona
{fa,pb}@di.fct.unl.pt - Universidade Nova de Lisboa

Abstract. Combinatorial problems in Electronics
Computer Aided Design (ECAD), namely in the field of
Automatic Test Pattern Generation (ATPG), have usually
been handled either by specific tools or by mapping them
into a general problem solver, requiring the consideration
of (at least partially) a duplication of the circuits.
Constraint Logic Programming (CLP) with special
domains was proposed as an useful alternative. In this
paper we define an 8-valued logic for modelling the
problem of diagnosis, and show that set constraints can
generalise it to handle ATPG optimisation problems.

1. Introduction

The usefulness of CLP in the ECAD area was already
exemplified and discussed [1]. In addition to the basic
problem of finding an input test pattern for a specific faulty
line, there are some related and more complex problems
that have usually been handled either by specific tools or by
modelling them in some appropriate form to be
subsequently dealt with by a general problem solver (e.g. a
Boolean SAT-based solver [2]). Current techniques to deal
with the problem of diagnosis use some sort of circuits
duplication [3,4], that significantly increases complexity.

In this paper we show how to associate a set of fault
dependencies to each digital signal in a combinational
circuit. This association is used to model three ATPG
related problems concerning a given set of diagnoses D,
(where a diagnosis d is a set of faults, and each fault is a
stuck line): 1) Diagnosis. Find an input test pattern i that
differentiates two diagnoses {d1,d2} = D, i.e. find an input
that yields a different value, in at least one output bit, for
diagnoses d1 and d2; 2) Maximisation. Find an input i
which is a test pattern for a maximum number of diagnoses
in D; 3) Minimisation. Find a minimal set S of input test
patterns that cover all diagnoses in D.

Our proposed models require the specification of
specialised logics, as well as constraint solvers that can
handle non-conventional domains. In [5], an 8-valued logic
to differentiate two alternative theories was presented.
Applied to circuits diagnosis, there are 3 circuit models
involved: N, a model with no faults; and T1 and T2 two

alternative models, whose changes with respect to theory N
consist of some (faulty) lines. A “bit” Z has thus 23 possible
values:

N 0 0 0 0 1 1 1 1
T1 0 0 1 1 0 0 1 1
T2 0 1 0 1 0 1 0 1
Z 0 d2-0 d1-0 m-0 m-1 d1-1 d2-1 1

We then have constant values (0/1), d-values
(dependent on one diagnostic theory, i.e. on its faults) and
m-values (dependent on both theories). For instance, m-0
means a normal 0 value, but an actual value of 1 if any of
T1 or T2 is correct, whereas d1-0 only depends on T1.

Boolean operations were defined in this logic, together
with possible faulty lines referred to below as S-buffers.

2. Generic Modelling

In this section we generalise the modelling technique
for more than two alternative diagnostic models. A signal in
the circuit can thus be represented as a pair L-N, where L is
a set of diagnoses and N is a Boolean value, with the
meaning that normally it has value N (0 or 1) but it depends
on any of the diagnoses in L, i.e. if one such diagnosis in L
is correct (i.e. lines are really faulty), the value is the
opposite of N. For instance, {{f/0,g/0}, {f/1,h/0}} - 0 is
normally 0, but it becomes 1 if either f is stuck-at-0 and g
stuck-at-0, or if f is stuck-at-1 and h stuck-at-0. Hence, ∅ -N
represents a constant value N, independent of any fault.

Normal Gates. We exemplify the gates’ behaviour with the
basic ‘not’ and ‘and’ gates. The negation of L-N is simply
L. As for the and-gate, three distinct situations may arise:

L1-1 ∧ L2-1 L1-0 ∧ L2-0 L1-0 ∧ L2-1
Result: L1 ∪ L2 -1 L1 ∩ L2 -0 L1 \ L2 -0

S-Buffers. An S-buffer for line g has associated a set of the
possible diagnoses where g appears as stuck. We call this
set LS. Since g can appear either as stuck-at-0 or stuck-at-1,
we split this set in two (LS =LS0 ∪ LS1), one for each type of
diagnoses (e.g. LS0 = {diag ∈ D: g/0 ∈ diag).

We then have our S-buffer model:
LS

L i-N L S Ñ U (L i \ LS N) - N

2 of 2

Solving. To solve the diagnosis problem and differentiate
diagnoses D={d1,d2}, either {d1}-N or {d2}-N must be
present in a circuit output bit (or, equivalently, L-N, where
#L=1). For problem number 2 (maximisation), the goal is
maximise(#∪ b Lb) where b ranges over each circuit output
bit b with signal Lb-Nb. The third problem (minimisation) is
a typical set covering problem.

2.1 Improved Representation with Sets

With the previous representation, both the set and the
Boolean value can be variables, which makes the
representation hard to handle. Instead, we can represent L-0
simply as L, and L-1 as L (the complement of L, with
respect to D), by means of transformation transf:

transf S
L S L

L S L
()

,

,
=

= −

= −

0

1

As such, gates are modelled with the usual set operations:
L 1

L 2

L 1 ∩ L 2

() ()L L L L1 2 1 2∩ ∪ ∩L L
L1 L1

L2L2

L L1 2∪

L S

Li L S 1 ∪ (L i \ LS 0)

, for an S-buffer.

Solving. To solve the diagnosis problem using just sets, we
can still simply ensure that a set L with cardinality 1 is
present at a circuit output bit. With the set D={d1,d2} of
diagnoses to differentiate, it is equivalent to have an L
(#L=1) as an output bit in the sets representation, or to have
an L-N (#L=1) in the previous representation.

For the maximisation problem, we must know exactly
if an output signal depends on its set or on its complement.
This is done by recovering the lost information (the normal
output values) as shown in the next figure.

C
S-buffers

C
normal

max #

Circuit c with S-buffers is kept, and we add the same
circuit but with all lines normal (i.e. with no S-buffers).
Circuits share the inputs. The xor-gates in the output bits
receive a set L from the faulty circuit and either ∅ or D (the
universe) from the normal one. Therefore, L is kept as L if
the normal value was 0, and recovered to L if the normal
value was 1. A maximisation on the union of these real
dependencies can now be performed to reach our goal.

Since we now only have set constraints, these can be
actively used by a set constraint solver and choice-points

are avoided. Also, labelling (the exponential component of
search) is only performed at the circuit with S-buffers, in
contrast with Boolean SAT approaches, which consider one
extra circuit for each diagnosis, which is unacceptable, in
practice, for a large set of diagnoses [2].

The minimisation problem is a meta-problem: it
involves sets of solutions to set problems and is still an
open problem.

3. Conclusions and Further Research

We have shown how a constraint programming
approach is able to model a number of ATPG related
problems. Clearly, the practical interest of this work
depends on the ability to develop adequate constraint
solvers to deal with the domains that have been used (8-
valued logic and sets [6]). In both cases we have been
developing constraint solvers over existing CLP languages
(SICStus and ECLiPSe) and checking our systems with the
ISCAS standard circuits. We expect to be able to prove that
the results are competitive with SAT based approaches (as
shown in [7] in the pure ATPG problem), at least in some
types of problems. Meanwhile, we reckon that the
expressive power and flexibility of the constraint
programming approach makes it very attractive and
deserves further research work.

Acknowledgement. The first author was financially
supported by “Sub-Programa Ciência e Tecnologia do 2º
Quadro Comunitário de Apoio”.

References

1 H. Simonis. Constraint Logic Programming Language as a
Digital Circuit Design Tool, Thesis, 1992.

2 L. G. Silva, L. M. Silveira and J. P. Marques-Silva, Algorithms
for Solving Boolean Satisfiability in Combinational Circuits,
IEEE/ACM Design and Test in Europe Conf. (DATE), 1999.

3 T. Gruning, U. Mahlstedt, H. Koopmeiners, DIATEST: A Fast
Diagnostic Test Pattern Generator for Combinational
Circuits, Procs of ICCAD91, 194-197, 1991

4 I. Pomeranz, S.M. Reddy, A Diagnostic Test Generation
Procedure for Synchronous Sequential Circuits based on Test
Elimination, Procs of ITC98, 1074-1083, 1998.

5 F. Azevedo and P. Barahona. Generation of Test Patterns for
Differential Diagnosis of Digital Circuits (Extended Abstract),
in CP’98, M. Maher and J.-F. Puget (Eds.), Springer, p. 462,
1998. Long version: ERCIM/COMPULOG Workshop on
Constraints, K. Apt, P. Codognet, E. Monfroy (Eds.), 1998.

6 C. Gervet, Interval Propagation to Reason about Sets:
Definition and Implementation of a Practical Language,
Constraints, vol. 1 (3), Kluwer Academic Pub, 191-244, 1997.

7 H. Simonis. Test Generation using the Constraint Logic
Programming Language CHIP, 6th Int. Conf. on Logic
Programming, MIT Press, 101-112, 1989.

