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Abstract:  Predicting short-term wind speed is essential in order to model a system of prevention of 
environmental contamination produced by the effects of strong winds acting on goods (mainly crushed coal) 
discharged at a dock. The wind speed in a near future depends on the values of other meteorological 
variables in previous times. The values are obtained from a meteorological station with several sensors: 
wind speed, temperature, humidity, pressure ... We have used the SNNS simulator to obtain a neural 
network able to predict the wind speed 20 min. in advance, with the minimum possible error. The network 
inputs are basically historical values of the predicted variable as well as a number of other support variables. 
A feed-forward model has been elected with the aim of carrying out the treatment of the data. The algorithm 
used for the training phase has been back-propagation.  
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1. INTRODUCTION 
 
Few studies there are in the literature on very 
short-range local prediction of wind speed, based 
in non-statistical paradigms. In particular, 
concerning to the meteorological variables that 
influence in a more decisive way. The forecasting 
methods in the literature have a number of 
inconveniences: 1) They rely on the knowledge 
and experience of a meteorologist. 2) They are 
carried out by interpolating measured data from 
various sources for extensive areas and long terms 
of time; instead of belting the problem to a source, 
a geographical point and an immediate period.  
 
The terminal in Port of Gijón-Spain, European 
Bulk Handling Installation S.A. (EBHISA), offers 
facilities for unloading, storage of bulk cargoes. 
EBHISA takes special care to ensure that the 
operations do not contaminate the atmosphere. In 
order to avoid the environmental contamination 
produced during the loading/unloading operations 
of goods (mainly coal), accurate forecast of wind 

speed is crucial. In this work, neural network 
methodology is applied to construct a 
meteorological forecasting tool which predicts the 
local short-term wind speed. Due to the numeric 
character of the data, a statistical and a neural 
networks analysis of time series are carried out. 
The advantages of neural networks method over 
other prediction methods such as ARIMA, Kalman 
filters, exponential smoothing or systems of 
learning based on rules, are: 1) it is an entirely 
numeric method, as opposed to the implicit 
symbolism in the systems of rules, 2) It does not 
demands a previous knowledge of the system that 
we wish to predict and it is characterised by their 
robustness and tolerance to noise.  
 
The well-known disadvantages of neural networks 
method are: 1) it does not contributes knowledge 
about the background of the problem, while rules 
based systems are more easily comprehensible; 2) 
in the majority of cases it does not permits an 
incremental training. 
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2. THE INFORMATION SYSTEM 
 
A meteorological station sends the values of 12 
meteorological variables to a Personal Computer 
each 2 min (Table 1). 
 

Channel Meteorological Variable Unit 
1 Wind Speed m/s 
2 Gust Wind m/s 
3 Wind Direction Deg. M 
4 Air Temperature Deg. C 
5 Relative Humidity %RH 
6 Air Pressure mb 
7 Visibility Km. 
8 Sunshine Duration Min. 
9 Net Atmospheric Radiation W/m2 

10 Rainfall mm 
11 Solar Radiation W/m2 
12 Water Temperature Deg. C 

 
Table 1. Meteorological variables 

 
 
3. DATA PRE-PROCESSING 
 
In order to carry out the study of the time series, 
we used a neural networks tool: SNNS (Sttugart 
Neural Network Simulator), due to its ease of use 
and wide availability. The simulator needs to 
receive the training and validation patterns in text 
format, for this reason we implemented a program 
that allows: 1) Data exportation present from the 
Paradox table to an ASCII file. 2) Fusion of a 
certain  record set of the table into a single pattern. 
Since the number of variables is high, a statistical 
study of the variables is carried out as a previous 
step to the neuronal analysis of the time series, 
specifically: test of lineal correlation, taking the 
variables two by two, and test of the Spearman 
rank correlation.  
 
 
3.1. DATACONV: Data conversion and pattern 
generation  
 
The developed program allows two operation 
modes: 1) Data conversion, used to export the data 
in a Paradox table (Table 1) to an ASCII file, 2) 
generation of patterns for the SNNS, in this mode, 
the user may modify the following parameters: 1) 
The number of records per pattern of the Paradox 
table that will form the time window of inputs of 
the neural network. In prediction problems, the 
input of the net is usually made up of values of the 
variables to predict (and other variables) at 
previous moments. These values are grouped in a 
time window, 2) The distance of the output record 
from the record that is used to carry out the 
prediction to the last record of the input time 
window, 3) The list of the decision channels that 

will be the variables to predict, 4) The list of 
channels to include in the patterns, in this way, the 
unnecessary variables in the time windows may be 
discarded, 5) The percentage of validation patterns 
that will be used for validation after the neural 
network training. The available patterns are 
divided into two groups: training patterns, that 
constitute the neural network inputs during the 
training phase; and validation patterns, which are 
used to verify the generalisation of the neural 
network after the training phase. There is the 
possibility of normalising and scaling the data in 
the obtained patterns. The parameters that the user 
may select are: 1) The maximum output and 
minimum output values that could appears in the 
output generated (in the patterns), 2) The 
maximum input and minimum input values that 
could appear under normal conditions per channel. 
The data is normalised using a lineal scaling 
function applied to the output range selected by 
the user. One could work with data without pre-
processing (raw data), simply eliminating the 
activation function of the output neurones. This 
function identity is supposed to be used 
exclusively for the output neurones, since in the 
case of being used with the neurones of the hidden 
layers, the neural network would become a mere 
lineal regression and the net would lose the 
property of non-linearity (the best property of the 
net). 
 
 
3.2. Statistical Analysis 
 
3.2.1. Test of lineal correlation 
 
The coefficient is calculated using the following 
formula: 

  
 The lineal correlation between all the variables 
was studied taking them two by two, and the result 
is shown in Table 2. The table is symmetrical with 
regards to the main diagonal. The shaded cells in 
the Table 2 represent values that indicate a 
possible lineal correlation between the variables. 
 
3.2.2. Test of  Spearman’s correlation 
 
An additional lineal correlation test has been used: 
Spearman's rank-order coefficient (or non-
parametric correlation). Non-parametric statistics 
work with ordinal variables. In the calculation of 
Spearman’s coefficient the data should be ordered 
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with the purpose of determining the order that 
corresponds to each value inside the sample. The 
formula to apply is: 

 
Where, ui = Range of the ith element of the variable 
U and vi = Range of the ith element of the variable 

V. 
 
The results obtained are shown in Table 3. We 
observed: 1) A good correlation between the 
following pairs of variables: Wind Speed/Wind 
Gust, Sunshine Duration/Net Atmospheric 
Radiation, Sunshine Duration/Solar Radiation and 
Net Atmospheric Radiation/Solar Radiation , 2) 

The visibility channel hardly presents any 
variation and therefore it will be eliminated.  
 
 
4.  NEURAL NETWORKS RESULTS 
 

 Starting from a group of patterns generated by 
DATACONV, we used the SNNS 4.0 simulator to 
obtain the neural network able to predict the wind 
speed 20 min in advance, with the minimum 
possible error. A feedforward network model was 
used due to its prestige and capacity to solve large 
amounts of problems. The algorithm used for the 
training was backpropagation. Specifically, three-
layer networks were used. The global set of 
patterns is divided into two randomly selected 
groups: the training group, corresponding to 90% 
of the patterns, and the validation group, 

corresponding to 10% of the patterns; so that the 
generalisation capacity of the network could be 
checked after the training phase. In order to check 
the goodness of the previous training in the 
validation phase, we used the Mean Squared Error 
(MSE) as a measure of the error made by the 
neural network. We used this measure because the 
SNSS gives us an indication of the evolution of 

the MSE value of the network for the training 
patterns. So we were able to appropriately 
compare the error obtained for the training set and 
the validation set. The MSE definition that we 
used is: 

 
 1 2 3 4 5 6 7 8 9 10 11 12 
1 1 0.895 0.046 0.004 -0.360 -0.034 0.038 0.114 0.179 0.017 0.153 -0.002 

2  1 0.181 0.048 -0.416 -0.054 0.038 0.123 0.187 0.057 0.153 0.015 

3   1 -0.059 -0.126 -0.084 -0.030 -0.113 -0.127 0.089 -0.160 -0.042 

4    1 -0.271 0.027 -0.006 0.171 0.210 -0.043 0.221 -0.244 

5     1 0.049 -0.054 -0.273 -0.219 0.139 -0.246 -0.172 

6      1 -0.004 0.045 0.017 -0.020 0.031 0.126 

7       1 0.014 0.014 -0.015 0.012 0.015 

8        1 0.741 -0.060 0.775 0.164 

9         1 -0.029 0.987 0.184 

10          1 -0.056 -0.018 

11           1 0.196 

12            1 

 
Table 2. Coefficients of lineal correlation. Size of the sample: 5,968 elements. 

 

             
 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 0.957 0.319 -0.015 -0.419 -0.146 0.039 0.119 0.182 0.040 0.172 -0.046 

2  1 0.413 -0.007 -0.432 -0.172 0.035 0.123 0.199 0.068 0.174 -0.034 

3   1 0.008 -0.208 -0.201 -0.034 -0.030 0.056 0.145 -0.011 -0.083 

4    1 -0.208 0.017 -0.008 0.177 0.188 -0.092 0.267 -0.184 

5     1 0.111 -0.067 -0.292 -0.144 0.216 -0.233 -0.107 

6      1 -0.002 0.083 -0.118 -0.079 -0.053 0.381 

7       1 0.007 0.007 -0.071 0.011 0.011 

8        1 0.652 -0.093 0.692 0.172 

9         1 0.087 0.900 0.107 

10          1 -0.018 -0.012 

11           1 0.089 

12            1 

 
Table 3. Spearman's rank-order coefficients. Size of the sample: 5,968 elements. 
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 That is, MSE is the sum of the squares of pattern 
errors divided by the total number of patterns apart 
from the number of free parameters of the network 
(i.e. the number of connections between neurones).  
 
 
4.1. Test 1 
 
In the first test we used almost all the data as input 
to the network, because the only knowledge that 
we have about the problem is what we obtained 
from the prior study phase of the data. Due to the 
aforementioned reason, only the data relative to 
the wind direction (in principle, the most chaotic 
variable), the temperature of the water (during a 
great part of the period of data capture the 
plumbing was disconnected or not working 
properly) and visibility (we have shown in the 
prior study phase that this is practically invariable) 
was discarded. From the correlated variables we 
selected only one representative, and we thus 
eliminated the historical data relative to wind gust, 
sunshine duration and solar radiation in the input 
to the network. In short, the inputs to the net are 
formed by the values of the variables 
corresponding to wind speed, air temperature, 
relative humidity, air pressure, atmospheric 
radiation and rain. We took values at two instants 
of time for each of the aforementioned variables. 
Therefore, the number of inputs to the net in this 
phase is equal to 12. In order to check the most 
appropriate parameters for prediction, we carried 
out a sweeping in the number of neurones of the 
hidden layer as an initial test. In this way, we 
trained different networks, varying the number of 
neurones of the hidden layer between 6 - 40. The 
results obtained are presented in Table 4. 

 
 Training Validation 

Hidden 
Neurones 

SSE MSE Time SSE MSE 

6 4.20492 0.00079 621 0.40401 0.00080 
7 4.13211 0.00079 711 0.41778 0.00085 
8 4.18084 0.00079 800 0.40358 0.00084 
9 4.16087 0.00078 878 0.40238 0.00087 
10 4.19372 0.00079 968 0.40465 0.00090 
11 4.18435 0.00079 1035 0.40323 0.00092 
….. …. … … … … 
19 4.16787 0.00078 1761 0.40428 0.00125 
20 4.19560 0.00079 1899 0.40043 0.00129 
…..      
40 4.17460 0.00078 3708 0.39885 0.01329 

 
Table 4. Results of Test 1 

 
In this test, the weights were initialised for each of 
the networks with random values within the range 

[-0.5, 0.5] and the number of iterations that were 
carried out was 5,000. We used 5,319 training 
patterns and 591 validation patterns. It can be 
observed that the successive increase in the 
number of neurones in the hidden layer hardly 
diminishes the training error, and also that the 
validation error increases considerably from 8 or 
10 hidden neurones. This phenomenon is known 
as overfitting, i.e. the better the fitting of the error 
of the training patterns, the worse is the capacity 
of generalisation. The training time it is 
approximately lineal and depends on the number 
of neurones of the hidden layer. 
 
4.2. Test 2 
 
In this second test we tried to analyse the effect of 
the number of iterations of the learning algorithm. 
We maintained the same structure for the network 
as in the previous test and checked the results 
obtained after 1,000 iterations, after 2,000 
iterations, and so forth. The obtained results are 
shown in Table 5: 
 

Number of Iterations MSE Training MSE Validation
1,000 0.00084 0.00097 
2,000 0.00081 0.00097 
3,000 0.00080 0.00096 
4,000 0.00080 0.00097 
5,000 0.00079 0.00097 
6,000 0.00079 0.00107 
7,000 0.00078 0.00096 
…. …. …. 

45,000 0.00064 0.00092 
50,000 0.00064 0.00091 
60,000 0.00063 0.00093 
70,000 0.00063 0.00090 
80,000 0.00063 0.00090 
90,000 0.00063 0.00091 
100,000 0.00062 0.00091 

 
Table 5. Results of Test 2 

 
A network with 12 neurones in the hidden layer 
was used for this test. We observed that the 
number of iterations has less influence on the 
obtained error than the number of neurones in the 
hidden layer. Since although the training error 
could be appreciably diminished when increasing 
the number of iterations, the same does not happen 
in the validation phase, in which the error remains 
more stable throughout the experiment than in the 
case shown in the previous test. 
 
4.3. Test 3 
 
At this point, it begins to be interesting to check 
the efficacy of the network with a lower number of 
inputs. Will the network be able to obtain similar 
results to those obtained until now?. In order to 
carry out this objective, a new group of patterns is 
obtained. This time, each pattern will be formed by 
the values of the variables: wind speed, air 
temperature and atmospheric pressure, in 3 serial 
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instants. Therefore, the number of inputs to the 
network decreases from 12 to 9 and the time 
window, on which the prediction is based, also 
increases. A single training of the network was 
carried out, in which 5,000 iterations were made 
and 12 neurones were used in the hidden layer. 
The MSEs were 0.00082 and 0.00068 for the 
training and validation phases, respectively. As we 
do not obtain a greater error on reducing the 
number of inputs (channels) to the network, we 
will try in the following tests to reduce this 
number as far as possible without losing either 
efficacy or generality. 
 
4.4. Test 4 
 
On our objective towards the reduction of the 
number of inputs, we began by discarding the 
values of the air temperature and atmospheric 
pressure in the first two time instants of the model 
used in the previous test. The results obtained with 
the variation of the number of hidden neurones are 
shown in Table 6. 
 

Hidden Neurones MSE Training MSE Validation
6 0.00082 0.00065 
8 0.00081 0.00066 
10 0.00081 0.00068 

 
Table 6. Results of Test 4 

 
It is proven that with the described inputs, the 
network has the same power of prediction as the 
networks explained in the previous tests. 
Therefore, we could decrease the number of inputs 
at least to the number that we have indicated in 
this test. 
4.5. Test 5 
 
This test attempts once more to reduce the number 
of neurones of the hidden layer even more. To do 
this, we used just two time values of the wind 
speed variable and the value at the last instant 
previous to the prediction of the atmospheric 
pressure variable. The results obtained are shown 
in Table 7. 
 

Hidden 
Neurones 

MSE 
training 

MSE 
validation 

6 0.00084 0.00056 
8 0.00084 0.00057 

 
Table 7.   Results of Test 5 

 
A slight degradation in the training error for the 
proposed network can be observed. However, the 
validation error is the best one obtained by far 
regarding all the networks studied during the 
phase of experimentation.  
 

4.6. Test 6 
 
Due to the final result presented as a conclusion of 
the previous test and for reasons of greater 
security, it is interesting to study if an increase in 
the number of inputs could improve the efficacy of 
the network. With this purpose in mind, we 
increased the input layer with an additional 
variable, corresponding to the air temperature at 
the last time instant used for the prediction. The 
input layer presents the following structure: 
 

Wind Speedt-1, Wind Speedt,  Atmospheric 
Pressuret, Air Temperaturet 

  
In this case, the error obtained in the training 
phase is slightly improved. However, the error of 
the validation phase increases once more.  
 
 
5. DISCUSSION OF THE RESULTS 
 
We selected, after the previous experiments, the 
following net model for wind speed prediction: a 
feedforward network with 3 inputs, 6 neurones in 
the hidden layer and 1 output. We obtained the 
best results, with regard to capacity of 
generalisation, with the above topology. Also, due 
to the limited number of connections, the training 
times are the shortest of all those tested. For the 
selected network the study of the errors is:  
 
MSE    0,00056 
Maximum error (absolute value)  0.1210 
Median error   0.0165 
Variance    0.000261 
 
The errors to which this data refers consist of 
a group of 591 patterns used for validation 
and that, therefore, were not presented to the 
network during the training process. The 
values correspond to the difference between 
the normalised real value and the normalised 
predicted value of the wind. After 
denormalising the data, we obtained: 
 
Maximum Error (absolute value)  6.0505 
Median error   0.8262 
Variance    0.0130 
 
It can be observed that the maximum error of the 
prediction for the validation set is quite high (6 
m./s. ≈ 22 Km./h.). This phenomenon was repeated 
for all the studied topologies. On the other hand, 
the obtained mean error is more than acceptable, 
being less than 1 m/s. Moreover, such a small 
variance value seems to indicate that the errors 
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have to a great degree grouped around the mean 
value. In order to check this, we carried out a 
study of the percentage of validation patterns 
whose error (in absolute values) is less than or 
equal to 1m/s; the resulting percentage being 
71.07%. If we increase the margin of error to 2 
m/s, the percentage of patterns that fulfil this rises 
to 92.92%. We present a comparative graph 
(Figure 1) of the wind speed for 50 validation 
patterns, which gives the real values versus the 
predicted values. 

Figure 1. Real values versus predicted values of 
the wind speed 

 
Likewise, we observe a factor that could 
negatively affect this good quality: the values of 
the patterns reside in a not too wide range, 
between 0 and 20; however, normalisation allows 
values of the wind speed between 0 and 40. 
 
 
6. CONCLUSIONS 
 
In these tests, almost all the data was used as input 
to the network, since the only knowledge that we 
have concerning the problem is that obtained in 
the statistical analysis phase. Thus, the only data 
discarded was that relative to: wind direction (the 
most chaotic variable), water temperature (the 
sensor was working incorrectly) and visibility 
(previous statistical analysis). We selected a 
representative set among the sets of correlated 
variables. The inputs of the network that we have 
left are: Wind Speed, Air Temperature, Relative 
Humidity, Air Pressure, Net Atmospheric 
Radiation and Rainfall. We took the values at two 
instants for each of the variables. The net has a 
single output, which is the wind speed in a near 

future. In spite of the small amount of data 
available up until the moment, a ratio of 
acceptably low prediction errors was obtained 
using neural networks. As a result of the tests that 
were carried out, we have reached the conclusion 
that in order to make a prediction with an adequate 
quality, it is sufficient to use the values of the 
following channels at the previous moment: Wind 
Speed, Air Temperature, Relative Humidity, Air 
Pressure, Net Atmospheric Radiation, Rain; and at 
the current moment: Wind Speed, Air 
Temperature, Relative Humidity, Air Pressure, Net 
Atmospheric Radiation and Rainfall. Our 
preliminary results have clearly indicated the 
feasibility of our approach.  
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