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Abstract

Recently, a number of researchers have investigated a class of algorithms that are based on multilevel graph
partitioning that have moderate computational complexity, and provide excellent graph partitions. However, there
exists little theoretical analysis that could explain the ability of multilevel algorithms to produce good partitions. In
this paper we present such an analysis. We show under certain reasonable assumptions that even if no refinement
is used in the uncoarsening phase, a good bisection of the coarser graph is worse than a good bisection of the finer
graph by at most a small factor. We also show that the size of a good vertex-separator of the coarse graph projected
to the finer graph (without performing refinement in the uncoarsening phase) is higher than the size of a good vertex-
separator of the finer graph by at most a small factor.

Keywords: Multilevel Partitioning Methods, Fill Reducing Ordering, Numerical Linear Algebra.

1 Introduction

Graph partitioning is an important problem that has extensive applications in many areas, including scientific comput-
ing, VLSI design, and task scheduling. The problem is to partition the vertices of a graph inp roughly equal parts,
such that the number of edges connecting vertices in different parts is minimized. For example, the solution of a sparse
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system of linear equationsAx = b via iterative methods on a parallel computer gives rise to a graph partitioning prob-
lem. A key step in each iteration of these methods is the multiplication of a sparse matrix and a (dense) vector. The
problem of minimizing communication in this step is identical to the problem of partitioning the graph corresponding
to the matrixA [17]. If parallel direct methods are used to solve a sparse system of equations, then a graph partitioning
algorithm can be used to compute a fill reducing ordering that lead to high degree of concurrency in the factorization
phase [17, 5].

The graph partitioning problem is NP-complete. However, many algorithms have been developed that find reason-
ably good partitions. Spectral methods [28, 27, 13] have been shown to be quite effective for partitioning unstructured
problems in a variety of applications, but have very high computational complexity. The MSB algorithm produces
partitions that are as good as those produced by the original spectral bisection, but it is one to two orders of magnitude
faster as it computes the Fiedler vector of the graph using a multilevel approach [28, 1]. Geometric partition methods
[10, 11, 29, 22, 21, 23] are quite fast but they often provide worse partitions than those of more expensive methods such
as spectral. Furthermore, geometric methods are applicable only if coordinate information for the graph is available.

Recently, a number of researches have investigated a class of algorithms that have moderate computational com-
plexity, and provide excellent (even better than spectral) graph partitions [3, 13, 14]. The basic idea behind these
algorithms is very simple. The graphG is first coarsened down to a few hundred vertices, a bisection of this much
smaller graph is computed, and then this partition is projected back towards the original graph (finer graph) by period-
ically refining the partition. Since the finer graph has more degrees of freedom, such refinements usually decrease the
edge-cut. This process, is graphically illustrated in Figure 1. These are called multilevel graph partitioning schemes.
In particular, in [14] we have developed a multilevel graph partitioning scheme that produces high quality partitions
that perform consistently better than the spectral methods, while requiring significantly less time (10 to 30 times less)
than even multilevel spectral bisection. We also used our multilevel graph partitioning scheme to compute fill reducing
orderings for sparse matrices [14]. Surprisingly, our scheme substantially outperforms the multiple minimum degree
algorithm [19], which is the most commonly used method for computing fill reducing orderings of a sparse matrix.

From the experiments presented in Section 2.1 and those of other researchers [3, 13], it is clear that multilevel
graph partitioning algorithms are able to find high quality partitions for a variety of unstructured graphs. However,
there exists little theoretical analysis that could explain the ability of multilevel algorithms to produce good partitions.
In this paper we present such an analysis. We show under certain reasonable assumptions that even if no refinement is
used in the uncoarsening phase, a good bisection of the coarser graph is worse than a good bisection of the finer graph
by at most a small factor. We also show that the size of a good vertex-separator of the coarse graph projected to the finer
graph (without performing refinement in the uncoarsening phase) is higher than the size of a good vertex-separator of
the finer graph by at most a small factor.

The rest of the paper is organized as follows. Section 2 briefly describes the multilevel graph bisection algorithm
and summarizes experimental performance results from [14]. Section 3 analyzes the bisections and vertex-separators
produced by the multilevel algorithm, and presents supporting experiments. Section 4 provides some concluding
remarks.

2 Multilevel Graph Bisection

In this section we briefly describe the various phases of the multilevel algorithm. The reader should refer to [14] for
further details.

Coarsening Phase During the coarsening phase, a sequence of smaller graphsGi = (Vi , Ei ), is constructed from
the original graphG0 = (V0, E0) such that|Vi | > |Vi+1|. GraphGi+1 is constructed fromGi by finding a maximal
matchingMi ⊆ Ei of Gi and collapsing together the vertices that are incident on each edge of the matching. In this
process no more than two vertices are collapsed together because a matching of a graph is a set of edges, no two of
which are incident on the same vertex. Vertices that are not incident on any edge of the matching, are simply copied
over toGi+1.

When verticesv, u ∈ Vi are collapsed to form vertexw ∈ Vi+1, the weight of vertexw is set to be equal to the sum
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Figure 1: The various phases of the multilevel graph bisection. During the coarsening phase, the size of the graph is successively
decreased; during the initial partitioning phase, a bisection of the smaller graph is computed; and during the uncoarsening phase,
the bisection is successively refined as it is projected to the larger graphs. During the uncoarsening phase the light lines indicate
projected partitions, and dark lines indicate partitions that were produced after refinement.

of the weights of verticesv andu, while the edges incident onw is set equal to the union of the edges incident onv

andu minus the edge(v, u). If there is an edge that is incident to both onv andu, then the weight of this edge is set
equal to the sum of the weights of these edges. Thus, during successive coarsening levels, the weight of both vertices
and edges increases. A vertex in a graphGi is callmultinode if it contains more than one vertex ofG0.

Maximal matchings can be computed in different ways [14]. The method used to compute the matching greatly
affects both the quality of the bisection, and the time required during the uncoarsening phase. Here we briefly describe
two such matching schemes. The quality of the bisection for these two schemes is analyzed in Section 3.

The first scheme, which we calledrandom matching(RM), computes the maximal matching by using a randomized
algorithm [3, 13]. The RM scheme works as follows. The vertices of the graph are visited in random order. If a vertex
u has not been matched yet, then an unmatched adjacent vertexv is randomly selected and the edge(u, v) is included
in the matching. If there is no unmatched adjacent vertexv, then vertexu remains unmatched. The second scheme,
which we callheavy-edge matching(HEM), computes a matchingMi , such that the weight of the edges inMi is
high. The HEM matching is computed using a randomized algorithm similar to the one used for RM. The vertices are
again visited in random order. However, instead of randomly matching a vertex with one of its adjacent unmatched
vertices, HEM matches it with the unmatched vertex that is connected with the heavier edge. As a result, the HEM
scheme reduces the sum of the weights of the edges in the coarser graph by a larger amount than RM. In [14], we
experimentally evaluated both the RM and HEM matching schemes, and we found that the HEM scheme produces
consistently better results than RM, and the amount of time spent in refinement is less than that of RM.

Initial Partitioning Phase The second phase of a multilevel algorithm is to compute a balanced bisection of the
coarsest graphGk = (Vk, Ek). In [14] we evaluated four different algorithms for partitioning the coarser graph. These
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are (a) spectral bisection (SB) [28, 1, 13], (b) Kernighan-Lin bisection (KL) [16, 4], (c) breadth-first region growing
(GGP) [5, 7], and (d) greedy region growing (GGGP) [14]. We found that even though all four algorithms produce
fairly similar initial partitions, the partitions produced by GGGP were consistently better.

Uncoarsening Phase During the uncoarsening phase, the partition of the coarsest graphGk is projected back
to the original graph by going through the graphsGk−1,Gk−2, . . . ,G1. Since each vertexu ∈ Vi contains a distinct
subsetU of vertices ofVi−1, projecting the partition ofGi to Gi−1 is done by simply assigning the vertices inU to
the same part that vertexu belongs to.

Furthermore, even if the partition ofGi is at a local minima, the partition ofGi−1 obtained by this projection may
not be at a local minima. SinceGi−1 is finer, it has more degrees of freedom that can be used to further improve
the partition and thus decrease the edge-cut. Hence, it may still be possible to improve the the partition ofGi−1

obtained by the projection by using local refinement heuristics. For this reason, after projecting a partition, a partition
refinement algorithm is used.

The basic purpose of a partition refinement algorithm is to select two subsets of vertices, one from each part such
that when swapped the resulting partition has smaller edge-cut. Specifically, ifA and B are the two parts of the
bisection, a refinement algorithm selectsA′ ⊂ A andB ′ ⊂ B such thatA\A′ ∪ B ′ andB\B ′ ∪ A′ is a bisection with
a smaller edge-cut. The setsA′ andB ′ are usually constructed incrementally, and a number of algorithms have been
proposed for their construction.

A class of algorithms that tend to produce very good results are those that are based on the Kernighan-Lin partition
algorithm [16, 4, 13]. These algorithms associate with each vertexv a quantity calledgain which is the decrease (or
increase) in the edge-cut ifv is moved to the other part. These algorithms proceed by repeatedly selecting vertices
with the highest gains from each part, inserting them intoA′ andB ′, and updating the gains of the remaining vertices.
In [14] we evaluated four different refinement algorithms that belong to this class and we found that some of them are
both effective in reducing the edge-cut and also require very little time.

Matrix Name No. of Vertices No. of Edges Description
3ELT 4720 13722 2D Finite element mesh
4ELT 15606 45878 2D Finite element mesh
BCSSTK30 28294 1007284 3D Stiffness matrix
BCSSTK32 44609 985046 3D Stiffness matrix
BRACK2 62631 366559 3D Finite element mesh
CANT 54195 1960797 3D Stiffness matrix
COPTER2 55476 352238 3D Finite element mesh
CYLINDER93 45594 1786726 3D Stiffness matrix
FINAN512 74752 261120 Linear programming
INPRO1 46949 1117809 3D Stiffness matrix
LHR71 70304 1449248 3D Coefficient matrix
MAP1 267241 334931 Highway network
ROTOR 99617 662431 3D Finite element mesh
S38584.1 22143 35608 Sequential circuit
SHELL93 181200 2313765 3D Stiffness matrix
SHYY161 76480 152002 CFD/Navier-Stokes
TROLL 213453 5885829 3D Stiffness matrix
WAVE 156317 1059331 3D Finite element mesh
WHITAKER3 9800 28989 2D Finite element mesh

Table 1: Various matrices used in evaluating the multilevel graph partitioning and sparse matrix ordering algorithm.

2.1 Comparison with Other Partitioning and Ordering Schemes

Despite the simplicity of the multilevel partitioning algorithm, it has been found to produce high quality partitions that
are equally good or better than those produced by more sophisticated algorithms that require much more time [28, 1].
In [14] we presented an extensive comparison between our multilevel algorithm that uses the HEM matching scheme
and other widely used schemes. In this section we briefly summarize these results for the matrices in Table 1.

Figure 2 shows the relative performance of our multilevel algorithm compared to multilevel spectral bisection
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algorithm (MSB) [1], implemented in the Chaco [12] graph partitioning package. For each matrix we plot the ratio of
the edge-cut of our multilevel algorithm to the edge-cut of the MSB algorithm. Ratios that are less than one indicate
that our multilevel algorithm produces better partitions than MSB. From this figure we can see that for almost all the
problems, our algorithm produces partitions that have smaller edge-cuts than those produced by MSB. In some cases,
the improvement is as high as 70%. Furthermore, the time required by our multilevel algorithm is significantly smaller
than that required by MSB. Our algorithm is usually 10 times faster for small problems, and 15 to 35 times faster for
larger problems [14].
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Figure 2: Quality of our multilevel algorithm compared to the multilevel spectral bisection algorithm. For each matrix, the ratio of
the cut-size of our multilevel algorithm to that of the MSB algorithm is plotted for 64-, 128- and 256-way partitions. Bars under the
baseline indicate that the multilevel algorithm performs better.

The multilevel graph partitioning algorithm can be used to find a fill reducing ordering for a symmetric sparse matrix
via recursive nested dissection. Figure 3 shows the quality of our multilevel nested dissection ordering algorithm
(MLND) compared to the multiple minimum degree (MMD) [6, 19], and spectral nested dissection (SND) [26]. These
graphs were produced by dividing the number of operations required to factor a matrix using MLND and SND to the
number of operations required by MMD. For both MLND and SND, a vertex separator is computed from an edge
separator by finding the minimum vertex cover [24, 25]. MMD has been found to produce very good orderings and is
widely used to order sparse matrices for factorization on serial computers, while SND is used to order sparse matrices
for factorization on parallel computers because it produces orderings with balanced elimination trees [15, 9].

From this figure we see that compared against MMD, our algorithm produces better orderings for 10 out of the
13 matrices, and compared against SND, it produces better ordering for all 13 matrices. Also, from Figure 3 we see
that MLND does consistently better than MMD as the size of the matrices increases and as the matrices become more
unstructured. When all 13 test matrices are considered, MMD produces orderings that require a total of 711 billion
operations, whereas the orderings produced by MLND require only 274 billion operations. Thus, the ensemble of 13
matrices can be factored roughly 2.6 times faster (even on a serial computer) if ordered with MLND.

However, another even more important advantage of MLND over MMD, is that it produces orderings that exhibit
significantly more concurrency than MMD. The elimination trees produced by MMD exhibit little concurrency (long
and slender), and are unbalanced so that subtree-to-subcube mappings lead to significant load imbalances [17, 5, 8].
One the other hand, orderings based on nested dissection produce elimination trees that have both more concurrency
and better balance [15, 9]. Therefore, when the factorization is performed in parallel, the better utilization of the
processors can cause the ratio of the run time of parallel factorization algorithms using MMD and MLND to be
substantially higher than the ratio of their respective operation counts.
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Figure 3: Quality of our multilevel nested dissection relative to the multiple minimum degree, and the spectral nested dissection
algorithm. Bars under the baseline indicate that the MLND algorithm performs better.

3 Analysis
The central theme of the analysis is as follows. If the graph is coarsen “perfectly”, then the coarsest graph will be an
exact replica of the finer (original) graph except that it will be smaller. Hence, an optimal bisection of this coarsest
(smaller) graph will also be an optimal bisection of the finer graph. If the graph has been coarsened (using a perfect
coarsening scheme) enough times, then it becomes small enough that we can find a “near-optimal” bisection in a
reasonable amount of time. This near-optimal bisection of the coarsest graph will also be a good bisection of the
original graph. If the coarsening scheme is not good, then it is entirely possible that a near-optimal bisection of the
coarsest graph is an arbitrarily bad bisection of the finer (original) graph. The matching strategies (RM and HEM)
used in our multilevel algorithm do not lead to optimal coarsening. Hence, a near-optimal bisection of the coarsest
graph obtained using RM or HEM, is not guaranteed to be a near-optimal bisection of the finer graph. The analysis
in Section 3.2 shows that under some reasonable assumptions, the edge-cut of a near-optimal bisection of the coarser
graph is larger than the edge-cut of a near-optimal bisection of the finer graph only by a small constant factor. The
analysis also show that this “penalty” factor is even smaller when the HEM scheme is used (instead of RM).

Similarly, if the graph is coarsened perfectly, then a near-optimal vertex separator of the coarser graph can be
projected to the finer graph to construct a near-optimal separator of the finer graph1. As for the case of the edge-cut,
if the coarsening scheme is not good, then the projected separator of the coarser graph can lead to an arbitrarily bad
separator of the finer graph. The vertex-separator analysis in Section 3.3 shows that under reasonable assumptions, the
projection of a near-optimal separator of the coarser graph leads to a separator for the finer graph that is worse than a
near-optimal separator (for the finer graph) only by a small constant factor.

Both of these analyses show that even if no refinement is performed during the uncoarsening phase, the bisection
of the coarsest graph is also a good bisection of the original graph, especially if HEM is used for coarsening. These
observations are supported by experimental results in both cases.

3.1 Definitions and Assumptions

Analyzing the quality of the bisections produced by multilevel graph partitioning algorithms is particularly hard, and
can only be done if certain assumptions are made about the original graphs and the coarsening process. In the rest of
this section we present these assumptions and some notation that will be used throughout the analysis.

1A straightforward projection of the separator to the finer graph will simply increase the number of vertices in the separator. But as discussed
in Section 3.3, unnecessary vertices from the projected separator can be dropped to construct a good separator. It can be shown that if the separator
of the coarsest graph is optimal and the coarsest graph was constructed by perfect matching, after dropping these “extra” vertices, the resulting
separator will be an optimal separator of the finer graph,
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Let G0 = (V0, E0) be the original graph, andGi = (Vi , Ei ) be thei th level coarser graph. For each graphGi , let
W (Mi ) be the sum of the weights of the edges in the matching used to obtainGi+1, W (Ei ) be the sum of the weights
of the edges,ωi be the average edge-weight,di be the average degree of a vertex, andCi be the size of the edge-cut
(i.e., the weight of the edges crossing parts).

To simplify the presentation of the analysis we assume that at each successive level of coarsening, the number of
vertices reduce by a factor of 2,i.e., |Vi | = 2|Vi+1|. Consequently, the matching at leveli contains|Vi |/2 edges;
hence, the weight of the matching is equal toW (Mi ) = δωi |Vi |/2, whereδ is a constant that captures the properties
of RM and HEM. In particular,δ = 1 for RM (because the matched edges in RM are chosen randomly), andδ ≥ 1 for
HEM (because the HEM prefers edges with higher weight). Also, to simplify the analysis we assume that the average
degree of the successive coarser graphs changes at a constant rate,i.e., di/di+1 = β. Note that ifβ < 1, the average
degree increases, ifβ > 1 the average degree decreases, and ifβ = 1 the average degree remains the same.

In the rest of the analysis we assume that the following are true.

Assumption 1 (Small Separators) There are constantsα andγ such that each graphGi has a balanced separa-
tor of size less than or equal toα|Vi |γ .

Assumption 2 (Size of the Edge-Cut) The edge-cut ofGi is proportional toαdiωi |Vi |γ . That is,Ci is propor-
tional to the size of the balanced separator, the average degree of the graph, and the average weight of each edge.

In the case of graphs arising in finite element applications, the small separator assumption is true. In particular, for
planar graphsγ = 0.5 [18], and for the graphs that correspond to 3D finite element meshes,γ = 2/3 [22]. Assump-
tion 2 follows directly from Assumption 1 and corresponds to the bisection in which the separator is the boundary of
one of the two parts. For graphs arising in finite element applications, the edge-cut cannot be asymptotically smaller
because vertices have bounded degrees, and this will lead to an asymptotically smaller vertex separator.

3.2 Edge-Cut Analysis

The multilevel algorithm can be viewed as an approximation algorithm since every successively coarse graph becomes
a successively rougher approximation of the original graph. Since more and more features of the original graph are
eliminated in this process, the coarser graphs have bisections with larger edge-cut than the original graph. It is natural
to ask how bad can the edge-cut of the coarser graph get with respect to the edge-cut of the original graph. In the rest
of this section we establish a relation betweenCi andCi−1 and we use it to expressCi as a function ofC0 for graphs
arising in 2D and 3D finite element applications.

From Assumption 2 we know that the edge-cut ofGi depends on the average degree of its vertices (di ), and on the
average weight of its edges (ωi ). From the assumptions in Section 3.1 we know howdi is related todi−1; thus, in
order to expressCi as a function ofCi−1 we need to compute howωi andωi−1 are related. From the definition ofωi

we have

ωi = W (Ei )

|Vi |(di/2)
.

Recall thatGi is obtained fromGi−1 by collapsing the vertices incident on the edges of the matchingMi−1. Thus, by
moving fromGi−1 to Gi , the sum of the weights of the edges is decreased byW (Mi−1). Hence,W (Ei ) is

W (Ei ) = W (Ei−1)−W (Mi−1) = di−1ωi−1
|Vi−1|

2
− δωi−1

|Vi−1|
2
= (di−1 − δ)ωi−1

|Vi−1|
2

. (1)

By substituting this equation into the definition ofωi we have

ωi = (di−1 − δ)|Vi−1|ωi−1

di |Vi | = 2
di−1 − δ

di
ωi−1 = 2β

(
1− δβ

i−1

d0

)
ωi−1. (2)

From this equation and Assumption 2 we can prove the following theorem that expressCi as a function ofCi−1.
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Theorem 1 The size of the edge-cut for graphGi for i ≥ 1 is

Ci ∝ 21−γ
(

1− δβ
i−1

d0

)
Ci−1. (3)

Proof.

Ci ∝ αdiωi |Vi |γ = α
di−1

β
2β

(
1− δβ

i−1

d0

)
ωi−1|Vi |γ = 2

(
1− δβ

i−1

d0

)
(αdi−1ωi−1|Vi−1|γ )2−γ

SinceCi−1 ∝ αdi−1ωi−1|Vi−1|γ we have that

Ci ∝ 21−γ
(

1− δβ
i−1

d0

)
Ci−1.

Equation 3 reveals significant information about the quality of edge-cut when it is computed at a coarse graph. In
particular, for a given graph, the increase in the edge-cut between successive coarse graphs decreases as eitherδ or
β increases. That is, if the weight of the edges in the independent set used to coarsen the graph is much higher than
the average weight of the edges (δ > 1), then the penalty paid for finding a partition at the coarse graph is smaller.
Similarly, as the average degree of the coarse graph decreases (β > 1), again the increase of the edge-cut at the coarse
graph is smaller. In the next two sections we see how Equation 3 applies to graphs that correspond to 2D and 3D finite
element meshes with triangular and tetrahedron elements, respectively.

3.2.1 2D Finite Element Meshes

The 2D finite elements meshes correspond to planar graphs. Furthermore, when the elements of the mesh are triangles
(e.g., when the finite element mesh is generated using Delaunay triangulation), then the graph that corresponds to
the interior of the mesh is maximally planar. For the rest of this section we use this correspondence and we only
concentrate on maximally planar graphs.

Planar graphs have been extensively studied and a great deal of properties are known about them. In particular, for
maximally planar graphsγ = 0.5 [18], andd0 ≈ 6. Also, in [18] it was shown that edge contraction also preserves
maximal planarity; thus,β = 1.

From Equation 3, and for RM (i.e., δ = 1), we have that

C2D−RM
i ∝ 1.18C2D−RM

i−1 = 1.18iC0 (4)

Thus, the edge-cut increases only by 18% at each successive coarsening level. For instance, the edge-cut after 10
coarsening levels is only 5.2 times worse than the edge-cut of the original graph. However, the size ofG10 is smaller
thanG0 by a factor of 1024, so it is much quicker to find a good partition ofG10 than ofG0.

As discussed in Section 3.2, the increase in the edge-cut at successive coarsening levels is smaller when HEM
is used, because in this caseδ > 1. For instance ifδ = 1.3 (as observed in our experiments), thenC2D−H E M

i ∝
1.11C2D−H E M

i−1 . In this case, after 10 coarsening levels, the edge-cut is only 2.8 times worse than the edge-cut ofG0.

3.2.2 3D Finite Element Meshes

The graphs that correspond to 3D finite element meshes do not correspond to any extensively studied class of graphs
as the 2D finite element graphs did. Nevertheless, for these type of graphs it is known thatγ = 2/3 [22] and that for
most finite element applicationsd0 ranges between 12 and 16 [2]. However, in order to apply Equation 3, we need
to know the value ofβ. Unlike maximally planar graphs, for which the average degree of successive coarser graphs
remains the same, the average degree of 3D finite element graphs does not always remain the same. In particular, if
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d0 > 12, and RM is used to coarsen the graph,di increases in successive coarser graphs. However, if HEM is used to
coarsen the graph, then the average degree of the graph actually decreases in successive coarsening levels as discussed
later.

Theorem 2 (Average Degree of 3D Graphs) The average degree of the interior vertices of thei th level coarser
graphGi , of a graphG0 that corresponds to a 3D finite element mesh with tetrahedron elements is

di = 2

(
di−1 − 7+ 12

di−1

)
. (5)

Proof. Consider a 3D finite element mesh with tetrahedron elements. Let,8i be the number of tetrahedrons in graph
Gi . The number of interior vertices, edges, and tetrahedrons are related by Euler’s formula [2] as follows

|Ei | = |8i | + |Vi |. (6)

Let ζi be the average number of triangular phases incident on an edge of graphGi . Since, each tetrahedron has 6
edges,ζi is equal to

ζi = 6|8i |
|Ei | =

6(|Ei | − |Vi |)
|Ei | = 6− 12

di
. (7)

During coarsening, for each edge that gets collapsed,ζi triangles are eliminated. Consequently,ζi edges are eliminated,
in addition to the one that gets collapsed. Therefore, the number of edges at the next level coarser graph is

|Ei | = |Ei−1| − (ζi−1 + 1)
|Vi−1|

2
= |Ei−1| −

(
7− 12

di−1

) |Ei−1|
di−1

=
(

1− 7

di−1
+ 12

d2
i−1

)
|Ei−1|. (8)

Therefore, the degree of thei th level coarse graph is

di = 2|Ei |
|Vi | =

2(1− 7/di−1+ 12/d2
i−1)|Ei |

|Vi−1|/2 = 2

(
1− 7

di−1
+ 12

d2
i−1

)
di−1 = 2

(
di−1 − 7+ 12

di−1

)
.

From Equation 5 we have that whend0 = 12, di = 12 for all coarse graphs. However, ifd0 < 12, di decreases
whereas ifd0 > 12,di increases at each successive coarse graph.

Thus, whend0 = 12,β = 1, and from Equation 3 we have that the edge-cut for 3D finite element graphs when RM
is used to coarsen the graph (i.e., δ = 1) is

C3D−RM
i ∝ 1.15C3D−RM

i−1 = 1.15iC3D−RM
0 . (9)

Comparing this equation with Equation 4, we see that the increase in the edge-cut at successive coarsening levels is
smaller for 3D graphs than it is for 2D graphs. As it was the case with 2D graphs, the increase in the edge-cut is small,
compared to the reduction in the graph size. If HEM is used to coarsen the graph, thenδ > 1, and the decrease in
quality is even smaller.

The increase in the average degree of the graph can be controlled if coarsening is done in a certain way. In deriving
Equation 8, we assumed that each edge in the matching is such that the number of triangular phases incident on it
is equal to the average (ζi ). This assumption is valid when RM is used to coarsen the graph which randomly selects
unmatched edges. However, a different matching can be used that selects those edges that have a large number of
triangular phases incident on it. In this case, the number of edges will be smaller than that indicated by Equation 8,
leading to a smaller degreedi .

We claim that by selecting edges with high weight, HEM tends to select edges that have a large number of triangular
phases incident on them. To see this, consider the first level coarser graphG1. Let eh , andel be two edges ofG1, such
thateh has higher weight thanel . Let Eh and El be the subsets of edges from the original graphG0 that have been
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merged to formeh andel respectively. Note that|Eh | > |El |, sinceeh has larger weight thatel . Due to the nature
of the coarsening, the number of triangular phases incident oneh (el ) is the union of the triangular phases incident on
the edges ofEh (El ) that have not been collapsed during the coarsening. Since|Eh | > |El |, the number of triangular
phases incident oneh is larger than those incident onel . Thus, HEM creates coarser graphs that have smaller average
degree than those created by RM. In fact, our experiments show (Figure 5) that for HEM, the average degree of the
coarse graphs not only does not increase but it actually decreases.

3.2.3 Experimental Results

To verify the analysis presented in Sections 3.2.1 and 3.2.2, we instrumented our multilevel algorithm to report various
statistics during coarsening. In the rest of this section we present results for the following four matrices:4ELT is a
2D finite element mesh;BRACK2 andWAVE are 3D finite element meshes; andCANT is the graph that corresponds
to a 3D finite element mesh with multiple degrees of freedom per mesh point. This set of matrices is a representative
sample of the matrices shown in Table 1.
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Figure 4: The increase in the edge-cut at successive coarsening levels.

Figure 4 shows the edge-cutCi for successive coarsening levels for both the RM and HEM coarsening schemes.
The edge-cut at thei th level was obtained by performingi coarsening levels to obtainGi , and then using our multilevel
algorithm to find a good partition of this coarser graph2. The plotted value ofCi is the minimum of the edge-cuts
produced by the multilevel algorithm and SB. From this graph we see that as indicated by our analysis, for all four
matrices, the edge-cutCi increases slowly at successive coarsening levels. When RM is used to coarsen the graphs,
the edge-cut at the last coarsening level is only 1.8, 2.4, 2.9, and 4.2 times worse thanC0 for 4ELT, BRACK2, WAVE,
andCANT respectively. This increase in the edge-cut is actually lower than the one predicted by the analysis. This
should not be surprising since Equation 3 is only an upper bound. Also, from Figure 4 we see that when HEM is
used to coarsen the graph, the edge-cuts at the coarser graphs and their rate of increase at successive coarsening levels
are smaller than those of the RM coarsening scheme. This is also predicted by our analysis since for HEM,δ > 1.
Furthermore, for 3D finite element meshes, HEM tends to decrease the average degree of the graph with successive
coarsening levels as shown in Figure 5.

Figure 5 shows the average degree of the graphs at successive coarsening levels for both RM and HEM. For4ELT,
we see that for both coarsening schemes, the average degrees are similar and they slowly decrease. This decrease is
due to the boundary elements of the mesh. However, for the 3D finite element meshes (BRACK2 andWAVE), the
average degree of the graphs when RM is used to coarsen them, increases at successive coarsening levels. This is
consistent with the analysis presented in Section 3.2.2, which indicated that the average degree of 3D finite element
meshes increases when RM is used. Also, comparing the degrees ofBRACK2 andWAVE, we see that the degrees
increase at a higher rate ifd0 is high. This again follows directly from Equation 5. However, the increase in the average

2We used the multilevel graph bisection to compute effectively a new-optimal separator for the graph, since it has the best performance and
reasonable cost. We also used the spectral bisection (SB) on each coarse graph to check if our multilevel algorithm was producing better partitions.
In most cases, the multilevel algorithm produced better partitions than the spectral algorithm.
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Figure 5: The average degrees at successive coarsening levels.

degree of the graph tappers off after a number of coarsening levels because of the boundary elements (like it was for
the 2D case).

Our analysis in Section 3.2.2 also predicted that if HEM is used to coarsen the graph, then the average degree of
3D finite element meshes will increase at a slower rate than RM. This is clearly illustrated in Figure 5. The average
degree of the graph increases for the 1st level coarser graph (d1) because HEM and RM are equivalent for the first
coarsening level (initially all edges have weight of one). The average degree of subsequent coarser graphs, not only
do not increase but actually they decrease quite substantially. The advantages of the decreasing average degree can
be seen by comparing the edge-cut of RM and HEM at the coarsest graph forBRACK2, WAVE, andCANT. For
instance, at the last coarsening level, the HEM edge-cut forWAVE is only 1.8 times higher while the RM edge-cut is
2.9 times higher.

SinceCANT is the graph of the coefficient matrix of a 3D mesh with multiple degrees of freedom per mesh-point,
it does not correspond to the graphs analyzed in Section 3.2.2. Consequently, Equations 9 and 5 do not apply for this
type of graphs. However, Equation 3 still applies, but determining the average degree of successive coarser graphs is
particularly difficult since Euler’s formula is not valid in this case. However, from Figures 4 and 5 we can see how
the edge-cut and the average degree of the graph changes at successive coarsening levels. From Figure 5 we can see
that for RM,di increases during the first five coarsening levels, and then decreases, whereas for HEM,di decreases
rapidly after the first coarsening level. The advantage of HEM over RM can be easily seen in Figure 4 for which the
HEM edge-cut is only 1.9 times higher while the RM edge-cut is 4.2 times higher. As it was the case for 3D meshes
(Section 3.2.2), the average degree of successive coarser graphs decreases because HEM selects edges that have a large
number of triangular phases incident on them while RM does not.
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Figure 6: The average weight of the adjacency lists at successive coarsening levels. The weight of the adjacency list at level i is
diωi .

Finally, Figure 6 shows the average weight of the adjacency list of a vertex for successive coarsening levels. Recall
that the average weight of the adjacency list at thei th level is equal todiωi and from Assumption 2 it is directly related
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to the edge-cut of the graph. From Figure 6 we see that for all four matrices, the weight of the adjacency lists when
HEM is used to coarsen the graph is smaller than that for RM.

3.3 Vertex Separator Analysis

In the previous section we showed that the edge-cut of the coarser graph is higher than the edge-cut of the original
graphG0 by a small factor. Consequently, from Assumption 2, this implies that the vertex separator induced by the
bisection of the coarser graph is larger than the separator of the original graph by a small factor. In this section we
analyze the coarsening process by looking at the vertex separators. In particular, we will show that the vertex separator
obtained in the coarse graph is also a small vertex separator in the original graph. This analysis is focused on maximal
planar graphs that satisfy the assumptions in Section 3. Furthermore, it is assumed that the separator forms a simple
path or cycle [20]. This analysis can be extended to the graphs that correspond to 3D finite element meshes, when the
separators are simple surfaces.

Consider thekth level coarse graphGk = (Vk, Ek). From the small separator assumption, we know thatGk has
a separatorSk that contains no more thanα

√|Vk | vertices (recall thatγ = 0.5 for planar graphs [18]). LetS′0 be the
union of the vertices ofSk projected toG0. S′0 forms a balanced separator ofG0 and its size is

|S′0| = 2k |Sk | ≤ α2k
√|Vk | = α2k

√
|V0|/2k = α(√2)k

√|V0|.

However, applying the small separator assumption to the original graph, the size of the separator ofG0 is |S0| ≤
α
√|V0|. In the limiting case, whenk = O(log |V0|), we have that(

√
2)k = √|V0|, in which case|S′0| ≤ O(|V0|).

Thus,S′0 containsO(
√|V0|) more vertices than a small separator. However, not all the vertices inS′0 are required to

form a separator forG0, and a smaller separator can be constructed fromS′0 by droppingsome vertices.

(e) Projected Separator

(f) Dropping of Vertices (g) Refined Separator

(a) Original Graph

(d) Coarse Separator

(b) Random Matching (c) Coarse Graph

Figure 7: The sequence of one level coarsening, finding a separator for the coarse graph, projecting the separator to the original
graph, and refining the separator by dropping vertices.
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Figure 7 illustrates the basic idea behind the processes of vertex dropping. In this figure, the 1st level coarser
graph is constructed using RM, and a separator of this coarse graph is computed (Figure 7(d)). Figure 7(e) shows the
projected separatorS′0 that corresponds toS1. Note that not all the vertices ofS′0 are necessary to form a separator
for G0. As Figure 7(f) illustrates certain vertices can be dropped. In the rest of this section we compute the average
number of vertices being dropped in successive uncoarsening levels.

Consider the graphG1, and letP1 be a simple path or cycle ofG1. Let F be the subgraph ofG0 induced by the
vertices ofP1 projected onto graphG0. The subgraphF contains 2|P1| vertices, and on the average these vertices do
not form a simple path or cycle. In fact, the following lemma holds.

Lemma 1 (Path Projection) Let G1 be a one level coarse graph obtained fromG0 using random perfect coarsen-
ing, and letP1 be a simple path ofG1, between verticesu1 andv1. Let F be the subgraph ofG0 that hasP1 as its
minor, and letu0 andv0 be the vertices ofF that are mapped ontou1 andv1 respectively. On the average, the shortest
path betweenu0 andv0 in F contains less than1.5|P1| vertices.

Proof. Let EP1 be the edges ofP1, EF be the edges ofF , andm = |P1|. SinceP1 is a simple path it containsm − 1
edges; thusW (EP1) = (m − 1)ω1. From Equation 2 in the case of maximally planar graphs, we have thatω1 = 5/3;
thus,W (EP1) = 5(m − 1)/3.

The setEF contains (a) all the edges inEP1 and (b) the edges of the matching used to coarsen the graph, that
match vertices ofF . Thus,|EF | = W (EF ) = W (EP1) + m = 8m/3− 5/3 ≈ 8m/3. If the vertices ofF formed
a simple path betweenu0 andv0, then|EF | should be equal to 2m − 1, howeverEF contains an extra 2m/3 edges.
Figure 8(a)-(b) illustrates this process. In Figure 8(a) the pathP1 betweenu1 andv1 is shown. The subgraphF of G0

that hasP1 as its minor is shown in Figure 8(b).
Assume there is a simple pathP in F betweenu0 andv0 that traverses all the vertices ofF . P contains 2m vertices

and 2m − 1 edges. Thus, there is an additional 2m/3 edges inEF not included inP that can be used to decrease the
length of the path betweenu0 andv0 (Figure 8(c)). We will refer to these 2m/3 edges asjump-edges.

Consider the shortest path fromu0 to v0 in F . This path, upon entering a vertexwi , it will go to vertexwi+2 if
there is a jump-edge starting atwi . In this case, a single edge traversal covers two vertices ofP, namelywi andwi+1.
If there is no jump-edge starting atwi , the shortest path will go to vertexwi+1, in which case it covers only one vertex
of P, namelywi . The probabilityp that a vertex is the source of a jump-edge is

p = 2m/3

2m − 2
≈ 1

3
,

since each one of the 2m/3 jump-edges can start from any vertex excluding the two last vertices. Thus, a shortest path
from u0 to v0 that enters vertexwi , goes to vertexwi+1 with probability 1− p, and to vertexwi+2 with probability
p. The expected number of vertices that will be covered in a single step is(1− p)+ 2p = 4/3. The total number of
stepsk required to cover all 2m vertices inP is

4

3
k = 2m ⇒ k = 3

2
m = 1.5m.

Therefore, the shortest path fromu0 to v0 contains 1.5m vertices on the average.
In the case that there is no simple path inF between verticesu0 andv0 that traverses all the vertices, then the length

of the shortest path betweenu0 andv0 will actually be smaller than 1.5m.

The path projection lemma is very powerful and can be used to compute the size of the projected separator as a
function of the separator of the coarser graph. Furthermore, as the next lemma shows, it can also be used to show
that the sub-optimality of a separator at a coarser graph, decreases as this separator is projected to successively finer
graphs.

Lemma 2 (Simple Separator) LetGk be thek level coarse graph obtained fromG0 using random matching. There
is a separator forG0 whose size is bounded byφ0.75k|V0| for some constantφ.

13



171615 18

2 16146 8 181210

321

1 9753

4 10 11 12 1395 6 7 8

11

(b) Projected Path Induces a Subgraph 

14

6 14

(d) Shortest Path

(a) Coarse Path

(c) Projected Path with Jump-Edges

16 18

171513

122 4 8 10

97531 15

P

0u

1v

u

1

u1

v

0

v0

F

v

0

0

u0

Figure 8: Outline of the proof of the path projection lemma. (a) A simple path P1 between vertices u1 and v1 in the coarse graph.
(b) The graph F induced in the next level finer graph by expanding the vertices and edges in P1. Also, the dark edges show a
simple path between u0 and v1 that traverses all the vertices, while the light edges are other edges of F not in this path. (c) A
redrawing of F that clearly shows the path between u0 and v0 and the edges not belonging in the path (jump-edges). (d) The
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Proof. Let Sk be a balanced separator that forms a simple path or cycle inGk . There is a constantφ < 1 such that,
|Sk | ≤ φ|Vk| = φ|V0|/2k. Since,Gk was obtained fromGk−1 using random matching, Lemma 1 applies, yielding
a separatorSk−1 of sizeφ1.5|Vk|. However, since RM is used to coarsen the graph, the path projection lemma also
holds forSk−1 when projected toGk−2. Thus, byk applications of Lemma 1 we have that the size of the projected
separatorS0 of the original graph is

|S0| ≤ φ1.5k|Vk | = φ

(
1.5

2

)k

|V0| = φ0.75k|V0|.

The simple separator lemma is interesting when we consider the case in whichk = O(logn). In this case, the
separator forG0 is bounded by

|S0| = φ0.75k|V0| = φ0.75log|V0||V0| = φ|V0|log 0.75|V0| ≤ φ|V0|0.59.

Thus, even though the separator ofGk containedO(|Vk |) vertices, this same separator when it is projected onto the
original graph contains onlyO(|V0|0.59) vertices. Hence, ifk is sufficiently large, a suboptimal separator ofGk does
not significantly affect the size of the separator of the graphG0.

3.3.1 The Nature of a Good Separator

The key element in the proof of the path projection lemma is that the edge-weight of the path in question was average.
This is certainly true for any simple path but is it true for a separator path as well?

The answer to this question depends on the algorithm used to compute the vertex separator. In the multilevel
algorithm, the vertex separator is computed as being the path along the boundary of the bisection. Since, the bisection
is computed so that the number of edges crossing the two parts is minimized, it is not unreasonable to assume that an
equal or larger amount of edge-weight does not cross the boundary. Because of this, the separator path obtained from
the partition boundary should have on the average at least as much weight as any other path.

Our experimental results verify this observation. In fact, for all coarsening schemes, if we look at the number of
vertices as being projected from a coarse graph to the next level finer graph, the increase in the separator size is almost
always bounded by 1.5. Hence, assuming that the edge-weight of the separator path is no less than that of any other
path, the following lemma is true.
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Lemma 3 The separator ofG0 obtained by projecting the separator ofGk is bounded byα(1.06)k
√|V0|.

Proof. From the proof of Lemma 2, we have that|S0| ≤ 1.5k|Sk |. From Assumption 1 we know that there is a
separator of size|Sk | ≤ α√|Vk |. Thus,

|S0| ≤ 1.5k|Sk | ≤ α1.5k
√|Vk | ≤ α

(
1.5√

2

)k √|V0| ≤ α(1.06)k
√|V0|.

3.3.2 Effect of Refinement

When a partition ofGk is projected to the next level finer graphGk−1, the algorithm described in Section 2, refines
the partition using a scheme that tries to decrease the edge-cut, by moving vertices along the boundary of the cut. This
refinement algorithms has two effects. First it tends to further decrease the number of boundary vertices, and second
because it minimizes the edge-cut, it increases the edge-weight of the path formed by the vertices along the partition
boundary. As a result, even when the coarsening is not perfectly random, by increasing the boundary edge-weight,
more vertices can be dropped from the boundary of theGk−2 graph.

In our experiments we observed that when refinement is performed, the increase in the number of boundary vertices
is usually no more than by a factor of 1.5 and in some cases it is smaller than

√
2. This is why, the separator of graph

G0 in all of our experiments was less thanα
√

n.

3.3.3 Experimental Results

To verify the correctness of Lemmas 1, and 3 we performed experiments with three different planar graphs that have
triangular faces. As we did throughout the analysis in this section, each vertexvi ∈ Vi is treated as a single vertex,
irrespective of its weight. Furthermore, the separators were computed as the vertices of the first part that lay along the
boundary of the bisection. That is, ifV0 is bisected intoA andB, then the setA′ ⊂ A of vertices that are connected to
some vertices ofB is taken as the separator.
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Figure 9: The increase in the number of nodes in the separator at successive uncoarsening levels.

Figure 9 shows how the size of the separator increases at successive coarsening levels. For each matrix, three
curves are shown. The two of them, labeled RM and HEM, correspond to random matching and heavy-edge matching
with no refinement during the uncoarsening phase, while the one labeled HEM-R, corresponds to heavy-edge with
boundary greedy refinement [14]. From this graph, we see that at successive uncoarsening levels, the size of the
separator increases by a factor smaller than 2. For example, when RM is used for4ELT, going from the 7th to the
8th uncoarsening level, the separator increases from 92 to 135 vertices—an increase by a factor of 1.47. Furthermore,
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comparing RM with HEM, we have that HEM consistently produces smaller separators, which is not surprising, since
HEM finds bisections with smaller edge-cuts (Section 3.2). Also, when boundary refinement is used (HEM-R), the
size of the final separator is much smaller, and tends to increase at a lower rate as suggested in Section 3.3.2.
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Figure 10: The rate of increase of the separator compared to the ideal increase.

Note that for all the graphs in Figure 9, the size of the separator increases much slower than 1.5 for the first few
coarsening levels. This is because the size of the graphs during these last levels does not decrease very fast. For
this reason we constructed the graphs shown in Figure 10. In this figure, for each graph and matching scheme we
plotted the relative increase of the size of the separator for successive uncoarsening levels, over the size of the initial
separator. Also, for each graph and matching scheme we computed the ideal relative increase so that theα

√|Vi | bound
is maintained. We computed this as follows. IfGk is the coarsest graph then, the ideal separator ofGi is

|Si | ≤ α
√|Vi | = α

√|Vk|
√
|Vi |
|Vk| =

√
|Vi |
|Vk| |Sk |.

Thus,|Si | is higher by a factor of
√|Vi |/|Vk|, and this is the ideal relative increase plotted in Figure 10. Since, RM and

HEM lead to coarser graphs that have slightly different number of vertices (i.e., the maximal matching computed by
RM and HEM are not of the same size), each matching scheme has a different ideal curve. From these graphs we see
that, the overall rate of increase in the size of the separator is worse than the ideal increase. However, the difference
is usually very small. The graph forWHITAKER3 is particularly interesting, because both RM and HEM lead to a
relatively high increase (a factor of two) in the size of the separator over the ideal increase. The reason for that, is
that the initial separator ofWHITAKER3 is actually quite small compared to the size of the graph. In particular, the
coarsest graph for RM has 88 vertices while the separator has 7, and the coarsest graph for HEM has 118 vertices
while the separator has only 6. Consequently, vertices cannot be dropped at the rate dictated by the ideal curve, since
it will lead to separators that are contradictory small.
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Figure 11: The rate of increase of the separator for 3D finite element meshes.

Finally, Figure 11 shows how the size of the separator increases at successive uncoarsening levels for graphs that
correspond to 3D finite element meshes. As it was the case for planar graphs, the size of the separator decreases by
a factor smaller than two at each successive uncoarsening level. Also, HEM finds smaller separators at the coarsest
graph, and the size of the separator increases at a slower rate than RM. Also, in the case of HEM-R, the size of the
separator increases very slowly. For 3D graphs, the ideal increase of the separator size should be 20.75 ≈ 1.68 at
each successive uncoarsening level. From these graphs, we that the rate of increase is usually higher than that by a
small factor. For instance, in the case ofBCSSTK31 and RM, going from the 9th to the 10th uncoarsening level, the
separator increased from 989 vertices to 1698 vertices, an increase by a factor of 1.72.

4 Concluding Remarks

The analysis presented in this paper shows that a good partition of the coarsest graph leads to a reasonably good
partition of the finer graph, provided the coarsening scheme is a reasonable one. In the multilevel algorithm, this
projected partition of the finer graph is actually even better than predicted because refinement during the uncoarsening
phase further improves it. Hence the overall partition computed by multilevel scheme is often quite close to the optimal
partition.

It may appear that the random matching (RM) scheme does not use the information about the structure of the graph,
as its name implies that it is random. But in RM, two vertices are collapsed only if they are connected. Thus, even RM
uses information about the structure of the graph during coarsening. HEM does even better, as it tries to keep densely
connected set of vertices together.

Note that it is possible to find matching schemes that will lead to arbitrarily poor coarsening method (and poor
performance). One such matching scheme is one in which each vertexv is matched with another vertexu (irrespective
of whetherv andu are connected via an edge). Such a matching scheme will lead to a very poor coarsening scheme,
and poor performance overall. Our analysis does not even apply to such a scheme, as this scheme will destroy the
structure of the graph (destroy planarity in 2D case).
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