
Identifying Interesting Code Patterns in a
Given Code Fragment for Compiler

Optimization

By

Chitra Ramachandran

A thesis submitted in partial fulfillment of the requirements for the award of the

degree of

Master of Technology

in

Information Technology

International Institute of Information Technology,

Bangalore

Thesis Committee

Prof. Srinath Srinivasa (Chair)

Prof. K. V. Dinesha

Prof. Arvind Keerthi

June 2005

Thesis Certificate

This is to certify that the thesis titled Identifying Interesting Code Patterns

in a Given Code Fragment for Compiler Optimization, submitted by Chi-

tra Ramachandran (Roll No. 2003-026), to the International Institute of

Information Technology, Bangalore, for the award of the degree of Master of

Technology in Information Technology, is a bona fide record of the research work

done by her under my supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any

degree or diploma.

Bangalore

June 30, 2005 [Prof. Srinath Srinivasa]

Other Members of the Thesis Committee

1.

[Prof. K. V. Dinesha] June 30, 2005

2.

[Prof. Arvind Keerthi] June 30, 2005

Identifying Interesting Code Patterns in a Given Code

Fragment for Compiler Optimization

by

Chitra Ramachandran

submitted to the

International Institute of Information Technology, Bangalore

on

June 30, 2005

in partial fulfillment of the requirements for the award of the degree of

Master of Technology in Information Technology

Abstract

The current compiler technology allows code optimization to great extents, using

different mechanisms such as code parallelism, dead code elimination, constant ex-

pression evaluation etc. Though these compilers optimize any given implementation

they tend to ignore the context of the implementation and the algorithm implemented

in the code. An ideal system would be a profiling/compiling tool in which the profiler

could make suggestions, and the compiler dynamically does the compiling based on

profiler suggestions and user input. A sub-module of the suggestion making engine

would be to identify code fragments in the input that may be of interest to the user.

Such a module would require, some kind of heuristic or explicit knowledge of what

the user thinks is interesting. In this thesis we address the problem of identifying

code patterns that may be of interest to the user. The approach suggested is based

on control flow graphs.

This work is dedicated to OSL.

i

Acknowledgements

I am highly indebted to Prof. Srinath Srinivasa for his invaluable guidance, moti-

vation and support. He has positively influenced me not only academically, but also

as an individual. I would like to show my appreciation towards Prof. S Sadagopan

for having given me the opportunity to pursue research. I would like to express my

gratitude to Prof. K.V. Dinesha for his questions and suggestions, during the talks

I gave, as they have help shape and understand the problem better.

I would like to thank Ms. Geetha Manjunath and Dr. Dibyendu Das of HP

India for their invaluable suggestions during the course of the project. I would also

like to thank HP India for having sponsored the project.

I would like to show my gratitude to my fellow researchers Pradeep S, Sanket

Patil, Mandar Mutalikdesai, Saikat Mukherjee, Sripathi Kamath and Am-

bar Hegde for their positive criticism and encouragement. Last but not the least I

would like to thank my friends at IIITB, for their moral support.

- Chitra

ii

Contents

1 Introduction 1

1.1 Compilers . 1

1.1.1 Profilers . 2

1.2 Optimization in Compilers . 2

1.3 The Problem . 3

1.4 The Approach . 4

1.5 Organization of the Thesis . 4

2 Compilers 6

2.1 The Compilation Process . 6

2.2 General optimization techniques . 7

2.3 The need for better optimization . 9

3 Control Flow Graphs as a Representation 10

3.1 Graphs and Graph Terminologies . 10

3.2 CFGs as graphs . 11

3.3 Graph file format : Dotty . 11

3.4 Control flow graph as a dotty graph 13

3.4.1 Node Labeling . 13

3.4.2 The complete CFG representation 14

3.5 Generating CFGs using GCC . 15

iii

4 Index for Code Patterns 17

4.1 The need for indexing . 17

4.2 The modified CFG . 19

4.3 The indexing structure . 19

4.4 An Example . 21

5 An Overview of Design and Implementation 25

5.1 The Classes . 25

5.1.1 The CFG Data Structure . 25

5.1.2 The Index Data Structure . 26

5.2 Code Organization . 26

6 Performance Results 27

6.1 An Example of the Test Scenario . 27

7 Related Literature 30

7.1 Code Pattern Matching . 30

7.2 Graph Algorithms . 31

8 Conclusion and Future Directions 33

8.1 Conclusion . 33

8.2 Enhancements . 33

8.3 Future Directions . 34

A GCC - GNU Compiler Collection 35

A.1 An Overview of GCC . 35

A.2 GCC Architecture . 35

A.3 Intermediate Representations . 36

A.3.1 Generic Representation . 36

A.3.2 Gimple Representation . 36

A.3.3 Register Transfer Language 37

A.4 Optimization in GCC . 37

iv

A.5 Modification to GCC source . 39

v

List of Tables

2.1 An Example for Dead Code Elimination 7

2.2 An Example for Loop Unrolling . 8

3.1 Node Labeling Example . 13

4.1 An Example of the Table x . 21

A.1 Comparison of Gimple and Generic Representations 37

A.2 Example of GIMPLE with SSA . 38

A.3 Forward propagation of single use variables 39

vi

List of Figures

3.1 Undirected and Directed Graph . 11

3.2 Rooted Graph . 11

3.3 A Graph and its Dotty Representation 12

3.4 An Example C Program . 14

3.5 An Example of The CFG . 15

3.6 An Example of CFG in dotty format 16

4.1 An Example Code Pattern : CODE1 18

4.2 An Example Code Pattern : CODE2 18

4.3 The CFG of the Input Code . 18

4.4 The Modified CFG . 19

4.5 The Modified CFG . 20

4.6 The Indexing Structure . 21

4.7 A Program to find Maximum of three numbers 22

4.8 The CFG for a program to find Maximum of three Numbers 23

4.9 The Modified CFG for a program to find Maximum of three Numbers 24

4.10 The index tree for the Program . 24

6.1 Code Sample1 . 28

6.2 Code Sample2 : Containing Code Sample1 29

vii

Chapter 1

Introduction

1.1 Compilers

Computers understand the language of only bits and bytes. There has to be a mech-

anism to convert the high level language code to computer understandable language

of 0s and 1s. Compilers1 perform this code translation. A compiler converts a high

level language program to system executable machine language code. For example a

C compiler will take as input a C program and give as output an executable file.

Currently compilers are more robust than they previously were and perform lot

more than just code conversion. Compilers throw warning messages for seemingly

unintentional mistakes, optimize code, compile code for use with a debugger, dump

intermediate object codes etc.

Also there are tools such as lint, FunctionCheck, gprof etc., which allow analysis

of code. For example lint can be used to check if the function return type and the

actual return type expected by the calling program are the same. These tools also

help analyze the data flow in a code. These tools are called as profilers.

1[1] was used as reference for Compiler Theory

1

1.1.1 Profilers

Profilers help analyze the run time features of the code. The functionalities provided

by the profiler varies from profiler to profiler. The general features provided by

profilers are :

1. Type checking for values returned by called functions and values expected by

calling function.

2. Unused variables in the code.

3. Runtime performance of codes, in terms of execution time and memory.

A profiler if integrated with an compiler can make learned suggestions to the

compiler, based on which the compilation can become more efficient (or become tailor-

made for an application, as the need of the application be).

1.2 Optimization in Compilers

Optimization refers to improving the execution speed or the memory requirements of

the given code implementation as required. The optimizer usually comes built-in with

the compiler these days. The current optimization techniques optimize the specific

instance of code, making it independent of the programming skills of the programmer

to a large extent.

These optimization schemes lack in one respect, i.e. to recognize the context of

algorithm and suggest or make changes. The compiler recognizes the inefficiencies

of the implementation but fails when it comes to recognizing the whole algorithm

(or part of algorithm) as inefficient, to do so the compilers will need to have some

heuristics, the knowledge could be in the form of :

1. Set of Rules : The compiler could be given rules on the basis of which it can

identify/classify algorithms, for example an algorithm that uses a lot of recursion

in its function should be avoided etc.

2

2. Set of Code Patterns : The compiler could be given a set of codes/code frag-

ments and asked to classify all similar fragments as inefficient. Here again the

criterion for similarity has to be defined.

In this thesis we use the second approach (that of educating the compiler using

a set of code patterns). Recognizing inefficient patterns (or any pattern of interest)

can lead to better understanding of code and hence optimization.

1.3 The Problem

Given a code, a user might like to identify the interesting code patterns present in the

code. The interestingness criteria could be any user defined code attribute/feature like

inefficient implementation, error prone implementation, code taking variable amount

of time to execute etc. The compiler/profiling tool is educated about what the user

thinks is interesting, by giving it a collection of code patterns2. This is done by

creating a database of interesting code pattern (i.e. to say that all patterns in the

database are such that the user finds them interesting).

Given an input file we would like identify the presence of any of the given interest-

ing code patterns (i.e. the patterns in the database)in it, in a single parse of the input.

A trivial approach to the problem could be to scan for each individual pattern in the

database successively in the main input code. This solution may become infeasible

as the size of database (number of code patterns in the database) increases, also an

exact character by character match cannot be done as the variable names could differ,

extra comments could be present, while/for looping constructs could have been used

interchangeably etc. All these above problems entail the need for code fragments to

be represented in a form that is largely independent of the variable names, individual

coding practices etc. Also an efficient algorithm should be available for comparing

the code fragments with the main input code.

2code fragments and code patterns are interchangeably used in this thesis report

3

1.4 The Approach

The intermediate representation of a compiler can be used to represent the code

fragments and do comparisons on them as they have the following advantages:

1. All complex expressions and statements are broken down into simple single

operation statements. For example a = b + c ∗ rand(); will be broken down into

three instructions as follows :

(a) Temp = rand();

(b) Temp1 = c ∗ Temp;

(c) a = b + Temp1;

This would make expression comparison slightly more simple.

2. All looping constructs will be reduced to simple if-else constructs.

3. Comments, programmer dependent formatting will be eliminated.

But intermediate code still has the problem of variable names being a part of it.

Hence we use a representation that is based on Control Flow Graphs (CFGs) and

node labeling. By doing so the problem reduces to a class of graph problems, wherein

we need to find if any of the patterns in the database is a subgraph of the main input

graph3.

1.5 Organization of the Thesis

Chapter 2 discuses the general concepts of a compiler, giving a bird’s eye view of the

current approaches in compiler optimization. Chapter 3 introduces the concept of

Control flow graphs, the reason we chose control flow graphs and its representation

for the purpose. Chapter 4 presents our indexing structure and modification of CFG

3refers to the input program in which we would like to identify the interesting patterns

4

for the purpose of indexing. Chapter 5 gives an overview of the design and imple-

mentation details. Experimental results obtained are shown in Chapter 6. Chapter 7

discusses related literature in both compilers and graph algorithms. Conclusions and

future directions are presented in Chapter 8.

5

Chapter 2

Compilers

2.1 The Compilation Process

The compilation process can be divided into phases, with each phase dealing with

one particular aspect of the compiler:

1. Source code Parser : The source code parser, verifies the syntax of the input

source code. The parser generally outputs an intermediate representation of the

input code. The parser is further subdivided into :

(a) lexical analyzer

(b) syntax analyzer

(c) semantic analyzer

2. Intermediate Representation Generation : The parser outputs an intermediate

code, this intermediate representation is internal to the compiler. Code opti-

mization is performed on the intermediate code.

3. Code Generator : The intermediate representation is a platform independent

but compiler specific representation. This representation needs to be converted

to platform specific representation in terms of the instructions supported by the

platform.

6

2.2 General optimization techniques

Optimization involves improving the runtime performance of the code in terms of

memory used or number of clock cycles taken for execution. Optimization is one of

the phases of the compilation process. Standard optimization techniques proceed on

the lines of :

1. Dead Code Elimination : Code Fragments that will never be executed need not

be included in the executable, and are called Dead Code. For example as shown

in 2.1.

if(a > b) {
/*perform something*/

} else if(a <= b)

{
/*perform something else*/

}else
{
/*CAN BE ELIMINATED*/

}

Table 2.1: An Example for Dead Code Elimination

In the above case the code under the else condition never gets executed and

hence can be ignored.

2. Constant Expression Evaluation : Expressions that evaluate to constant value

need not be computed at runtime they can be evaluated during the compilation

and their values can be substituted. For Example :

a = 1 ∗ 2 ∗ 3 ∗ 4; can be written as a = 24;

3. Loop Unrolling : Loops are inefficient structures with respect to the execution

time. In loop unrolling the number of iterations in a given looping structure is

7

original code Optimized Code

for(i = 0; i < 10; i + +) for(i = 0; i < 5; i+ = 2)

{ {
notAFunctionOf i(); notAFunctionOf i();

} notAFunctionOf i();

}

Table 2.2: An Example for Loop Unrolling

reduced by either replicating the code inside the loop or some other technique.

As shown in 2.2.

4. Common Subexpression Evaluation : The compiler generally splits all complex

equations into micro-instructions that just take two arguments and stores the

value in a temporary variable. For example, “x = a + b + c” becomes

“Temp1 = a+b” and “x = Temp1+c” or “Temp1 = b+c” and “x = Temp1+a”.

Consider a scenario where :

x = a + b + c;

y = (b + c) ∗ a

In this case if the compiler splits the equations as “ Temp1 = b + c”,

“x = Temp1 + a” and “y = Temp1 ∗ a” the implementation would be more

efficient as the same temporary variable is used for both the equations. Identi-

fying such expressions and accordingly splitting the equation is called common

subexpression evaluation. A lot of research has gone into identifying common

subexpressions in a given code fragment.

5. Dead Variable Elimination : Variables which are declared and probably initial-

ized but never used are called dead variables and memory need not be allocated

for them.

8

2.3 The need for better optimization

The current optimization techniques tend to address the specific implementation. For

example if a loop is present in the code the optimizer looks only at the inefficiencies

in loop (like loop invariant computation inside the loop), it does not actually look

at the loop itself as being an inefficient construct. To recognize the latter form,

some kind of heuristics about the code, its implementation etc. is required. The

compiler should be able to recognize the similarity/context of application and make

an intelligent suggestion to the user about an alternative. There may be many coding

patterns/structures that may have been recognized to be inefficient, the compiler

must be able to recognize these patterns during compilation and make suggestions

to the user. However to make these suggestions the compiler will need to have some

knowledge and not just the code to be compiled, as is the case with current compiler

technology.The knowledge could be in the form of database of code patterns, rules

defined on the patterns etc

9

Chapter 3

Control Flow Graphs as a

Representation

Control Flow Graphs(CFG) represent the flow of control in given code fragment (i.e

the sequence in which the instructions are executed). As the name suggests the

control flow is represented as a graph data structure.

3.1 Graphs and Graph Terminologies

A graph can be defined as a set of objects called nodes, linked together by another

set of objects called edges. For example the Figure 3.1 shows a graph with 4 nodes

and 5 edges. Graphs can be expressed as G = (V, E) where V is the set of all nodes

present in the graph and E is the set of all edges in the graph.

Graphs can either be directed or undirected. In an undirected graph an edge from

node A to node B would imply an edge from node B to node A i.e. A − −B =⇒
B − −A. For a directed graph an edge from node A to node B does not imply and

edge from node B to node A i.e. A− > B 6 =⇒ B− > A.

A rooted graph is graph in which a single node is represented in a special way. It is

expressed as G = (V,E, v′) where V and E are the set of nodes and edges respectively

and v′ is the root node such that v′ ∈ V . An example of a rooted graph is shown in

10

Figure 3.1: Undirected and Directed Graph

Figure 3.2: Rooted Graph

Figure 3.2.

3.2 CFGs as graphs

A CFG can be represented as a rooted directed graph. The nodes of the graph would

represent instructions that have to be sequentially executed and an edge would repre-

sent a change of control from node to other. The root node would be the entry point

for the code fragment. The CFG can be expressed as G = (V, E, v′) where V is the

set of all nodes, E is the set of all edges, v′ is the root node for the graph.

3.3 Graph file format : Dotty

Graphs quiet often need to be expressed as files(text files), to do this there are a

variety of graph file formats, Example: GML, VCG, dotty. We use the dotty file

format for representing the graphs. An example of a graph and its corresponding

dotty file representation is given in 3.3.

11

ROOT

Node 1

Node 3

Node 4

EXIT

Node 2

digraph G {
0 [label=“ROOT”];

1 [label=“Node 1”];

0 –> 1;

2 [label=“Node 2”];

1 –> 2;

3 [label=“Node 3”];

1 –> 3;

4 [label=“Node 4”];

2 –> 4;

3 –> 4;

5 [label=“Exit”];

4 –> 5;

}

Figure 3.3: A Graph and its Dotty Representation

12

Each line in a dotty file ends with a semi-colon. The first line indicates if the

graph is directed or undirected, on the basis the keyword ’graph’ or ’digraph’ used.

The dotty format supports <attribute,value> pairs for both edge and node objects.

3.4 Control flow graph as a dotty graph

In this research we represent the CFG in dotty format. Each basic block1 in the

compiler corresponds to a node in the CFG, and a jump from one block to another

corresponds to an edge of the CFG. Since the change of control from one basic block

to another does not imply the reverse the edges of the CFG are directed.

3.4.1 Node Labeling

In a control flow graph, each node represents a set of sequential instructions. Each

possible instruction is assigned a code, for example the instruction a = b + c; repre-

sents an addition and hence can be coded as Add. The label for the entire node can

be obtained by concatenating the codes of all the instructions in the node. By doing

so the representation becomes variable name independent. As an example consider :

0 [commands = “ a = b + c; e = d ∗ a; ”];

a = b + c Add

e = d ∗ a Mul

Table 3.1: Node Labeling Example

1Basic block is a set of sequential statements in the program, that belong to the same node in

the CFG

13

3.4.2 The complete CFG representation

As an illustration consider the C program shown in figure 3.4, it would result in the

CFG shown in figure 3.5 and the corresponding dotty file will be as shown in figure

3.6:

The C Program Example.C

#include<stdio.h>

int main()

{
int i,j,k;

i = rand();

j = rand();

if(i > j)

{
k = i;

printf(“I is Greater than J”);

}
else

{
k = j;

printf(“J is Greater than I”);

}

return 0;

}

Figure 3.4: An Example C Program

14

ENTRY

T.65 = rand();
I = T.65;
T.66 = rand();
J = T.66;
if(I > J)
 goto <L1>;
else
 goto <L2>;

 K = I;
printf("I is grater than J")

 K = J;
printf("J is grater than I")

return 0;

EXIT

Figure 3.5: An Example of The CFG

3.5 Generating CFGs using GCC

GCC outputs various graph files during the compilation process, these graphs are in

VCG format. To dump the CFG in dotty format the GCC source was modified. The

details of the modification and other changes made to the GCC code is explained in

Appendix A.

15

The Dotty File Example.dot

digraph Example {
ENTRY − > 0;

0 [label = “ T.65 = rand(); i = T.65; T.66 = rand(); j = T.66

if (i > j) goto < L0 >; else goto < L1 >; ”];

0 − > 1;

1 [label = “< L0 >:; k = i; printf(“I is greater than J”);”];

0 − > 2;

2 [label = “< L1 >:; k = j; printf(“J is greater than I”);”];

1 − > 3;

2 − > 3;

3 [label = “< L2 >:; return;”];

3 − > EXIT;

}

Figure 3.6: An Example of CFG in dotty format

16

Chapter 4

Index for Code Patterns

Indexing is technique of creating references to objects such that access/retrieval/search

on them becomes optimized. For example, consider a medium sized database, where

there will typically be more than a thousand records in the table. Storing them in

sequential manner will be highly inefficient if you want to retrieve some record from

the end, a slightly better approach would be to keep a table which specifies the lo-

cation of every 1000th element, in this case if you want to search for record 1002nd

position you need not traverse all the 1001 records, just find the entry for the 1000th

record and traverse two records.

4.1 The need for indexing

In our case we have multiple control flow graphs (this number can vary and in a full

fledged application can be very large) and we have to find all of their instances if

any in the main input graph. Searching the input sequentially for all the interesting

patterns that are there in the database may prove computationally expensive. Hence

we need an index over the interesting pattern database.

A very simple depiction of the situation is shown in figures 4.3, 4.1, 4.2. For the

scenario shown in the figures, the system should identify the presence of both CODE1

and CODE2 in the main input code fragment.

17

if (I > J)

K = I + J K = I - J

Print (k)

Figure 4.1: An Example Code

Pattern : CODE1

if (x < 10)

K = K * x
x++

Print (K)

Figure 4.2: An Example Code

Pattern : CODE2

if (k > 0)

if (I > J)

K = I + J K = I - J

Print k

K = K * x
x ++

if (x < 10)

Figure 4.3: The CFG of the Input Code

18

4.2 The modified CFG

The code patterns are not directly indexed, but their CFGs are modified and then

the index is generated. The CFG is modified to capture the if-else structure of the

code. All nodes where the control flow does not branch are deleted and their node

labels are pushed to the edges.

IF (i > j)

ADD.PRN SUB.PRN

MUL.PRN

RETURN

TRANSFORMS TO

ADD.PRN SUB.PRN

IF (i > j)

MUL.PRN

RETURN

Figure 4.4: The Modified CFG

Doing so captures only the control flow structures, decision making constructs as

nodes. Also all the instructions except the branching instructions in the branching

node (i.e. the if instruction) are pushed to the edge and only the branching instruction

is kept in the node as shown in 4.5.

4.3 The indexing structure

The indexing structure is built on the modified CFG. The index is a tree data structure

with the root node of the tree representing the entry node in the modified control flow

graphs of all the patterns in the database. The root node has only one child node.

All others nodes can have upto three children. The three children are represented

19

I = 20;
T.65 = rand();
J = T.65
if (I > J)
 goto <L1>;
else
 goto <L2>;

<L1> <L2>

TRANSFORMS TO

if (I > J)
 goto <L>;
else
 goto <L2>;

I = 20;
T.65 = rand();
J = T.65

<L1> <L2>

ASGN.ASGN.ASGN

Figure 4.5: The Modified CFG

by if-child, else-child and join-child. The if-child node represents the execution path

from the current node when the corresponding if condition is true, similarly the else-

child represents the execution path when the else condition is true. The join-child

represents the point where the if and else controls merge(i.e. where the entire if-else

structure ends). The index looks as shown in figure 4.6.

The table is of the form as shown in 4.1. The table has two columns, the

Weight/Index column stores the index key. The key could be any of the edge at-

tributes. For example, the key could be :

1. The number of instructions represented by the edge

2. The edge label of the modified CFG

The corresponding row in the Graphs column contains the name of all programs

that have the corresponding Weight/Index. A Graph can occur only once in a table,

because two entries for the same graph would indicate simultaneous execution paths

(i.e. parallel execution paths) which is not possible.

20

ROOT (ENTRY)

If_node 1

Join_node 1Else_node 1If_node 2

Table_1

Table_4

Table_3Table_2

If_node 3 Else_node 2 Join_node 3

Table_7Table_6Table_5

Figure 4.6: The Indexing Structure

Weight / Index Graphs

Add-Prn g1,g2

Prn-Prn g3,g4

Table 4.1: An Example of the Table x

4.4 An Example

The input C code is a simple implementation to find the maximum of three numbers.

The code is as shown in figure 4.7. Figures 4.8 and 4.9 represent the CFG and the

modified CFG of the program respectively. Figure 4.10 shows the corresponding index

for the code. In figure 4.10 the values in the parentheses represents the content of the

table, since the index was generated for only one program all tables have only one

entry.

21

/* A C program to find Maximum of three numbers */

#include<stdio.h>

int main(void)

{
int x=10,y=20,z=30,max;

if(x > y)

{
if(x > z)

{
max = x;

}else
{

max = z;

}
}else
{

if(x > z)

{
max = y;

}else
{

max = z;

}
}

return max; }

Figure 4.7: A Program to find Maximum of three numbers

22

ENTRY

x = 10;
y = 20;
z = 30;

if(x > y)
 goto <L1>;
else
 goto <L2>;

 <L1>
if(x > z)
 goto <L3>;
else
 goto <L4>;

 <L2>
if(y > z)
 goto <L5>;
else
 goto <L6>;

 <L3>
max = x;

 <L4>
max = z;

 <L5>
max = y;

 <L6>
max = z;

return max;

EXIT

Figure 4.8: The CFG for a program to find Maximum of three Numbers

23

ENTRY

IF

Asgn.Asgn.Asgn

IFIF

Asgn Asgn

AsgnAsgn

EXIT

return

Join

Figure 4.9: The Modified CFG for a program to find Maximum of three Numbers

ENTRY

IF

(Asgn.Asgn.Asgn ,g1)

If_Child Else_Child Join_Child

EXIT

(return, g1)

(Null, g1) (Null, g1) (Null, g1)

(Null, g1)

(Null, g1)

If_Child

If_Child

Else_Child

Else_Child Join_Child

Join_Child

(Asgn ,g1) (Asgn ,g1)

(Asgn ,g1) (Asgn ,g1)

Figure 4.10: The index tree for the Program

24

Chapter 5

An Overview of Design and

Implementation

The initial prototype was implemented in object oriented perl. Perl was chosen, as it

allows for fast prototype building and also for its powerful regular expression (required

for parsing) support.

5.1 The Classes

Each data structure (graphs for CFG and trees for the indexes) was implemented as

a collection of perl objects. The basic perl object was a node object. There were two

types of node object,

1. graphNode: This class represents the node in a CFG (and modified CFG).

2. indexNode : This class represents a node in the index tree.

5.1.1 The CFG Data Structure

The CFG was implemented as collection of nodes, each having pointers to other nodes

that it has an edge to. Since every outgoing edge has a corresponding edge label, there

were two dynamic arrays one for the edges and the other for the edge labels.

25

5.1.2 The Index Data Structure

The indexnode has three pointers each pointing to its child nodes i.e. the ifChild,

elseChild and joinChild respectively. The indexNode also stores a hash table to

implement the Table x structure shown in table 4.1. The key for the hash is the

weight/label parameter shown in table 4.1, and the value was an array storing the

graph names.

5.2 Code Organization

The code was organized into three modules. They are:

1. modifyGraph : The modifyGraph module takes the output of GCC i.e. the CFG

in dotty format and generates the modified CFG with all node labels pushed to

the edge. It assumes all files in the current directory with extension “.cfg” to

be CFG files and outputs “.mg”1 files.

2. generateIndex : The generateIndex script accepts all modified graph files in the

current directory, generates the index and writes the index into a file.

3. searchPattern : Given the index file name and an input file, this module searches

for any of the indexed files in the input file.

1mg stands for modified graph

26

Chapter 6

Performance Results

The algorithm was implemented using perl scripts. To test the algorithm, a database

of programs (having 7 programs) was created. Some of the programs in the data-

base were such that, they were sub-parts of other bigger programs in the database.

Ideally the system should identify the smaller programs as being part of other bigger

programs.

6.1 An Example of the Test Scenario

The code database was populated with the codes shown in figures 6.1 and 6.2, along

with a few other unrelated codes. The system when given Code Sample2 as input,

recognized the presence of Code Sample1 in Code Sample2, since Code Sample2 was

itself there in the database the system also recognized Code sample2 being a part

of itself. Similar experiments were carried out with different code patterns, with

one subsuming the other, one subsuming two others etc. the results obtained were

consistent with the expected results.

27

#include<stdio.h>

int main() {
int i,j,k;

i = 20;

j = 30;

if(i>j)

{
k=i;

printf(“%d”,k);

}
else

{
k=j;

printf(“%d”,k);

}
}

Figure 6.1: Code Sample1

28

#include<stdio.h>

int main() {
int i=20,j=30,l=40,k;

if(l > i)

{
i=20;

j=30;

if(i>j)

{
k=i;

printf(“%d”,k);

}
else

{
k=j;

printf(”%d”,k);

}
}
else

{
printf(“Sample Program2 : It contains Program 1”);

}
return 0;

}

Figure 6.2: Code Sample2 : Containing Code Sample1

29

Chapter 7

Related Literature

A lot of research effort has been focused on determining code equivalence, i.e. to see

if two given code fragments essentially perform the same. Though the final end goal

would be an ideal system that could identify code equivalence, this thesis addresses

just a very small issue.

Since our approach is based on graph matching (control flow graphs), graph al-

gorithms for finding subgraph isomorphism, graph matching are also discussed. The

above mentioned problem of subgraph isomorphism (determining if a given graph is

a subgraph of another given graph) is a well addressed research topic [9, 14, 12]. We

are addressing a scenario where we have a database of interesting graphs and we have

to parse a given input graph to identify all the interesting sub-graphs present in it.

This problem is more complex than the previously presented subgraph problem as we

do not know the exact sub-graph we are searching for, it could be any of the ones in

the database.

7.1 Code Pattern Matching

Paul and Prakash describe a framework for searching similar code patterns and code

re-engineering in [10]. Given an input search pattern, the algorithm checks for similar

patterns in code fragments. The search pattern is specified in scruple, a regular

30

expression based language described in the paper. In scruple each programming

construct has an equivalent scruple representation. For example the declaration of

variable x (of any data type) is represented as “$t x”, there are similar representations

for other programming constructs. The difference between our approach and [10] is

that in scruple a search is made for only a single code pattern, not multiple as we

intend.

Baxter et al. in [3] suggest an algorithm based on abstract syntax trees for deter-

mining code clones. Here clones refers to a copy of a code fragment. The copy could

be modified slightly or kept unchanged. Hashes are used to reduce the computational

complexity of the algorithm. The algorithm differs from ours in that it uses abstract

syntax trees instead of CFGs and also it does not recognize a give code pattern, but

recognizes replication of any pattern.

In [5] Chang et al. describe a two-phase optimizing compiler, the first phase is a

profiling tool which collects various statistics about the code, and the second phase is

a profiler-based compiler that takes into account the profiling statistics collected in the

first phase, while compiling. This approach is similar to our idea of a profiler aiding

the compilation process, except that in our case the profiling tools uses other code

pattern examples (the code patterns in the database) to come up with suggestions

for the compiler.

Ferrante et al. in [4] describe an approach based on an intermediate code repre-

sentation, Program Dependence Graphs(PDG). In PDG representation the data flow

and control flow dependencies are explicitly captured.

7.2 Graph Algorithms

Srinath Srinivasa et al. in [12], suggest an indexing structure called LWI (Labeled

Walk Index) to address the sub-graph isomorphism problem. The LWI consists of a

prefix-tree constructed by enumerating all walks in given graph of length upto ’n’,

bigger the value of ’n’ the bigger the index. Our approach is based largely on the

LWI index.

31

In [14] Yan and Han suggest a solution the to sub-graph isomorphism problem,

the algorithm proposed builds a lexicographic order of graphs, on the basis of a DFS

search of the graph.

In [9] Giugno and Shasha describe a graph database approach, to find all occur-

rences of a subgraph in database of graphs. We address the scenario wherein we need

to verify if all the graphs in the database are sub-graphs of the input graph. The

algorithm suggests an hash-based fingerprinting to represent graphs.

32

Chapter 8

Conclusion and Future Directions

8.1 Conclusion

The thesis addresses the problem of determining if two given code fragments or part

code fragments are equivalent. The approach suggested assumes two code fragments

to be equivalent if the instruction ordering in them is same. This assumption is

not necessarily true. The effect of the operands on the instruction, is ignored. The

suggested approach can be used as a first level filter to give the most likely candidates

for equivalence, a further second level filter might be needed to determine exact

code equivalence. The second level filter can afford to have a higher computational

complexity, since its input set is going to be very small as compared to the first filter.

The suggested approach can also be used to find the structural similarity of code

fragments, this could find application in code restructuring, code optimization etc.

8.2 Enhancements

The system is currently implemented as a stand-alone entity. It would be more

beneficial if the system is incorporated as part of a full fledged compiling tool. The

suggested algorithm can be used to identify patterns of interest in the input code. The

identified code fragments can then be treated differently as the need of the application

33

may be, for example:

1. The code fragment can be highly un-optimized, hence perform rigorous opti-

mization on it.

2. The code fragment can be replaced with another code fragment, which suits the

application needs better.

8.3 Future Directions

Program Understanding and Program Equivalence are highly researched topics [11]

[2] [13]. Though the final aim of the system is to achieve code understanding, it is

currently far from it. To begin with the second level filter described in 8.1 needs to

be developed to determine exact code equivalence.

A larger goal would be to achieve Program Understanding, for example given two

algorithms for sorting like bubble sort and quick sort the system should recognize

that the two algorithms essentially perform the same operation of sorting.

34

Appendix A

GCC - GNU Compiler Collection

A.1 An Overview of GCC

GCC stands for GNU compiler collection, initially GCC supported only the C lan-

guage and was then known as GNU C Compiler, but later it added support for various

different languages. GCC currently supports most programming languages including

C++, Java, Ada, Pascal, Fortran etc. GCC also has a very powerful optimization

engine.

A.2 GCC Architecture

The GCC has a layered architecture, such an architecture makes it easy to add support

for new language in GCC. The different layers of GCC being :

1. Front End - The frontend converts the code in the high level language to a

tree based intermediate representation. GCC supports two different tree based

intermediate languages Generic and Gimple. The code is first converted to

Generic and then to Gimple.

2. Middle End - The middle end converts the Gimple trees to RTL(Register

transfer Logic) represntation. RTL can be assumed to be the assembly language

for a system with infinite registers. It also performs certain optimization(system

35

independent optimization) on the Gimple representation before converting it

into the RTL representation.

3. Back End - RTL representation being more close to the underlying target

system, is ideal for target specific optimization such as those based on register

allocation etc are performed by the back end. The back end generates the

compiled output file.

A.3 Intermediate Representations

The intermediate representations in GCC are based on the traditional tree data struc-

ture. GCC currently has three intermediate representations.

A.3.1 Generic Representation

Generic is a language independent tree representation. The parse trees of language

front ends are converted to Generic trees, Generic trees being language indepen-

dent the semantics of the input language need to be explicitly described. Generic

trees though language independent, they are structurally complex, as in they support

nested function calls, multiple operations in a single statement.

A.3.2 Gimple Representation

Gimple trees are structurally simple. They support only single(micro instructions) in

every statement. An example for the comparison of Generic and Gimple representa-

tion is shown in table A.1:

36

Generic Gimple

printf(“Value of k is %d”,k=i+j); k = i + j;

printf(“The Value of k is %d”,k);

if(foo(a,b)) Tmp 1 = foo(a,b);

{} if(Tmp 1)

else {}
{} else

{}

Table A.1: Comparison of Gimple and Generic Representations

A.3.3 Register Transfer Language

The Register Transfer Language assumes the system to consist of an infinite number of

registers and represents the variables on that basis. All processor specific optimization

is done in this representation.

A.4 Optimization in GCC

GCC provides different levels of optimization which can be specified as a command

line parameter. Optimization can be done for execution time / memory usage or

both.

The various passes of the GCC optimizer is as follows :

1. Remove redundant code : In this pass the entire code is swept to remove any

dead code, for example if statements which evaluate to constant value, redun-

dant code added for error handling etc.

2. Lower expressions and Build control flow graph : Complex if constructs are

lowered to simpler statements and the control flow graph for the entire code

fragment is built.

37

GIMPLE SSA

a = 3; a 1 = 3;

b = a + 2; b 2 = a 1 + 2;

c = a ∗ b; c 3 = a 1 ∗ b 2;

a = a ∗ 2; a 4 = a 1 ∗ 2;

Table A.2: Example of GIMPLE with SSA

3. Find all referenced variables : This pass finds all the variables referenced in

a function and generates and index on them. Any further reference to the

variables are made on the basis of the index.

4. Generate SSA statements : SSA (Static Single Assignment) forms the basis

of tree based optimization used in the current GCC versions. In SSA based

representation the flow of data is explicitly represented. In SSA every time a

variable is assigned a value (i.e. the variable is on the left hand side of the

assignment operator) a new version for the variable is created and the latest

version of the variable is used henceforth, as shown in A.2 Representing variables

along with their version numbers helps keep track of the variables and also code

restructuring if any by the compiler.

5. Dead code elimination : In pass all statements whose results are unused are

removed. For example if there is a statement a = (b ∗ c) − 4 ∗ d and the value

of a is never used anywhere else in the code, the statement a = (b ∗ c)− 4 ∗ d is

then redundant and can be ignored.

6. Forward propagation of single use variables : If a variable that has been used

only once in the code and it has been initialized, then its value is substituted

directly in the code. As shown in A.3 :

7. Dead Store Elimination : This pass eliminates all writes done to memory which

38

Actual Code Optimized Code

#include< stdio.h > #include< stdio.h >

main() main()

{ {
int single Use V ariable = 10; ...

... ...

/* Variable used once */ /* Variable substituted */

xyz = myexpression(single Use V ariable); xyz = myexpression(10);

} }

Table A.3: Forward propagation of single use variables

are over written before a read on them happens.

8. Partial redundancy elimination : This pass is similar to the common subexpres-

sion elimination explained earlier on. Any sub-expression that is common to 2

or more expressions is evaluated only once and not repetitively for all expres-

sions

9. Loop Optimization : Loops are inefficient programming constructs and optimiz-

ing them can lead to better performance. Loop invariant variables/equations

(i.e. variables whose value does not change in successive iterations of the loop)

can be moved out of the loop.

GCC optimization module performs 34 iterations in all to achieve the highest opti-

mization level. The above mentioned passes are just a few of the 34 passes.

A.5 Modification to GCC source

The GCC had to be modified to dump the CFG of code fragments. GCC official

documents describe the GCC internals in good detail and were used as reference

39

[6, 7, 8]. Two command line options were added to GCC to do the same. The option

:

1. “- Z” : As mentioned previously GCC has 34 optimization passes, this option

takes an integer as its input and dumps the control flow graph only for that

pass. For example giving the option “-Z 1” will dump the CFG of the input

code as it is, whereas giving the option “-Z 34” will dump the CFG after GCC

has performed all its optimization passes i.e. the CFG of the optimized code.

2. “- F” : This option takes a file name as input, the CFG is then dumped into

the file referred to by the file name. If this option is not mentioned the then

the CFG is by default dumped to the standard output terminal.

40

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers Principles, Tech-

niques, and Tools, Addison Wesley, 1986.

[2] Francoise Balmas, Harald Wertz, Janice Singer. Understanding

Program Understanding, iwpc, vol. 00, no. , p. 256, 8th 2000.

[3] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’

Anna, Loraine Bier, Clone Detection using Abstract Syntax Trees,

In Proceedings of ICSM98, November 16-19, 1998, Bethesda, May-

land.

[4] Jeanne Ferrante, Karl J. Ottensein, Joe D. Warren, The Program

Dependence Graph and its Use in Optimization, ACM Transactions

on Programming Languages and Systems, Vol. 9, No. 3, July 1987,

Pages 319-349.

[5] Pohua P. Chang, Scott A. Mahlke, Wen-Mei W. Hwu, Using Pro-

file Information to assist Classic Code Optimizations, Software-

Practice and Expierience, 21(12):1301-1321, December 1991.

[6] GCC Internals Documentation, http://gcc.gnu.org/onlinedocs/gccint.ps.gz.

[7] GCC Man Pages, http://gcc.gnu.org/onlinedocs/gcc.ps.gz.

[8] GCC - Tree SSA Architecture, http://people.redhat.com/dnovillo/pub/tree-

ssa/doc/html/index.html.

41

[9] Rosalba Giugno and Dennis Shasha, GraphGrep: A Fast and Uni-

versal Method for Querying Graphs, Proceedings of International

Conference on Pattern Recognition, Quebec, Canada, August 2002.

[10] Santanu Paul, Atul Prakash, A Framework for Source Code Search

using Program Patterns, IEEE Transactions on Software Engineer-

ing, 20(6), pages 463–475, 1994.

[11] Gregor Snelting, Concept analysis a new framework for program un-

derstanding, In proceedings of the 1998 ACM SIGPLAN-SIGSOFT

workshop on Program analysis for software tools and engineering,

pages 1-10, Canada, 1998.

[12] Srinath Srinivasa, Martin Maier, Mandar R. Mutalikdesai, Gowr-

ishankar K. A., Gopinath P. S., LWI and Safari: A New Index

Structure and Query Model for Graph Databases. In Proc. Inter-

national Conference on Management of Data, pages 138–147, Goa,

India, 2005.

[13] Haruki Ueno, A Generalized Knowledge-Based Approach to Com-

prehend Pascal and C Programs, In proceedings JCKBSE 98, pp.

132-139.

[14] X. Yan and J. Han. gspan: Graph-based substructure pattern min-

ing. In Proceedings of ICDM 2002, 2002.

42

