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Abstract

Traditional Compilers were high level to machine level language converters. The

modern day compilers have evolved to incorporate code optimizers and profilers. Tools

such as LINT (part of the GNU Compiler Collection (GCC) [9]) guide the program-

mer by listing out all the warnings. GCC optimization engine has 34 passes, with

each pass performing a specific function that aids in optimizing the code. GCC can

perform optimization at three levels, with the third level producing the most opti-

mized code. Some of the techniques used by GCC for optimization include Jump

bypassing, Register Movement and Register Allocation. However, none of the mod-

ern day compilers take into account the context while performing code optimization.

This research is towards building an “intelligent” compiler, which makes intelligent

suggestions to the user that in turn can help optimize the code better. The tool

basically helps the user in improving the quality of the program. The contribution

of this thesis is towards providing context sensitive help to the user which may help

optimize the code written by the user better. The tool is built for GCC.

In this work we propose an algorithm for finding frequent code patterns in a given

program. Finding frequent code patterns is necessary since it would prove costly in



time for GCC to optimize code fragments which occur scarcely in a given program.

Hence it is only logical to try and optimize the code patterns which occur at least for a

parameterized number of times. It is well known that a program can be represented as

a Control Flow graph, hence the problem boils down to finding frequent substructures

in a given graph.
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Chapter 1

Introduction

Optimization is an integral part of the compilation process. Compiler writers are

constantly trying to find innovative methods for optimizing the code better. However,

none of the existing optimization techniques are context sensitive. For example, they

do not take into account the inefficiency of the programmer. Hence it is necessary to

develop optimization algorithms which are context sensitive.

1.1 Need for better compiler optimization

The existing optimization techniques try to reorganize the existing code by mov-

ing statements from one scope to another, expanding the functions inline etc. None

of the existing techniques tend to replace an existing code fragment with a better

(known) implementation since it requires addressing the problem of program under-

standing [3, 22]. Program understanding refers to finding what a given piece of code

does, finding the equivalence of two different algorithms which are functionally same.

It has been proved to be an uncomputable problem. Hence, the compiler can only

make “intelligent” suggestions to the user about an better implementation, which

he/she may choose to accept or reject.

This thesis addresses the problem of finding frequent code patterns in a given code

sample. The approach taken towards this end is that of interpreting the code sample
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as a graph and the code patterns as the components of the graph. In the next section

we briefly introduce the concept of finding frequent substructures in a graph which

will be employed later on in this thesis to address the said problem.

1.2 Finding Frequent Substructures in a Graph

A graph is defined by G = (V,E) where V = {V1, V2,V3,....} represents the set of

vertices and E = {E1,E2,E3,....} represents the set of edges. Both the vertices and

the edges can have attributes associated with them. An example graph is as shown

in the figure below. Let us consider two graphs Ga = (Va, Ea) and Gb = (Vb, Eb).

V1

V2

V3

V4

V5
V6

E1

E2

E3

E4

E5

E6

E7 E8

E9

Figure 1.1: Graph

We define graphs Ga and Gb to be equal if they are isomorphic. Graph isomorphism

[21, 23] is a property which classifies a graph Ga to be isomorphic to graph Gb if and

only if the following properties are satisfied.

• For every node in Ga there exists a corresponding node in Gb and vice versa.

• For every edge between two given nodes in Ga there occurs an edge between the

corresponding nodes in Gb.

Finding frequent subgraphs in a graph boils down to the problem of identifying fre-

quent isomorphic graphs within a given graph. A walk based approach is proposed

for finding the frequent subgraphs in a given graph. A walk is defined as a sequence

2



of edges which cannot have repeating edges but can have repeating nodes. The basic

premise for identifying the frequent subgraphs is that all the walks present in a sub-

graph should be present in the rest of the subgraphs and vice versa. Components of

a graph having the same set of labeled walks, consisting of all possible walks of all

possible lengths from 0 to max len, are said to be frequent subgraphs. Here, max len

is defined as the maximum possible walk length for a given component.

1.3 Finding frequent code patterns for compiler

optimization

A particular code fragment is assumed to be inefficient if it matches with any of the

code fragments in a database of inefficient code fragments. It would prove computa-

tionally costly for the compiler to try and optimize all the inefficient code fragments

in a given code. It is sufficient to optimize the inefficient code fragments which occur

for a parameterized number of times. In a code represented by its CFG a code frag-

ment would be a component of the graph. Hence this problem essentially translates

to finding frequent substructures in a CFG.

1.4 Organization of the Thesis

Chapter 2 gives an introduction to the various phases of the compilation process,

along with an overview of the existing optimization techniques. Chapter 3 gives an

overview of visualization of code as a Control Flow graph. The dotty format for

graph representation is also discussed. Chapter 4 gives an introduction to GCC, the

intermediate code formats and GCC optimization techniques. Chapter 5 describes

the proposed algorithm to find frequent substructures in a CFG with an example.

Chapter 6 provides an overview of design and implementation. An overview of related

literature is given in chapter 7. The experimental results are shown in chapter 8.

Chapter 9 gives the conclusion and future directions.
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Chapter 2

Introduction to Compilers

Compiler [1] is a program that converts a given a program from the source language

to the target language. Shown below in figure 2.1 are the Phases of a Compiler.

2.1 Phases of a Compiler

2.1.1 Lexical Analyzer

Lexical Analyzer is the first phase of the compiler. The Lexical Analyzer takes the

source program as its input and produces a set of tokens which are subsequently used

by the parser for syntax analysis. Consider the expression shown below

i = j + 2

The Lexical Analyzer converts the above expression as shown in table 2.1

i = identifier

“ = ” = assignment operator

j = identifier

+ = addition operator

2 = constant

Table 2.1: Lexical Analyzer

4



Lexical
Analyzer

Syntax
Analyzer

Semantic
Analyzer

Intermediate
      Code 
   Generator

   Code
 Optimizer

   Code
Generator

Source Program

Figure 2.1: Phases of a compiler

2.1.2 Syntax Analyzer

Syntax defines the set of rules that have to be followed by the program. The syntax

of a language is defined by Context Free Grammar. The syntax analyzer takes the

tokenized version of the program from the Lexical Analyzer and checks whether the

program adheres to the rules defined by a Context Free Grammar.

2.1.3 Semantic Analyzer

A Semantic Analyzer checks for the correctness of the code. A statement like i = j/0

is syntactically correct but semantically wrong, since division by zero in not defined.

The Semantic Analyzer also checks the binding of variables and function names to
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their definition.

2.1.4 Intermediate Code Generator

The phases of the compiler till the Intermediate Code Generator is called the Front

End of the compiler. The rest of the phases that follow “Intermediate Code Gen-

erator” phase is called the Back End of the compiler process. The generation of

Intermediate Code is necessary for code optimization and also for retargeting, i.e the

Intermediate Code can be fed into the Back End of a different machine.

2.1.5 Code Optimizer

The Intermediate Code generated is subjected to optimization. There are many op-

timization techniques such as Inline Function Unrolling, Dead Code Elimination,

Eliminating Common Sub-expression etc. These are discussed in the next section.

2.1.6 Code Generator

The Code Generator converts the optimized or unoptimized Intermediate Code to the

target language.

2.2 Traditional Compiler Optimization Techniques

2.2.1 Inline function unrolling

Inline Function Unrolling optimizes the time of execution of the code. If a function

is found to be called repeatedly and the function definition is found to be small then

the function call is replaced by the function definition which reduces the overhead

of book keeping stuff like storing the return address, storing the register values, etc.

which in turn reduces the time taken for execution.

6



2.2.2 Dead Code Elimination

Dead Code Elimination optimizes the code by eliminating portions of the code to

which the control never reaches. CFGs are extensively used for Dead Code Elimina-

tion since reachability an important graph property lends itself to achieve the same.

2.2.3 Eliminating Common Sub-expressions

Eliminating Common Sub-expressions tries to eliminate multiple function calls by

calling the function only once and storing the return value in a temporary variable

which can subsequently used multiple times. Let us consider the following expression

y = fn(x) + fn(x) ∗ ∗2

In the above expression fn is a function which is called twice with the same vari-

able ‘x’ as the argument. The above expression gets modified as shown below

temp = fn(x)

y = temp + temp ∗ ∗2

Thus the function call which is a costly process has been reduced from two funcion

calls to one.

2.2.4 Code Hoisting

Code Hoisting is the process of moving calculations outside the loop. Consider the

following code pattern shown in table 2.2.

In the code fragment shown in figure 2.2 we find that the calculation of ‘temp’,

which is an invariant expression inside the inner loop is not required. temp = i*i is

an invariant expression inside the inner for loop since it does not depend on the inner

loop variables. Hence it can be moved outside the inner loop. The code would then

7



for(i = 0; i < 10; i + +)

{
for(j = 0; j < 10; j + +)

{
temp = i*i;

value = temp ∗ j;

}
}

Table 2.2: Sample C code

transform as shown in table 2.3

for(i = 0; i < 10; i + +)

{
temp = i*i;

for(j = 0; j < 10; j + +)

{
value = temp ∗ j;

}
}

Table 2.3: The Hoisted C code

8



Chapter 3

Graph visualization of source code

3.1 Graph representation : The Dotty format

A Graph, G is defined by G =(V,E), where V is the set of vertices and E is the set

of edges. A graph is represented in a format called the Dotty Format. The format

describes a graph in the form of text. Each line in the file describes an edge or a node

along with its attributes. The Dotty [14] format is as shown in the table 3.1

An example graph and the corresponding dotty format are shown in figure 3.1

and table 3.1 respectively.

3.2 Control Flow Graph(CFG)

A Control Flow Graph (CFG) [19] represents the flow of control in a program. A CFG

can be visualized as a graph with each node representing a piece of code without any

jumps or jump targets. Directed edges are used to represent the jumps in a CFG. The

CFG represents all the alternatives of a control flow, if there is a branch statement

then all the alternatives are represented as unique edges in the CFG. Looping con-

structs get modified as a branch condition followed by a goto statement. Loops are

represented as cycles in a CFG. Graph representation of the code helps us to make

use of the graph properties for compiler optimization. Using the graph reachability

9



ENTRY

          i=4;
          j=3;
if(i>j) goto <L0>:;
else goto <L1>:;

<L0>:;
i = i+j

<L1>:;
j = j+j

<L2>:;
return

EXIT

Figure 3.1: An example graph
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digraph Graph name[graph attributes {
node1[attributes]

node2[attributes]

node3[attributes]

.

.

.

nodeN [attributes]

node1− > node2[attributes]

node1− > node4[attributes]

node2− > node6[attributes]

.

.

.

nodeN− > node4[attributes]

}

Table 3.1: Dotty Format

property enables us to eliminate dead code. If the exit block is not reachable from

the entry block it indicates the classic case of infinite loops.

3.3 CFG : An example

Consider the C code shown in table 3.3.

CFG for the code pattern in table 3.3 is as shown in figure 3.2.

11



digraph G {
ENTRY− > 0;

0[label = “i = 4; j = 3; if(i > j)goto < L0 >; elsegoto < L1 >; ”];

0− > 1;

1[label = “ < L0 >:; i = i + j; ”];

0− > 2;

2[label = “ < L1 >:; j = i + j; ”];

2− > 3;

1− > 3;

3[label = “ < L2 >:; return; ”];

3− > EXIT ;

}

Table 3.2: Sample dotty format for the graph in figure 3.1

int main()

{
int i, j;

i = 10;

j = i ∗ i;

if(j > i)

printf(“j is greater”);

else

printf(“i is greater”);

}

Table 3.3: Sample C code

12



ENTRY

i=10 ; j = i*i;

If(j>i) goto L0;

Else goto L1;

L0 : printf(j is greater); L1 : printf(i is greater);

 Return

EXIT

1

2 3

4

Figure 3.2: Control Flow Graph

3.4 Modified CFG

A node in a CFG represents a block of statements which execute one after the other

without branching. The CFG is modified by associating a label with each node. The

label is the representation of all the statements contained in the CFG. Consider the

example code fragment shown in Table 3.4. Assume these statements to be in a node

in a CFG.

printf(Enter two numbers)

scanf(i, j)

a + b

Table 3.4: Sample Instructions

Each statement shown in table 3.4 is categorized based on the operation it per-

13



forms. In the above example the label for the first statement is print, for the second

it is scan and for the third add. Hence the node label would be print scan add. The

above representation simplifies the graph matching in a CFG. It is sufficient to match

the graphs with respect to their node labels.

ENTRY

i=10 ; j = i*i;

If(j>i) goto L0;

Else goto L1;

L0 : printf(j is greater); L1 : printf(i is greater);

 Return

EXIT

assign_assign_
multiply_if_else

print print

Figure 3.3: Modified Control Flow Graph

3.5 Problem Definition

A code written by a programmer may contain numerous inefficient code fragments.

It may prove costly for the compiler to optimize all the inefficient code fragments.

Hence only those inefficient code fragments which occur more than a parametrized

number of times should be optimized. The idea here is to find the frequently occuring

14



code fragments in the code which if found to be inefficient shall be optimized. The

above problem essentially boils down to the problem of finding frequent substructures

in a CFG.
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Chapter 4

An Overview of GCC

GCC [10, 11] is the acronym for GNU Compiler Collection. It is an open source

contributed by people all around the world. GCC supports many languages which

includes C,C++,Java etc. The Intermediate Code in GCC is represented in the form

of trees. There are three different representations for Intermediate Code in GCC

which are Generic, Gimple and Register Transfer Language(RTL). The hierarchy of

representation is as shown in the figure below

GENERIC GIMPLE RTL
Target
Code

  Source
Code in C

    Source
Code in C++

    Source
Code in Java

Gimplifier

Figure 4.1: Hierarchy of Intermediate Representation in GCC
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Generic Gimple

i = 10 i = 10

j = 20 j = 20

k = (i > j)?i : j if(i > j)

Temp = i

if(j > i)

Temp = j

k = Temp

Table 4.1: Generic and Gimple representations

4.1 Intermediate Code Representation Formats

4.1.1 GENERIC

The source code written in C, C++ , Java etc which are supported by GCC is

first converted to the Generic representation format. This representation acts as an

interface between the parser which is language dependent and the optimizer which

is language independent. Generic trees are not used for optimization. Generic is

then passed through Gimplifier to generate GIMPLE representation format. The

comparison between Gimple and Generic is shown in table 4.1

4.1.2 GIMPLE

GIMPLE generated from Generic is used in optimization. The Gimplifier converts

all the complex expressions in the Generic representation to simple expressions in

Gimple representation. A complex expression is broken down into smaller, simpler

expression by using temporary variables.

17



4.1.3 Register Transfer Language(RTL)

The compiler spends a lot of its time in analyzing the RTL intermediate code repre-

sentation. In RTL all the instructions are represented in algebraic format. The RTL

code generated is different for different processors. The RTL code gets converted to

assembly code.

4.2 Optimization in GCC

GCC supports 34 techniques of optimization. Some of the optimization methods

used by GCC are Cleanup Control Flow Graph, Jump Bypassing, Register movement,

Register allocation etc.

Cleanup CFG

In this method graph reachability property is used to eliminate the unreachable code.

It also simplifies the jump instructions. It is also referred to as Jump optimization

pass.

Jump Bypassing

Jump bypassing is a CFG based optimization method. The CFG is transformed by

moving the constants into the relevant conditional branch statements.

Register Movement

Sometimes it may so happen that an instruction will have to be reloaded. In Register

Movement the reload is a register to register movement. This would be much faster

than using memory.

Register Allocation

In this optimization technique the use of pseudo registers is totally eliminated. Pseudo

registers can store only scalar data and cannot be aliased. Existing optimization

18



techniques cannot handle variables that are aliased.
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Chapter 5

The Algorithm

5.1 The Approach

In the proposed approach a labeled CFG is considered. The algorithm starts off by

performing a Breadth First Search(BFS) on the labeled CFG. A table is constructed

which has the node label in one column and the corresponding number of occurrences

of the node in the other. A threshold is chosen based on the maximum and the min-

imum occurrence count in the table. The table also contains another column which

has the nodes to which the node is connected by an outgoing edge. The threshold is

calculated as

threshold = maximum−minimum/2

A first level filtering based on the threshold is performed at this stage. All the nodes

which have an occurrence count below the threshold are removed. Also the incoming

and the outgoing edges from the eliminated nodes are also removed. The table now

contains only the nodes which have satisfied the threshold criterion. The next step

is to construct edges between these nodes. The edges can be constructed by looking

up the table previously constructed since it has the list of outgoing nodes. The edges

constructed are stored in a new table along with the occurrence count. This table

20



is again pruned based on the threshold as described above. Higher length walks are

similarly constructed and the walks that do not satisfy the threshold occurrence are

filtered out. The algorithm stops when no higher length walks can be enumerated.

The remaining set of walks define the frequent substructures in the CFG.

5.2 An Example

Consider the graph shown in figure 5.1. Table 5.1 shows the list of all the nodes in

A0

B0

B2

E0

D0
F0

C2

A2

A1

C0

G0

R0

C1

A3

C3

B1

Figure 5.1: Example Graph

figure 5.1 with the corresponding occurrence count for the node. The maximum and

minimum occurrence count for the nodes is found out to be 4 and 1 respectively. The

threshold is thus calculated to be 2. Hence all nodes which have an occurrence count

less than 2 are eliminated resulting in a pruned table shown in figure 5.2.

The resulting graph after the first level filtering is as shown in the figure 5.2.

Edges (one length walks) are enumerated from the table 5.2. The occurrence count

of all the edges are also recorded as shown in table 5.3. The maximum and minimum

occurrence count for the edges is 3 and 0 respectively as shown in table 5.3. The

threshold is calculated to be 2. Hence all edges which have an occurrence count less

than 2 are eliminated to result in the pruned table 5.4.

21



NODES OCCURENCE COUNT

R 1

A 4

B 3

D 1

F 1

C 4

E 1

G 1

Table 5.1: Node Labels along with the number of occurrence

NODES OCCURENCE COUNT

A 4

B 3

C 4

Table 5.2: Node Labels along with the number of occurrence after thresholding

A0

B0 C1

C0

B1 C2

A2

A1

A3

C3

B2

Figure 5.2: Filtered Graph
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EDGES OCCURENCE COUNT

A− > B 2

A− > C 1

B− > A 0

B− > C 3

C− > A 2

C− > B 2

Table 5.3: Edges along with the number of occurrence

EDGES OCCURENCE COUNT

A− > B 2

B− > C 3

C− > A 2

C− > B 2

Table 5.4: Edges along with the number of occurrence after thresholding
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Figure 5.3 shows the frequent substructures generated.

A0

B0 C1 B1 C2

A2

Figure 5.3: Frequent Substructures

24



Chapter 6

An Overview of Design and

Implementation

CFG in Dotty
    Format

BFS

HASH A

Node Label Occurrence Count

ThresholdCompareNode Label Occurrence Count

FILTERED HASH A

 Build
Edges

Edges Occurrence Count

 HASH B

 Build
Walks

Threshold

Compare Edges Occurrence Count

 Filtered HASH B

Find Frequent
      Walks

Figure 6.1: Block diagram of implementation

The block diagram for the implementation is as shown in the figure 6.1. The

input to the system is the CFG in Dotty representation. The CFG is modified to
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change the node labels as described in section 3.4. The CFG is a rooted graph with

ENTRY as the root node. A Breadth First Search(BFS) is performed starting from

the root node and a hash index Hash A is created with the node label as the key and

the occurrence count of the node as the value. All the entries in the Hash A which

have a count value less than a predetermined threshold are filtered out. Another hash

Filtered Hash A which has the remaining nodes after the previous filtering operation

as the keys and the nodes to which they have outgoing edges as values is created.

Edges are constructed from this Hash.All those edges which occur less than a specified

threshold value are filtered out. Walks are then enumerated from the remaining edges

and the frequent walks are found out. This corresponds to the frequent substructures

in the given CFG.
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Chapter 7

Related Literature Survey

7.1 Graph Isomorphism

Substructure isomorphism is an NP complete problem [8]. The problem of finding

frequent substructures in a CFG requires the knowledge of graph isomorphism. There

has been a significant amount of work done in the field of graph isomorphism. Filtra-

tion Based Technique(FBT) [21] is a graph mining algorithm proposed by Srinivasa

and BalaSundaraRaman. FBT proposes to find the frequent subgraphs in a database

of graphs. It is a walk based technique. FBT starts off by enumerating all the zero

walk lengths in all the graphs of the database. It filters all those nodes which occur

less than a threshold value. One length walks are enumerated for the nodes that

remain after the filtering. A second level filtering is applied on the one length walks

based on another threshold. The process proceeds iteratively for the higher length

walks until the frequent substructures remain.

Another approach that addresses the problem of graph isomorphism is gSpan [23]

proposed by Yan and Han. It is a DFS based approach which categorizes a graph

as a frequent subgraph if its occurrence exceeds a parameterized value. A DFS code

tree is built from the graphs in the database. In the DFS code tree the nt̂h level node

contains the DFS codes of the (n-1)t̂h edge graphs. By traversing in DFS fashion on

the code tree all the minimum DFS codes of the frequent substructures can be found
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out.

Giugno and Shasha propose a system called GraphGrep [12] for finding all the

occurrences of a graph in a database of graphs. The input to the system is a graph in

a graph query language called Glide. Graph matching is done in three steps, firstly

all the graphs in the database are represented as paths upto a maximum constant

length. Secondly, the query graph is parsed using Glide and is represented linearly

by parsing the query graph in DFS fashion. Lastly, all graphs which do not contain

the path which was found in the query graph from the second step are filtered out,

only the remaining graphs are searched for the exact match.

Subdue [6, 7] is the model proposed by Cook and Holder. Subdue identifies sub-

structures in data based on the minimum description length principle. The data here

is represented as a labeled graph. The algorithm starts with a substructure matching

a vertex of the graph and iteratively expands the structure by one edge connected to

the vertex in all possible ways. The algorithm terminates when the best substructure

match is found or when the computation exceeds a certain limit.

Inukochi et al. [13] propose an approach for mining association rules from fre-

quently occurring substructures in a graph data set. A graph transaction is rep-

resented as an adjacency matrix and the frequent substructures appearing in the

matrices are mined through an extended approach of market basket analysis [16].

Analogous to basket analysis, the terms ”support” and ”confidence” are defined as

follows. Support of a graph Gs, sup(Gs), is defined as the ratio of the number of

graph transactions G where Gs ⊂ G to the total number of graph transactions G.

For two induced subgraphs Gb and Gh, the confidence of the association rule Gb ⇒ Gh,

conf(Gb ⇒ Gh), is defined as the ratio of number of graphs G where Gb ∪Gh ⊂ G to

the number of graphs G where Gb ⊂ G. If the value of sup(Gs) exceeds a threshold

value minsup, Gs is said to be a frequent induced subgraph. In the apriori algorithm,

the generation of candidate frequent induced subgraphs is done by a level-wise search

interms of the size of the subgraphs. Then, the confidence values of the associa-

tion rules among these subgraphs is calculated. The association rules, for which the
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confidence value exceeds a given confidence threshold, are then enumerated.

Kuramochi and Karypis [15] propose a method for frequent subgraph discovery

called FSG. To begin with FSG enumerates the one length and two length walks. It

then adds one edge at a time to the enumerated subgraphs and checks the frequency

of occurrence of these subgraphs and discards those subgraphs which do not satisfy

the support constraint. Support is defined as the minimum frequency for a subgraph

to be qualified as a frequent subgraph. The graph is represented using an adjacency

matrix.

7.2 Finding patterns in a program

Identifying code patterns in a user written program is a widely researched topic. Paul

and Prakash propose a tool called SCRUPLE [20] which is regular expression based

pattern language to find code patterns in a given code. SCRUPLE wins over tools

like grep,awk,sed etc since the query language is much simpler, also SCRUPLE can

match patterns over multiple lines which the above said tools cannot.

In yet another approach proposed by Baxter et al. [2] tries to eliminate duplicate

(clone) patterns in a code. The proposed method detects the clones represented as

Abstract Syntax Trees (AST). The trees are categorized and similar trees are put into

the same hash bucket. Thus search space is considerably reduced.

7.3 Compiler Optimization

Modern compilers spend a lot of time in optimizing the code better. For example,

the user can specify the optimization level in GCC, though optimization level greater

than two is not advised. There is a considerable amount of work going on in the field

of compiler optimization.

In their work on compiler optimization Chang et al. [4] propose an automatic

inline expansion for C programs. The system performs the inline expansion before

it is subjected to other optimization techniques. The program is represented as a
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call graph G = (N,E,main), where N is a set of nodes, each representing a function,

has an associated weight, which is the number of times the function is called, E is

the set of edges representing the function call, has an associated weight, which is the

execution count of the call and main is the entry point of the program. Based on the

statistics generated as described above a function is expanded inline, which effectively

translates to a node being subsumed by a node from which the call to the function is

made.

Chang et al. [5] propose compiler optimization based on the profile information

that is generated from the code. Profiling is the process of running the code for

selected inputs and recording the run-time behavior of the program. In the proposed

approach the compiler comes inbuilt with a profiler, which adds profile information

to the intermediate language code that can be used by the code optimizer to optimize

the code better. The intermediate code is represented in the form of a control flow

graph(CFG) along with the profile information. The profile information includes the

number of times a basic block, which is represented by a node in the CFG is executed

and the number of times a path has been taken a node. A frequently executed path

is represented by a data structure called the super block. The super block is used

to perform the traditional optimization techniques such as dead code removal, loop

optimizations, loop invariant code removal etc.
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Chapter 8

Experimental Results

The system was tested for various user written programs. Here we take a simple

example to show the experimental results produced. Consider the C code shown in

figure 8.1.

We observe that the repeating structure here is the three “for” loops. Hence the

system should recognize these as the frequent substructure.

The CFG in dotty format for the example code is as shown in the table 8.2. The

graphical representation of the CFG is shown in figure 8.1. We observe from this

figure that the the substructure defined by the walk “IfEls -> AsgnAdd -> IfEls” is

a frequent substructure in the graph, which defines the three “for” loops.

The result obtained by giving the CFG shown in the figure 8.1 as input to the sys-

tem, is shown in figure 8.2. We observe that the system has identified the occurrence

of the three for loops as the frequent substructure as was hypothesized. We can do

a memory optimization by making the “for” loop a separate function or replace the

loop with a better construct if it is found to be unoptimized.
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#include<stdio.h>

main()

{
int i,j;

for(i=0;i<10;i++)

{
}

printf(”hi”);

i = j;

for(i=0;i<10;i++)

{
}

i = 2;

j = 3;

for(i=0;i<10;i++)

{
}

}

Table 8.1: Example C code 1
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digraph G {
ENTRY->0;

0 [label=” i = 0;”];

2->1;

1[label=” <L0>:; i = i + 1;”];

1->2;

0->2;

2 [label=”<L1>:; if (i <= 9) goto <L0>; else goto <L2>;”];

2->3;

3[label=” <L2>:; printf (”hi”); i = j; i = 0;”];

5->4;

4 [label=” <L3>:; i = i + 1;”];

4->5;

3->5;

5[label=” <L4>:; if (i <= 9) goto <L3>; else goto <L5>;”];

5->6;

6 [label=” <L5>:; i = 2; j = 3; i = 0;”];

8->7;

7 [label=” <L6>:; i = i + 1;”];

7->8;

6->8;

8[label=” <L7>:; if (i <= 9) goto <L6>; else goto <L8>;”];

8->9;

9 [label=” <L8>:; return;”];

9->EXIT;

}

Table 8.2: Dotty format for the example C code 1
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ENTRY

Asgn_0

IfEls_0

AsgnAdd_0 PrnAsgnAsgn_0

IfEls_1

AsgnAdd_1

AsgnAsgnAsgn_0

IfEls_2

AsgnAdd_2 Ret_0

EXIT

Figure 8.1: CFG for the example C code 1

IfEls_0

AsgnAdd_0

IfEls_1

AsgnAdd_1

IfEls_2

AsgnAdd_2

Figure 8.2: Frequent substructures the example C code 1
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Chapter 9

Conclusion and Future Directions

The problem of finding frequent patterns in a code has been addressed in this the-

sis. We have substantiated addressing the problem in the context of better compiler

optimization. Another application of finding frequent patterns in a code is in code

refactoring [18, 17], for example a code fragment that is found to repeat in a user

written program can be made a separate function, and the function could be called

instead of having the repeating pattern in the code.

Once the frequent fragments for a given code have been found, the next step is

to find out if the frequent code fragment is efficient or not. For this we assume a

database which contains unoptimized code fragments and try to match the frequent

substructures against this database. There are two problems to be addressed, firstly

identifying unoptimized code fragments and populating the database with the same

and secondly addressing the problem of Program Understanding. Program Under-

standing has been proved to be an uncomputable problem. Given two pieces of code

it is not possible to compute and find out their equivalence. The frequent fragment ob-

tained from the code and the fragment in the database may not be structurally same

but could yet be performing the same function. Hence both the problems mentioned

above have to be addressed.
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