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As we saw in the previous chapter, the breadth-first search strategy can be used
to find a shortest path from some starting vertex to every other vertex in a connected
graph. This approach makes sense in cases where each edge is as good as any other,
but there are many situations where this approach is not appropriate.

For example, we might be using a graph to represent a computer network (such
as the Internet), and we might be interested in finding the fastest way to route a data
packet between two computers. In this case, it is probably not appropriate for all
the edges to be equal to each other, for some connections in a computer network are
typically much faster than others (for example, some edges might represent slow
phone-line connections while others might represent high-speed, fiber-optic con-
nections). Likewise, we might want to use a graph to represent the roads between
cities, and we might be interested in finding the fastest way to travel cross-country.
In this case, it is again probably not appropriate for all the edges to be equal to each
other, for some intercity distances will likely be much larger than others. Thus, it
is natural to consider graphs whose edges are not weighted equally.

In this chapter, we study weighted graphs. Aweighted graphis a graph that
has a numeric labelw(e) associated with each edgee, called theweightof edgee.
Edge weights can be integers, rational numbers, or real numbers, which represent
a concept such as distance, connection costs, or affinity. We show an example of a
weighted graph in Figure 7.1.
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Figure 7.1: A weighted graph whose vertices represent major U.S. airports and
whose edge weights represent distances in miles. This graph has a path from JFK
to LAX of total weight 2,777 (going through ORD and DFW). This is the minimum
weight path in the graph from JFK to LAX.
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7.1 Single-Source Shortest Paths

Let G be a weighted graph. Thelength (or weight) of a pathP is the sum of the
weights of the edges ofP. That is, if P consists of edgese0,e1, . . . ,ek−1 then the
length ofP, denotedw(P), is defined as

w(P) =
k−1

∑
i=0

w(ei).

Thedistancefrom a vertexv to a vertexu in G, denotedd(v,u), is the length of a
minimum length path (also calledshortest path) from v to u, if such a path exists.

People often use the convention thatd(v,u) = +∞ if there is no path at all from
v to u in G. Even if there is a path fromv to u in G, the distance fromv to u may
not be defined, however, if there is a cycle inG whose total weight is negative.
For example, suppose vertices inG represent cities, and the weights of edges in
G represent how much money it costs to go from one city to another. If someone
were willing to actually pay us to go from say JFK to ORD, then the “cost” of the
edge (JFK,ORD) would be negative. If someone else were willing to pay us to go
from ORD to JFK, then there would be a negative-weight cycle inG and distances
would no longer be defined. That is, anyone can now build a path (with cycles) in
G from any cityA to another cityB that first goes to JFK and then cycles as many
times as he or she likes from JFK to ORD and back, before going on toB. The
existence of such paths allows us to build arbitrarily low negative-cost paths (and
in this case make a fortune in the process). But distances cannot be arbitrarily low
negative numbers. Thus, any time we use edge weights to represent distances, we
must be careful not to introduce any negative-weight cycles.

Suppose we are given a weighted graphG, and we are asked to find a shortest
path from some vertexv to each other vertex inG, viewing the weights on the
edges as distances. In this section, we explore efficient ways of finding all such
single-source shortest paths, if they exist.

The first algorithm we discuss is for the simple, yet common, case when all the
edge weights inG are nonnegative (that is,w(e) ≥ 0 for each edgee of G); hence,
we know in advance that there are no negative-weight cycles inG. Recall that the
special case of computing a shortest path when all weights are 1 was solved with
the BFS traversal algorithm presented in Section 6.3.3.

There is an interesting approach for solving thissingle-sourceproblem based
on thegreedy methoddesign pattern (Section 5.1). Recall that in this pattern we
solve the problem at hand by repeatedly selecting the best choice from among those
available in each iteration. This paradigm can often be used in situations where we
are trying to optimize some cost function over a collection of objects. We can add
objects to our collection, one at a time, always picking the next one that optimizes
the function from among those yet to be chosen.
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7.1.1 Dijkstra’s Algorithm

The main idea in applying the greedy method pattern to the single-source shortest-
path problem is to perform a “weighted” breadth-first search starting atv. In partic-
ular, we can use the greedy method to develop an algorithm that iteratively grows
a “cloud” of vertices out ofv, with the vertices entering the cloud in order of their
distances fromv. Thus, in each iteration, the next vertex chosen is the vertex out-
side the cloud that is closest tov. The algorithm terminates when no more vertices
are outside the cloud, at which point we have a shortest path fromv to every other
vertex ofG. This approach is a simple, but nevertheless powerful, example of the
greedy method design pattern.

A Greedy Method for Finding Shortest Paths

Applying the greedy method to the single-source, shortest-path problem, results in
an algorithm known asDijkstra’s algorithm. When applied to other graph prob-
lems, however, the greedy method may not necessarily find the best solution (such
as in the so-calledtraveling salesman problem, in which we wish to find the short-
est path that visits all the vertices in a graph exactly once). Nevertheless, there are
a number of situations in which the greedy method allows us to compute the best
solution. In this chapter, we discuss two such situations: computing shortest paths
and constructing minimum spanning trees.

In order to simplify the description of Dijkstra’s algorithm, we assume, in the
following, that the input graphG is undirected (that is, all its edges are undirected)
and simple (that is, it has no self-loops and no parallel edges). Hence, we denote the
edges ofG as unordered vertex pairs(u,z). We leave the description of Dijkstra’s
algorithm so that it works for a weighted directed graph as an exercise (R-7.2).

In Dijkstra’s algorithm, the cost function we are trying to optimize in our appli-
cation of the greedy method is also the function that we are trying to compute—the
shortest path distance. This may at first seem like circular reasoning until we realize
that we can actually implement this approach by using a “bootstrapping” trick, con-
sisting of using an approximation to the distance function we are trying to compute,
which in the end will be equal to the true distance.

Edge Relaxation

Let us define a labelD[u] for each vertexu of G, which we use to approximate the
distance inG from v to u. The meaning of these labels is thatD[u] will always store
the length of the best path we have foundso far from v to u. Initially, D[v] = 0
andD[u] = +∞ for eachu 6= v, and we define the setC, which is our “cloud” of
vertices, to initially be the empty set∅. At each iteration of the algorithm, we select
a vertexu not inC with smallestD[u] label, and we pullu into C. In the very first
iteration we will, of course, pullv into C. Once a new vertexu is pulled intoC,
we then update the labelD[z] of each vertexz that is adjacent tou and is outside of
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C, to reflect the fact that there may be a new and better way to get toz via u. This
update operation is known as arelaxation procedure, for it takes an old estimate
and checks if it can be improved to get closer to its true value. (A metaphor for
why we call this a relaxation comes from a spring that is stretched out and then
“relaxed” back to its true resting shape.) In the case of Dijkstra’s algorithm, the
relaxation is performed for an edge(u,z), such that we have computed a new value
of D[u] and wish to see if there is a better value forD[z] using the edge(u,z). The
specific edge relaxation operation is as follows:

Edge Relaxation:

if D[u]+w((u,z)) < D[z] then
D[z]← D[u]+w((u,z)).

Note that if the newly discovered path toz is no better than the old way, then we do
not changeD[z].

The Details of Dijkstra’s Algorithm

We give the pseudo-code for Dijkstra’s algorithm in Algorithm 7.2. Note that we
use a priority queueQ to store the vertices outside of the cloudC.

Algorithm DijkstraShortestPaths(G,v):
Input: A simple undirected weighted graphG with nonnegative edge weights,

and a distinguished vertexv of G
Output: A labelD[u], for each vertexu of G, such thatD[u] is the distance from

v to u in G

D[v]← 0
for each vertexu 6= v of ~G do

D[u]←+∞
Let a priority queueQ contain all the vertices ofG using theD labels as keys.
while Q is not emptydo
{pull a new vertexu into the cloud}
u←Q.removeMin()
for each vertexzadjacent tou such thatz is in Q do
{perform therelaxation procedure on edge(u,z)}
if D[u]+w((u,z)) < D[z] then

D[z]← D[u]+w((u,z))
Change toD[z] the key of vertexz in Q.

return the labelD[u] of each vertexu

Algorithm 7.2: Dijkstra’s algorithm for the single-source shortest path problem for
a graphG, starting from a vertexv.

We illustrate several iterations of Dijkstra’s algorithm in Figures 7.3 and 7.4.
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Figure 7.3: An execution of Dijkstra’s algorithm on a weighted graph. The start
vertex is BWI. A box next to each vertexu stores the labelD[u]. The symbol• is
used instead of+∞. The edges of the shortest-path tree are drawn as thick arrows,
and for each vertexu outside the “cloud” we show the current best edge for pulling
in u with a solid line. (Continued in Figure 7.4.)
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Figure 7.4: Visualization of Dijkstra’s algorithm. (Continued from Figure 7.3.)

Why It Works

The interesting, and possibly even a little surprising, aspect of the Dijkstra algo-
rithm is that, at the moment a vertexu is pulled intoC, its labelD[u] stores the
correct length of a shortest path fromv to u. Thus, when the algorithm terminates,
it will have computed the shortest-path distance fromv to every vertex ofG. That
is, it will have solved the single-source shortest path problem.

It is probably not immediately clear why Dijkstra’s algorithm correctly finds
the shortest path from the start vertexv to each other vertexu in the graph. Why
is it that the distance fromv to u is equal to the value of the labelD[u] at the time
vertexu is pulled into the cloudC (which is also the timeu is removed from the
priority queueQ)? The answer to this question depends on there being no negative-
weight edges in the graph, for it allows the greedy method to work correctly, as we
show in the lemma that follows.
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Lemma 7.1: In Dijkstra’s algorithm, whenever a vertexu is pulled into the cloud,
the labelD[u] is equal tod(v,u), the length of a shortest path fromv to u.

Proof: Suppose thatD[t] > d(v, t) for some vertext in V, and letu be thefirst
vertex the algorithm pulled into the cloudC (that is, removed fromQ), such that
D[u] > d(v,u). There is a shortest pathP from v to u (for otherwised(v,u) =
+∞= D[u]). Therefore, let us consider the moment whenu is pulled intoC, and
let zbe the first vertex ofP (when going fromv to u) that is not inC at this moment.
Let y be the predecessor ofz in path P (note that we could havey = v). (See
Figure 7.5.) We know, by our choice ofz, that y is already inC at this point.
Moreover,D[y] = d(v,y), sinceu is thefirst incorrect vertex. Wheny was pulled
into C, we tested (and possibly updated)D[z] so that we had at that point

D[z]≤ D[y]+w((y,z)) = d(v,y)+w((y,z)).

But sincez is the next vertex on the shortest path fromv to u, this implies that

D[z] = d(v,z).

But we are now at the moment when we are pickingu, notz, to joinC; hence,

D[u]≤ D[z].

It should be clear that a subpath of a shortest path is itself a shortest path. Hence,
sincez is on the shortest path fromv to u,

d(v,z)+d(z,u) = d(v,u).

Moreover,d(z,u) ≥ 0 because there are no negative-weight edges. Therefore,

D[u]≤ D[z] = d(v,z) ≤ d(v,z)+d(z,u) = d(v,u).

But this contradicts the definition ofu; hence, there can be no such vertexu.

C

v

u

z

y
P

D[y] = d(v,y)

D[z] = d(v,z)

the first “wrong” vertex

u picked next

D[u] > d(v,u)

soD[u] ≤ D[z]

Figure 7.5: A schematic illustration for the justification of Theorem 7.1.
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The Running Time of Dijkstra’s Algorithm

In this section, we analyze the time complexity of Dijkstra’s algorithm. We denote
with n andm, the number of vertices and edges of the input graphG, respectively.
We assume that the edge weights can be added and compared in constant time.
Because of the high level of the description we gave for Dijkstra’s algorithm in
Algorithm 7.2, analyzing its running time requires that we give more details on its
implementation. Specifically, we should indicate the data structures used and how
they are implemented.

Let us first assume that we are representing the graphG using an adjacency
list structure. This data structure allows us to step through the vertices adjacent to
u during the relaxation step in time proportional to their number. It still does not
settle all the details for the algorithm, however, for we must say more about how to
implement the other main data structure in the algorithm—the priority queueQ.

An efficient implementation of the priority queueQ uses a heap (see Sec-
tion 2.4.3). This allows us to extract the vertexu with smallestD label, by call-
ing theremoveMin method, inO(logn) time. As noted in the pseudo-code, each
time we update aD[z] label we need to update the key ofz in the priority queue.
If Q is implemented as a heap, then this key update can, for example, be done by
first removing and then insertingz with its new key. If our priority queueQ sup-
ports the locator pattern (see Section 2.4.4), then we can easily implement such
key updates inO(logn) time, since a locator for vertexz would allow Q to have
immediate access to the item storingz in the heap (see Section 2.4.4). Assuming
this implementation ofQ, Dijkstra’s algorithm runs inO((n+m) logn) time.

Referring back to Algorithm 7.2, the details of the running-time analysis are as
follows:

• Inserting all the vertices inQ with their initial key value can be done in
O(nlogn) time by repeated insertions, or inO(n) time using bottom-up heap
construction (see Section 2.4.4).

• At each iteration of thewhile loop, we spendO(logn) time to remove vertex
u from Q, andO(deg(v) logn) time to perform the relaxation procedure on
the edges incident onu.

• The overall running time of thewhile loop is

∑
v∈G

(1+deg(v)) logn,

which isO((n+m) logn) by Theorem 6.6.

Thus, we have the following.

Theorem 7.2: Given a weightedn-vertex graphG with medges, each with a non-
negative weight, Dijkstra’s algorithm can be implemented to find all shortest paths
from a vertexv in G in O(mlogn) time.

Note that if we wish to express the above running time as a function ofn only,
then it isO(n2 logn) in the worst case, since we have assumed thatG is simple.
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An Alternative Implementation for Dijkstra’s Algorithm

Let us now consider an alternative implementation for the priority queueQ using
an unsorted sequence. This, of course, requires that we spendΩ(n) time to extract
the minimum element, but it allows for very fast key updates, providedQ supports
the locator pattern (Section 2.4.4). Specifically, we can implement each key update
done in a relaxation step inO(1) time—we simply change the key value once we
locate the item inQ to update. Hence, this implementation results in a running time
that isO(n2 +m), which can be simplified toO(n2) sinceG is simple.

Comparing the Two Implementations

We have two choices for implementing the priority queue in Dijkstra’s algorithm:
a locator-based heap implementation, which yieldsO(mlogn) running time, and a
locator-based unsorted sequence implementation, which yields anO(n2)-time algo-
rithm. Since both implementations would be fairly simple to code up, they are about
equal in terms of the programming sophistication needed. These two implementa-
tions are also about equal in terms of the constant factors in their worst-case running
times. Looking only at these worst-case times, we prefer the heap implementation
when the number of edges in the graph is small (that is, whenm< n2/ logn), and
we prefer the sequence implementation when the number of edges is large (that is,
whenm> n2/ logn).

Theorem 7.3: Given a simple weighted graphG with n vertices andm edges,
such that the weight of each edge is nonnegative, and a vertexv of G, Dijkstra’s
algorithm computes the distance fromv to all other vertices ofG in O(mlogn)
time, or, alternatively, inO(n2) time.

In Exercise R-7.3, we explore how to modify Dijkstra’s algorithm to output a
treeT rooted atv, such that the path inT from v to a vertexu is a shortest path
in G from v to u. In addition, extending Dijkstra’s algorithm for directed graphs
is fairly straightforward. We cannot extend Dijkstra’s algorithm to work on graphs
with negative-weight edges, however, as Figure 7.6 illustrates.
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10 D[z]=130

z

y

x

v

Figure 7.6: An illustration of why Dijkstra’s algorithm fails for graphs with
negative-weight edges. Bringingz into C and performing edge relaxations will
invalidate the previously computed shortest path distance (124) tox.
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7.1.2 The Bellman-Ford Shortest Paths Algorithm

There is another algorithm, which is due to Bellman and Ford, that can find shortest
paths in graphs that have negative-weight edges. We must, in this case, insist that
the graph be directed, for otherwise any negative-weight undirected edge would
immediately imply a negative-weight cycle, where we traverse this edge back and
forth in each direction. We cannot allow such edges, since a negative cycle invali-
dates the notion of distance based on edge weights.

Let ~G be a weighted directed graph, possibly with some negative-weight edges.
The Bellman-Ford algorithm for computing the shortest-path distance from some
vertexv in ~G to every other vertex in~G is very simple. It shares the notion of edge
relaxation from Dijkstra’s algorithm, but does not use it in conjunction with the
greedy method (which would not work in this context; see Exercise C-7.2). That
is, as in Dijkstra’s algorithm, the Bellman-Ford algorithm uses a labelD[u] that is
always an upper bound on the distanced(v,u) from v to u, and which is iteratively
“relaxed” until it exactly equals this distance.

The Details of the Bellman-Ford Algorithm

The Bellman-Ford method is shown in Algorithm 7.7. It performsn− 1 times a
relaxation of every edge in the digraph. We illustrate an execution of the Bellman-
Ford algorithm in Figure 7.8.

Algorithm BellmanFordShortestPaths(~G,v):
Input: A weighted directed graph~G with n vertices, and a vertexv of ~G
Output: A labelD[u], for each vertexu of ~G, such thatD[u] is the distance from

v to u in ~G, or an indication that~G has a negative-weight cycle

D[v]← 0
for each vertexu 6= v of ~G do

D[u]←+∞
for i← 1 ton−1 do

for each (directed) edge(u,z) outgoing fromu do
{Perform therelaxation operation on(u,z)}
if D[u]+w((u,z)) < D[z] then

D[z]← D[u]+w((u,z))
if there are no edges left with potential relaxation operationsthen

return the labelD[u] of each vertexu
else

return “~G contains a negative-weight cycle”

Algorithm 7.7: The Bellman-Ford single-source shortest-path algorithm, which al-
lows for negative-weight edges.
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Figure 7.8: An illustration of an application of the Bellman-Ford algorithm. The start
vertex is BWI. A box next to each vertexu stores the labelD[u], with “shadows” showing
values revised during relaxations; the thick edges are causing such relaxations.
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Lemma 7.4: If at the end of the execution of Algorithm 7.7 there is an edge(u,z)
that can be relaxed (that is,D[u]+w((u,z)) < D[z]), then the input digraph~G con-
tains a negative-weight cycle. Otherwise,D[u] = d(v,u) for each vertexu in ~G.

Proof: For the sake of this proof, let us introduce a new notion of distance in
a digraph. Specifically, letdi(v,u) denote the length of a path fromv to u that is
shortest among all paths fromv to u that contain at mosti edges. We calldi(v,u)
the i-edge distancefrom v to u. We claim that after iterationi of the main for-
loop in the Bellman-Ford algorithmD[u] = di(v,u) for each vertex in~G. This is
certainly true before we even begin the first iteration, forD[v] = 0 = d0(v,v) and,
for u 6= v, D[u] = +∞= d0(v,u). Suppose this claim is true before iterationi (we
will now show that if this is the case, then this claim will be true after iterationi
as well). In iterationi, we perform a relaxation step for every edge in the digraph.
The i-edge distancedi(v,u), from v to a vertexu, is determined in one of two ways.
Either di(v,u) = di−1(v,u) or di(v,u) = di−1(v,z) + w((z,u)) for some vertexz in
~G. Because we do a relaxation foreveryedge of~G in iteration i, if it is the former
case, then after iterationi we haveD[u] = di−1(v,u) = di(v,u), and if it is the latter
case, then after iterationi we haveD[u] = D[z]+w((z,u)) = di−1(v,z)+w((z,u)) =
di(v,u). Thus, ifD[u] = di−1(v,u) for each vertexu before iterationi, thenD[u] =
di(v,u) for each vertexu after iterationi.

Therefore, aftern−1 iterations,D[u] = dn−1(v,u) for each vertexu in ~G. Now
observe that if there is still an edge in~G that can be relaxed, then there is some
vertexu in ~G, such that then-edge distance fromv to u is less than the(n−1)-edge
distance fromv to u, that is,dn(v,u) < dn−1(v,u). But there are onlyn vertices in~G;
hence, if there is a shortestn-edge path fromv to u, it must repeat some vertexz in
~G twice. That is, it must contain a cycle. Moreover, since the distance from a vertex
to itself using zero edges is 0 (that is,d0(z,z) = 0), this cycle must be a negative-
weight cycle. Thus, if there is an edge in~G that can still be relaxed after running the
Bellman-Ford algorithm, then~G contains a negative-weight cycle. If, on the other
hand, there is no edge in~G that can still be relaxed after running the Bellman-Ford
algorithm, then~G does not contain a negative-weight cycle. Moreover, in this case,
every shortest path between two vertices will have at mostn−1 edges; hence, for
each vertexu in ~G, D[u] = dn−1(v,u) = d(v,u).

Thus, the Bellman-Ford algorithm is correct and even gives us a way of telling
when a digraph contains a negative-weight cycle. The running time of the Bellman-
Ford algorithm is easy to analyze. We perform the main for-loopn−1 times, and
each such loop involves spendingO(1) time for each edge in~G. Therefore, the
running time for this algorithm isO(nm). We summarize as follows:

Theorem 7.5: Given a weighted directed graph~G with n vertices andm edges,
and a vertexv of ~G, the Bellman-Ford algorithm computes the distance fromv to all
other vertices ofG or determines that~G contains a negative-weight cycle inO(nm)
time.
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7.1.3 Shortest Paths in Directed Acyclic Graphs

As mentioned above, both Dijkstra’s algorithm and the Bellman-Ford algorithm
work for directed graphs. We can solve the single-source shortest paths problem
faster than these algorithms can, however, if the digraph has no directed cycles, that
is, it is a weighted directed acyclic graph (DAG).

Recall from Section 6.4.4 that a topological ordering of a DAG~G is a listing of
its vertices(v1,v2, . . . ,vn), such that if(vi ,vj) is an edge in~G, theni < j. Also, recall
that we can use the depth-first search algorithm to compute a topological ordering
of the n vertices in anm-edge DAG~G in O(n+ m) time. Interestingly, given a
topological ordering of such a weighted DAG~G, we can compute all shortest paths
from a given vertexv in O(n+m) time.

The Details for Computing Shortest Paths in a DAG

The method, which is given in Algorithm 7.9, involves visiting the vertices of~G
according to the topological ordering, relaxing the outgoing edges with each visit.

Algorithm DAGShortestPaths(~G,s):
Input: A weighted directed acyclic graph (DAG)~Gwith nvertices andmedges,

and a distinguished vertexs in ~G
Output: A labelD[u], for each vertexu of ~G, such thatD[u] is the distance from

v to u in ~G

Compute a topological ordering(v1,v2, . . . ,vn) for ~G
D[s]← 0
for each vertexu 6= sof ~G do

D[u]←+∞
for i← 1 ton−1 do
{Relax each outgoing edge fromvi}
for each edge(vi ,u) outgoing fromvi do

if D[vi ]+w((vi,u)) < D[u] then
D[u]← D[vi ]+w((vi,u))

Output the distance labelsD as the distances froms.

Algorithm 7.9: Shortest path algorithm for a directed acyclic graph.

The running time of the shortest path algorithm for a DAG is easy to analyze.
Assuming the digraph is represented using an adjacency list, we can process each
vertex in constant time plus an additional time proportional to the number of its
outgoing edges. In addition, we have already observed that computing the topolog-
ical ordering of the vertices in~G can be done inO(n+ m) time. Thus, the entire
algorithm runs inO(n+m) time. We illustrate this algorithm in Figure 7.10.
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Figure 7.10: An illustration of the shortest-path algorithm for a DAG.

Theorem 7.6: DAGShortestPaths computes the distance from a start vertexs to
each other vertex in a directedn-vertex graph~G with m edges inO(n+m) time.

Proof: Suppose, for the sake of a contradiction, thatvi is the first vertex in the
topological ordering such thatD[vi ] is not the distance froms to vi . First, note that
D[vi ] < +∞, for the initialD value for each vertex other thans is +∞ and the value
of a D label is only ever lowered if a path froms is discovered. Thus, ifD[vj ] =
+∞, thenvj is unreachable froms. Therefore,vi is reachable froms, so there is a
shortest path froms to vi . Let vk be the penultimate vertex on a shortest path from
s to vi . Since the vertices are numbered according to a topological ordering, we
have thatk < i. Thus,D[vk] is correct (we may possibly havevk = s). But when
vk is processed, we relax each outgoing edge fromvk, including the edge on the
shortest path fromvk to vi . Thus,D[vi ] is assigned the distance froms to vi . But
this contradicts the definition ofvi ; hence, no such vertexvi can exist.
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7.2 All-Pairs Shortest Paths

Suppose we wish to compute the shortest path distance between every pair of ver-
tices in a directed graph~G with n vertices andm edges. Of course, if~G has no
negative-weight edges, then we could run Dijkstra’s algorithm from each vertex in
~G in turn. This approach would takeO(n(n+ m) logn) time, assuming~G is rep-
resented using an adjacency list structure. In the worst case, this bound could be
as large asO(n3 logn). Likewise, if ~G contains no negative-weight cycles, then we
could run the Bellman-Ford algorithm starting from each vertex in~G in turn. This
approach would run inO(n2m) time, which, in the worst case, could be as large as
O(n4). In this section, we consider algorithms for solving the all-pairs shortest path
problem inO(n3) time, even if the digraph contains negative-weight edges (but not
negative-weight cycles).

7.2.1 A Dynamic Programming Shortest Path Algorithm

The first all-pairs shortest path algorithm we discuss is a variation on an algorithm
we have given earlier in this book, namely, the Floyd-Warshall algorithm for com-
puting the transitive closure of a directed graph (Algorithm 6.16).

Let ~G be a given weighted directed graph. We number the vertices of~G arbi-
trarily as(v1,v2, . . . ,vn). As in any dynamic programming algorithm (Section 5.3),
the key construct in the algorithm is to define a parameterized cost function that is
easy to compute and also allows us to ultimately compute a final solution. In this
case, we use the cost function,Dk

i, j , which is defined as the distance fromvi to vj

using only intermediate vertices in the set{v1,v2, . . . ,vk}. Initially,

D0
i, j =




0 if i = j
w((vi ,vj)) if (vi ,vj) is an edge in~G
+∞ otherwise.

Given this parameterized cost functionDk
i, j , and its initial valueD0

i, j , we can then
easily define the value for an arbitraryk > 0 as

Dk
i, j = min{Dk−1

i, j ,Dk−1
i,k +Dk−1

k, j }.
In other words, the cost for going fromvi to vj using vertices numbered 1 through
k is equal to the shorter of two possible paths. The first path is simply the shortest
path fromvi to vj using vertices numbered 1 throughk− 1. The second path is
the sum of the costs of the shortest path fromvi to vk using vertices numbered 1
throughk−1 and the shortest path fromvk to vj using vertices numbered 1 through
k− 1. Moreover, there is no other shorter path fromvi to vj using vertices of
{v1,v2, . . . ,vk} than these two. If there was such a shorter path and it excludedvk,
then it would violate the definition ofDk−1

i, j , and if there was such a shorter path and

it includedvk, then it would violate the definition ofDk−1
i,k or Dk−1

k, j . In fact, note
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Algorithm AllPairsShortestPaths(~G):
Input: A simple weighted directed graph~G without negative-weight cycles
Output: A numberingv1,v2, . . . ,vn of the vertices of~G and a matrixD, such

thatD[i, j] is the distance fromvi to vj in ~G

let v1,v2, . . . , vn be an arbitrary numbering of the vertices of~G
for i← 1 to n do

for j← 1 to n do
if i = j then

D0[i, i]← 0
if (vi ,vj) is an edge in~G then

D0[i, j]← w((vi ,vj))
else

D0[i, j]←+∞
for k← 1 to n do

for i← 1 ton do
for j← 1 to n do

Dk[i, j]←min{Dk−1[i, j],Dk−1[i,k]+Dk−1[k, j]}
return matrix Dn

Algorithm 7.11: A dynamic programming algorithm to compute all-pairs shortest
path distances in a digraph without negative cycles.

that this argument still holds even if there are negative cost edges in~G, just so long
as there are no negative cost cycles. In Algorithm 7.11, we show how this cost-
function definition allows us to build an efficient solution to the all-pairs shortest
path problem.

The running time for this dynamic programming algorithm is clearlyO(n3).
Thus, we have the following theorem

Theorem 7.7: Given a simple weighted directed graph~G with n vertices and
no negative-weight cycles, Algorithm 7.11 (AllPairsShortestPaths) computes the
shortest-path distances between each pair of vertices of~G in O(n3) time.

7.2.2 Computing Shortest Paths via Matrix Multiplication

We can view the problem of computing the shortest-path distances for all pairs of
vertices in a directed graph~G as a matrix problem. In this subsection, we describe
how to solve the all-pairs shortest-path problem inO(n3) time using this approach.
We first describe how to use this approach to solve the all-pairs problem inO(n4)
time, and then we show how this can be improved toO(n3) time by studying the
problem in more depth. This matrix-multiplication approach to shortest paths is
especially useful in contexts where we represent graphs using the adjacency matrix
data structure.
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The Weighted Adjacency Matrix Representation

Let us number the vertices of~G as (v0,v1, . . . ,vn−1), returning to the convention
of numbering the vertices starting at index 0. Given this numbering of the vertices
of ~G, there is a natural weighted view of the adjacency matrix representation for a
graph, where we defineA[i, j] as follows:

A[i, j] =




0 if i = j
w((vi ,vj)) if (vi ,vj) is an edge in~G
+∞ otherwise.

(Note that this is the same definition used for the cost functionD0
i, j from the previ-

ous subsection.)

Shortest Paths and Matrix Multiplication

In other words,A[i, j] stores the shortest path distance fromvi to vj using one or
fewer edges in the path. Let us therefore use the matrixA to define another matrix
A2, such thatA2[i, j] stores the shortest path distance fromvi to vj using at most two
edges. A path with at most two edges is either empty (a zero-edge path) or it adds
an extra edge to a zero-edge or one-edge path. Therefore, we can defineA2[i, j] as

A2[i, j] = min
l=0,1,...,n−1

{A[i, l ]+A[l , j]}.

Thus, givenA, we can compute the matrixA2 in O(n3) time, by using an algorithm
very similar to the standard matrix multiplication algorithm.

In fact, we can view this computation as a matrix multiplication in which we
have simply redefined what the operators “plus” and “times” mean in the matrix
multiplication algorithm (the programming language C++ specifically allows for
such operator overloading). If we let “plus” be redefined to mean “min” and we
let “times” be redefined to mean “+,” then we can writeA2[i, j] as a true matrix
multiplication:

A2[i, j] = ∑
l=0,1,...,n−1

A[i, l ] ·A[l , j].

Indeed, this matrix-multiplication viewpoint is the reason why we have written this
matrix as “A2,” for it is the square of the matrixA.

Let us continue this approach to define a matrixAk, so thatAk[i, j] is the shortest-
path distance fromvi to vj using at mostk edges. Since a path with at mostk edges
is equivalent to a path with at mostk−1 edges plus possibly one additional edge,
we can defineAk so that

Ak[i, j] = ∑
l=0,1,...,n−1

Ak−1[i, l ] ·A[l , j],

continuing the operator redefining so that “+” stands for “min” and “·” stands
for “+.”
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The crucial observation is that if~G contains no negative-weight cycles, then
An−1 stores the shortest-path distance between each pair of vertices in~G. This
observation follows from the fact that any well-defined shortest path contains at
mostn−1 edges. If a path has more thann−1 edges, it must repeat some vertex;
hence, it must contain a cycle. But a shortest path will never contain a cycle (unless
there is a negative-weight cycle in~G). Thus, to solve the all-pairs shortest path
problem, all we need to do is to multiplyA times itselfn−1 times. Since each such
multiplication can be done inO(n3) time, this approach immediately gives us the
following.

Theorem 7.8: Given a weighted directedn-vertex graph~Gcontaining no negative-
weight cycles, and the weighted adjacency matrixA for ~G, the all-pairs shortest path
problem for~G can be solved by computingAn−1, which can be performed inO(n4)
time.

In Section 10.1.4, we discuss an exponentiation algorithm for numbers, which
can be applied in the present context of matrix multiplication to computeAn−1 in
O(n3 logn) time. We can actually computeAn−1 in O(n3) time, however, by taking
advantage of additional structure present in the all-pairs shortest-path problem.

Matrix Closure

As observed above, if~G contains no negative-weight cycles, thenAn−1 encodes all
the shortest-path distances between pairs of vertices in~G. A well-defined shortest
path can contain no cycles; hence, a shortest path restricted to contain at mostn−1
edges must be a true shortest path. Likewise, a shortest path containing at mostn
edges is a true shortest path, as is a shortest path containing at mostn+ 1 edges,
n+2 edges, and so on. Therefore, if~G contains no negative-weight cycles, then

An−1 = An = An+1 = An+2 = · · · .
Theclosureof a matrixA is defined as

A∗ =
∞
∑
l=0

Al ,

if such a matrix exists. IfA is a weighted adjacency matrix, thenA∗[i, j] is the sum
of all possible paths fromvi to vj . In our case,A is the weighted adjacency matrix
for a directed graph~G and we have redefined “+” as “min.” Thus, we can write

A∗ = min
i=0,...,∞

{Ai}.

Moreover, since we are computing shortest path distances, the entries inAi+1 are
never larger than the entries inAi. Therefore, for the weighted adjacency matrix of
ann-vertex digraph~G with no negative-weight cycles,

A∗ = An−1 = An = An+1 = An+2 = · · · .
That is,A∗[i, j] stores the length of the shortest path fromvi to vj .



358 Chapter 7. Weighted Graphs

Computing the Closure of a Weighted Adjacency Matrix

We can compute the closureA∗ by divide-and-conquer inO(n3) time. Without
loss of generality, we may assume thatn is a power of two (if not, then pad the
digraph~G with extra vertices that have no in-going or out-going edges). Let us
divide the setV of vertices in~G into two equal-sized setsV1 = {v0, . . . ,vn/2−1} and
V2 = {vn/2, . . . ,vn−1}. Given this division, we can likewise divide the adjacency
matrixA into four blocks,B,C, D, andE, each withn/2 rows and columns, defined
as follows:

• B: weights of edges fromV1 toV1

• C: weights of edges fromV1 to V2

• D: weights of edges fromV2 toV1

• E: weights of edges fromV2 to V2.

That is,

A =
(

B C
D E

)
.

We illustrate these four sets of edges in Figure 7.12.
Likewise, we can partitionA∗ into four blocksW, X, Y, andZ, as well, which

are similarly defined.

• W: weights of shortest paths fromV1 toV1

• X: weights of shortest paths fromV1 toV2

• Y: weights of shortest paths fromV2 to V1

• Z: weights of shortest paths fromV2 toV2,

That is,

A∗ =
(

W X
Y Z

)
.

V1
V2

B

D

C
E

Figure 7.12: An illustration of the four sets of edges used to partition the adjacency
matrix A in the divide-and-conquer algorithm for computingA∗.
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Submatrix Equations

By these definitions and those above, we can derive simple equations to defineW,
X, Y, andZ directly from the submatricesB, C, D, andE.

• W = (B+C ·E∗ ·D)∗, for paths inW consist of the closure of subpaths that
either stay inV1 or jump toV2, travel inV2 for a while, and then jump back
toV1.

• X = W ·C ·E∗, for paths inX consist of the closure of subpaths that start and
end inV1 (with possible jumps toV2 and back), followed by a jump toV2 and
the closure of subpaths that stay inV2.

• Y = E∗ ·D ·W, for paths inY consist of the closure of subpaths that stay in
V2, followed by a jump toV1 and the closure of subpaths that start and end in
V1 (with possible jumps toV2 and back).
• Z = E∗ + E∗ ·D ·W ·C ·E∗, for paths inZ consist of paths that stay inV2

or paths that travel inV2, jump toV1, travel inV1 for a while (with possible
jumps toV2 and back), jump back toV2, and then stay inV2.

Given these equations it is a simple matter to then construct a recursive algo-
rithm to computeA∗. In this algorithm, we divideA into the blocksB, C, D, and
E, as described above. We then recursively compute the closureE∗. GivenE∗, we
can then recursively compute the closure(B+C ·E∗ ·D)∗, which isW.

Note that no other recursive closure computations are then needed to compute
X, Y, andZ. Thus, after a constant number of matrix additions and multiplications,
we can compute all the blocks inA∗. This gives us the following theorem.

Theorem 7.9: Given a weighted directedn-vertex graph~Gcontaining no negative-
weight cycles, and the weighted adjacency matrixA for ~G, the all-pairs shortest path
problem for~G can be solved by computingA∗, which can be performed inO(n3)
time.

Proof: We have already argued why the computation ofA∗ solves the all-pairs
shortest-path problem. Consider, then, the running time of the divide-and-conquer
algorithm for computingA∗, the closure of then× n adjacency matrixA. This
algorithm consists of two recursive calls to compute the closure of(n/2)× (n/2)
submatrices, plus a constant number of matrix additions and multiplications (using
“min” for “ +” and “+” for “ ·”). Thus, assuming we use the straightforwardO(n3)-
time matrix multiplication algorithm, we can characterize the running time,T(n),
for computingA∗ as

T(n) =
{

b if n = 1
2T(n/2)+cn3 if n > 1,

whereb > 0 andc > 0 are constants. Therefore, by the Master Theorem (5.6), we
can computeA∗ in O(n3) time.
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7.3 Minimum Spanning Trees

Suppose we wish to connect all the computers in a new office building using the
least amount of cable. Likewise, suppose we have an undirected computer network
in which each connection between two routers has a cost for usage; we want to
connect all our routers at the minimum cost possible. We can model these problems
using a weighted graphG whose vertices represent the computers or routers, and
whose edges represent all the possible pairs(u,v) of computers, where the weight
w((v,u)) of edge(v,u) is equal to the amount of cable or network cost needed to
connect computerv to computeru. Rather than computing a shortest path tree from
some particular vertexv, we are interested instead in finding a (free) treeT that
contains all the vertices ofG and has the minimum total weight over all such trees.
Methods for finding such trees are the focus of this section.

Problem Definition

Given a weighted undirected graphG, we are interested in finding a treeT that
contains all the vertices inG and minimizes the sum of the weights of the edges
of T, that is,

w(T) = ∑
e∈T

w(e).

We recall from Section 6.1 that a tree such as this, which contains every vertex
of a connected graphG, is said to be aspanning tree. Computing a spanning tree
T with smallest total weight is the problem of constructing aminimum spanning
tree(or MST).

The development of efficient algorithms for the minimum-spanning-tree prob-
lem predates the modern notion of computer science itself. In this section, we
discuss two algorithms for solving the MST problem. These algorithms are all
classic applications of thegreedy method. As was discussed in Section 5.1, we ap-
ply the greedy method by iteratively choosing objects to join a growing collection,
by incrementally picking an object that minimizes some cost function.

The first MST algorithm we discuss is Kruskal’s algorithm, which “grows”
the MST in clusters by considering edges in order of their weights. The second
algorithm we discuss is the Prim-Jarnı́k algorithm, which grows the MST from
a single root vertex, much in the same way as Dijkstra’s shortest-path algorithm.
We conclude this section by discussing a third algorithm, due to Bar˚uvka, which
applies the greedy approach in a parallel way.

As in Section 7.1.1, in order to simplify the description the algorithms, we
assume, in the following, that the input graphG is undirected (that is, all its edges
are undirected) and simple (that is, it has no self-loops and no parallel edges).
Hence, we denote the edges ofG as unordered vertex pairs(u,z).
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A Crucial Fact about Minimum Spanning Trees

Before we discuss the details of these algorithms, however, let us give a crucial fact
about minimum spanning trees that forms the basis of the algorithms. In particular,
all the MST algorithms we discuss are based on the greedy method, which in this
case depends crucially on the following fact. (See Figure 7.13.)

V1 V2

e

min-weight
“bridge” edge

eBelongs to a Minimum Spanning Tree

Figure 7.13: An illustration of the crucial fact about minimum spanning trees.

Theorem 7.10: Let G be a weighted connected graph, and letV1 andV2 be a
partition of the vertices ofG into two disjoint nonempty sets. Furthermore, letebe
an edge inG with minimum weight from among those with one endpoint inV1 and
the other inV2. There is a minimum spanning treeT that haseas one of its edges.

Proof: Let T be a minimum spanning tree ofG. If T does not contain edgee,
the addition ofe to T must create a cycle. Therefore, there is some edgef of this
cycle that has one endpoint inV1 and the other inV2. Moreover, by the choice ofe,
w(e)≤ w( f ). If we removef from T ∪{e}, we obtain a spanning tree whose total
weight is no more than before. SinceT was a minimum spanning tree, this new
tree must also be a minimum spanning tree.

In fact, if the weights inG are distinct, then the minimum spanning tree is
unique; we leave the justification of this less crucial fact as an exercise (C-7.5).

In addition, note that Theorem 7.10 remains valid even if the graphG con-
tains negative-weight edges or negative-weight cycles, unlike the algorithms we
presented for shortest paths.
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7.3.1 Kruskal’s Algorithm

The reason Theorem 7.10 is so important is that it can be used as the basis for
building a minimum spanning tree. In Kruskal’s algorithm, it is used to build the
minimum spanning tree in clusters. Initially, each vertex is in its own cluster all
by itself. The algorithm then considers each edge in turn, ordered by increasing
weight. If an edgee connects two different clusters, thene is added to the set
of edges of the minimum spanning tree, and the two clusters connected bye are
merged into a single cluster. If, on the other hand,e connects two vertices that
are already in the same cluster, thene is discarded. Once the algorithm has added
enough edges to form a spanning tree, it terminates and outputs this tree as the
minimum spanning tree.

We give pseudo-code for Kruskal’s method for solving the MST problem in
Algorithm 7.14, and we show the working of this algorithm in Figures 7.15, 7.16,
and 7.17.

Algorithm KruskalMST(G):
Input: A simple connected weighted graphG with n vertices andm edges
Output: A minimum spanning treeT for G

for each vertexv in G do
Define an elementary clusterC(v)←{v}.

Initialize a priority queueQ to contain all edges inG, using the weights as
keys.
T ←∅ {T will ultimately contain the edges of the MST}
while T has fewer thann−1 edgesdo

(u,v)←Q.removeMin()
LetC(v) be the cluster containingv, and letC(u) be the cluster containingu.
if C(v) 6= C(u) then

Add edge(v,u) to T.
MergeC(v) andC(u) into one cluster, that is, unionC(v) andC(u).

return treeT

Algorithm 7.14: Kruskal’s algorithm for the MST problem.

As mentioned before, the correctness of Kruskal’s algorithm follows from the
crucial fact about minimum spanning trees, Theorem 7.10. Each time Kruskal’s
algorithm adds an edge(v,u) to the minimum spanning treeT, we can define a
partitioning of the set of verticesV (as in the theorem) by lettingV1 be the cluster
containingv and lettingV2 contain the rest of the vertices inV. This clearly defines
a disjoint partitioning of the vertices ofV and, more importantly, since we are
extracting edges fromQ in order by their weights,e must be a minimum-weight
edge with one vertex inV1 and the other inV2. Thus, Kruskal’s algorithm always
adds a valid minimum-spanning-tree edge.
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(e) (f)

Figure 7.15: Example of an execution of Kruskal’s MST algorithm on a graph with
integer weights. We show the clusters as shaded regions and we highlight the edge
being considered in each iteration (continued in Figure 7.16).
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(k) (l)

Figure 7.16: An example of an execution of Kruskal’s MST algorithm (continued).
Rejected edges are shown dashed. (continued in Figure 7.17).
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(m) (n)

Figure 7.17: Example of an execution of Kruskal’s MST algorithm (continued from
Figures 7.15 and 7.16). The edge considered in (n) merges the last two clusters,
which concludes this execution of Kruskal’s algorithm.

Implementing Kruskal’s Algorithm

We denote the number of vertices and edges of the input graphG with n andm,
respectively. We assume that the edge weights can be compared in constant time.
Because of the high level of the description we gave for Kruskal’s algorithm in
Algorithm 7.14, analyzing its running time requires that we give more details on its
implementation. Specifically, we should indicate the data structures used and how
they are implemented.

We implement the priority queueQ using a heap. Thus, we can initializeQ
in O(mlogm) time by repeated insertions, or inO(m) time using bottom-up heap
construction (see Section 2.4.4). In addition, at each iteration of thewhile loop, we
can remove a minimum-weight edge inO(logm) time, which actually isO(logn),
sinceG is simple.

A Simple Cluster Merging Strategy

We use a list-based implementation of a partition (Section 4.2.2) for the clusters.
Namely, we represent each clusterC with an unordered linked list of vertices, stor-
ing, with each vertexv, a reference to its clusterC(v). With this representation,
testing whetherC(u) 6= C(v) takesO(1) time. When we need to merge two clus-
ters,C(u) andC(v), we move the elements of thesmaller cluster into the larger
one and update the cluster references of the vertices in the smaller cluster. Since
we can simply add the elements of the smaller cluster at the end of the list for the
larger cluster, merging two clusters takes time proportional to the size of the smaller
cluster. That is, merging clustersC(u) andC(v) takesO(min{|C(u)|, |C(v)|}) time.
There are other, more efficient, methods for merging clusters (see Section 4.2.2),
but this simple approach will be sufficient.
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Lemma 7.11: Consider an execution of Kruskal’s algorithm on a graph withn
vertices, where clusters are represented with sequences and with cluster references
at each vertex. The total time spent merging clusters isO(nlogn).

Proof: We observe that each time a vertex is moved to a new cluster, the size of
the cluster containing the vertex at least doubles. Lett(v) be the number of times
that vertexv is moved to a new cluster. Since the maximum cluster size isn,

t(v)≤ logn.

The total time spent merging clusters in Kruskal’s algorithm can be obtained by
summing up the work done on each vertex, which is proportional to

∑
v∈G

t(v)≤ nlogn.

Using Lemma 7.11 and arguments similar to those used in the analysis of Di-
jkstra’s algorithm, we conclude that the total running time of Kruskal’s algorithm
is O((n+ m) logn), which can be simplified asO(mlogn) sinceG is simple and
connected.

Theorem 7.12: Given a simple connected weighted graphG with n vertices and
m edges, Kruskal’s algorithm constructs a minimum spanning tree forG in time
O(mlogn).

7.3.2 The Prim-Jarńık Algorithm

In the Prim-Jarńık algorithm, we grow a minimum spanning tree from a single
cluster starting from some “root” vertexv. The main idea is similar to that of
Dijkstra’s algorithm. We begin with some vertexv, defining the initial “cloud” of
verticesC. Then, in each iteration, we choose a minimum-weight edgee= (v,u),
connecting a vertexv in the cloudC to a vertexu outside ofC. The vertexu is then
brought into the cloudC and the process is repeated until a spanning tree is formed.
Again, the crucial fact about minimum spanning trees comes to play, for by always
choosing the smallest-weight edge joining a vertex insideC to one outsideC, we
are assured of always adding a valid edge to the MST.

Growing a Single MST

To efficiently implement this approach, we can take another cue from Dijkstra’s
algorithm. We maintain a labelD[u] for each vertexu outside the cloudC, so that
D[u] stores the weight of the best current edge for joiningu to the cloudC. These
labels allow us to reduce the number of edges that we must consider in deciding
which vertex is next to join the cloud. We give the pseudo-code in Algorithm 7.18.
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Algorithm PrimJarńıkMST(G):
Input: A weighted connected graphG with n vertices andmedges
Output: A minimum spanning treeT for G

Pick any vertexv of G
D[v]← 0
for each vertexu 6= v do

D[u]←+∞
Initialize T← ∅.
Initialize a priority queueQ with an item((u,null),D[u]) for each vertexu,
where(u,null) is the element andD[u] is the key.
while Q is not emptydo

(u,e)←Q.removeMin()
Add vertexu and edgee to T.
for each vertexzadjacent tou such thatz is in Q do
{perform the relaxation procedure on edge(u,z)}
if w((u,z)) < D[z] then

D[z]← w((u,z))
Change to(z,(u,z)) the element of vertexz in Q.
Change toD[z] the key of vertexz in Q.

return the treeT

Algorithm 7.18: The Prim-Jarńık algorithm for the MST problem.

Analyzing the Prim-Jarńık Algorithm

Let n andm denote the number of vertices and edges of the input graphG, respec-
tively. The implementation issues for the Prim-Jarnı́k algorithm are similar to those
for Dijkstra’s algorithm. If we implement the priority queueQ as a heap that sup-
ports the locator-based priority queue methods (see Section 2.4.4), we can extract
the vertexu in each iteration inO(logn) time.

In addition, we can update eachD[z] value in O(logn) time, as well, which
is a computation considered at most once for each edge(u,z). The other steps in
each iteration can be implemented in constant time. Thus, the total running time is
O((n+m) logn), which isO(mlogn). Hence, we can summarize as follows:

Theorem 7.13: Given a simple connected weighted graphG with n vertices and
m edges, the Prim-Jarnı́k algorithm constructs a minimum spanning tree forG in
O(mlogn) time.

We illustrate the Prim-Jarnı́k algorithm in Figures 7.19 and 7.20.
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(e) (f)

Figure 7.19: Visualizing the Prim-Jarńık algorithm (continued in Figure 7.20).



7.3. Minimum Spanning Trees 369

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(g) (h)

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(i) (j)

Figure 7.20: Visualizing the Prim-Jarńık algorithm (continued from Figure 7.19).

7.3.3 Bar̊uvka’s Algorithm

Each of the two minimum-spanning-tree algorithms we have described previously
has achieved its efficient running time by utilizing a priority queueQ, which could
be implemented using a heap (or even a more sophisticated data structure). This
usage should seem natural, for minimum-spanning-tree algorithms involve appli-
cations of the greedy method—and, in this case, the greedy method must explicitly
be optimizing certain priorities among the vertices of the graph in question. It
may be a bit surprising, but as we show in this section, we can actually design an
efficient minimum-spanning-tree algorithm without using a priority queue. More-
over, what may be even more surprising is that the insight behind this simplification
comes from the oldest known minimum-spanning-tree algorithm—the algorithm of
Barůvka.

We present a pseudo-code description of Bar˚uvka’s minimum-spanning-tree
algorithm in Algorithm 7.21, and we illustrate an execution of this algorithm in
Figure 7.22.
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Algorithm Bar̊uvkaMST(G):
Input: A weighted connected graphG = (V,E) with n vertices andmedges
Output: A minimum spanning treeT for G.

Let T be a subgraph ofG initially containing just the vertices inV.
while T has fewer thann−1 edges{T is not yet an MST} do

for each connected componentCi of T do
{Perform the MST edge addition procedure for clusterCi}
Find the smallest-weight edgee= (v,u), in E with v∈Ci andu 6∈Ci.
Add e to T (unlesse is already inT).

return T

Algorithm 7.21: Pseudo-code for Bar˚uvka’s algorithm.

Implementing Bar̊uvka’s Algorithm

Implementing Bar˚uvka’s algorithm is quite simple, requiring only that we be able
to do the following:

• Maintain the forestT subject to edge insertion, which we can easily support
in O(1) time each using an adjacency list forT

• Traverse the forestT to identify connected components (clusters), which we
can easily do inO(n) time using a depth-first search ofT

• Mark vertices with the name of the cluster they belong to, which we can do
with an extra instance variable for each vertex

• Identify a smallest-weight edge inE incident upon a clusterCi , which we can
do by scanning the adjacency lists inG for the vertices inCi.

Like Kruskal’s algorithm, Bar˚uvka’s algorithm builds the minimum spanning
tree by growing a number of clusters of vertices in a series of rounds, not just one
cluster, as was done by the Prim-Jarnı́k algorithm. But in Bar˚uvka’s algorithm, the
clusters are grown by applying the crucial fact about minimum spanning trees to
each cluster simultaneously. This approach allows many more edges to be added in
each round.

Why Is This Algorithm Correct?

In each iteration of Bar˚uvka’s algorithm, we choose the smallest-weight edge com-
ing out of each connected componentCi of the current setT of minimum-spanning-
tree edges. In each case, this edge is a valid choice, for if we consider a partitioning
of V into the vertices inCi and those outside ofCi , then the chosen edgee for
Ci satisfies the condition of the crucial fact about minimum spanning trees (Theo-
rem 7.10) for guaranteeing thatebelongs to a minimum spanning tree.
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(c)

Figure 7.22: Example of an execution of Bar˚uvka’s algorithm. We show clusters as
shaded regions. We highlight the edge chosen by each cluster with an arrow and
we draw each such MST edge as a thick line. Edges determined not to be in the
MST are shown dashed.



372 Chapter 7. Weighted Graphs

Analyzing Bar̊uvka’s Algorithm

Let us analyze the running time of Bar˚uvka’s algorithm (Algorithm 7.21). We can
implement each round performing the searches to find the minimum-weight edge
going out of each cluster by an exhaustive search through the adjacency lists of
each vertex in each cluster. Thus, the total running time spent in searching for
minimum-weight edges can be made to beO(m), for it involves examining each
edge(v,u) in G twice: once forv and once foru (since vertices are labeled with the
number of the cluster they are in). The remaining computations in the main while-
loop involve relabeling all the vertices, which takesO(n) time, and traversing all
the edges inT, which takesO(n) time. Thus, each round in Bar˚uvka’s algorithm
takesO(m) time (sincen≤m). In each round of the algorithm, we choose one edge
coming out of each cluster, and we then merge each new connected component of
T into a new cluster. Thus, each old cluster ofT must merge with at least one other
old cluster ofT. That is, in each round of Bar˚uvka’s algorithm, the total number
of clusters is reduced by half. Therefore, the total number of rounds isO(logn);
hence, the total running time of Bar˚uvka’s algorithm isO(mlogn). We summarize:

Theorem 7.14: Barůvka’s algorithm computes a minimum spanning tree for a
connected weighted graphG with n vertices andmedges inO(mlogn) time.

7.3.4 A Comparison of MST Algorithms

Although each of the above MST algorithms has the same worst-case running time,
each one achieves this running time using different data structures and different
approaches to building the minimum spanning tree.

Concerning auxiliary data structures, Kruskal’s algorithm uses a priority queue,
to store edges, and a collection of sets, implemented with lists, to store clusters. The
Prim-Jarńık algorithm uses only a priority queue, to store vertex-edge pairs. Thus,
from an ease of programming viewpoint, the Prim-Jarnı́k algorithm is preferable.
Indeed, the Prim-Jarnı́k algorithm is so similar to Dijkstra’s algorithm that an im-
plementation of Dijkstra’s algorithm could be converted into an implementation
for the Prim-Jarńık algorithm without much effort. Bar˚uvka’s algorithm requires a
way of representing connected components. Thus, from an ease of programming
viewpoint, the Prim-Jarńık and Barůvka algorithms seem to be the best.

In terms of the constant factors, the three algorithms are fairly similar in that
they both have relatively small constant factors in their asymptotic running times.
The asymptotic running time for Kruskal’s algorithm can be improved if the edges
are given in sorted order by their weights (using the partition data structure of Sec-
tion 4.2.2). Also, the running time of Bar˚uvka’s algorithm can be changed to be
O(n2) in the worst case with a slight modification to the algorithm (which we ex-
plore in Exercise C-7.12). Thus, there is no clear winner among these three algo-
rithms, although Bar˚uvka’s algorithm is the easiest of the three to implement.
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7.4 Java Example: Dijkstra’s Algorithm

In this section, we present Java code for performing Dijkstra’s algorithm (Al-
gorithm 7.2), assuming we are given an undirected graph with positive integer
weights.

We express our implementation of Dijkstra’s algorithm by means of an abstract
classDijkstra (Code Fragments 7.23–7.25), which declares the abstract method
weight(e) to extract the weight of edgee. ClassDijkstra is meant to be extended by
subclasses that implement methodweight(e). See, for example, classMyDijkstra
shown in Code Fragment 7.26.

/** Dijkstra’s algorithm for the single-source shortest path problem
* in an undirected graph whose edges have integer weights. Classes
* extending ths abstract class must define the weight(e) method,
* which extracts the weight of an edge. */

public abstract class Dijkstra {
/** Execute Dijkstra’s algorithm. */
public void execute(InspectableGraph g, Vertex source) {

graph = g;
dijkstraVisit(source);
}
/** Attribute for vertex distances. */
protected Object DIST = new Object();
/** Set the distance of a vertex. */
protected void setDist(Vertex v, int d) {

v.set(DIST, new Integer(d));
}
/** Get the distance of a vertex from the source vertex. This method

* returns the length of a shortest path from the source to u after
* method execute has been called. */

public int getDist(Vertex u) {
return ((Integer) u.get(DIST)).intValue();
}
/** This abstract method must be defined by subclasses.

* @return weight of edge e. */
protected abstract int weight(Edge e);
/** Infinity value. */
public static final int INFINITE = Integer.MAX VALUE;
/** Input graph. */
protected InspectableGraph graph;
/** Auxiliary priority queue. */
protected PriorityQueue Q;

Code Fragment 7.23:ClassDijkstra implementing Dijkstra’s algorithm (continued
in Code Fragments 7.24 and 7.25).
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The algorithm is executed by methoddijkstraVisit. A priority queueQ support-
ing locator-based methods (Section 2.4.4) is used. We insert a vertexu into Q with
methodinsert, which returns the locator ofu in Q. Following the decorator pattern,
we “attach” tou its locator by means of methodsetLoc, and we retrieve the locator
of u with methodgetLoc. Changing the label of a vertexz to d in the relaxation
procedure is done with methodreplaceKey(`,d), where` is the locator ofz.

/** The actual execution of Dijkstra’s algorithm.
* @param v source vertex. */

protected void dijkstraVisit (Vertex v) {
// initialize the priority queue Q and store all the vertices in it
Q = new ArrayHeap(new IntegerComparator());
for (VertexIterator vertices = graph.vertices(); vertices.hasNext();) {

Vertex u = vertices.nextVertex();
int u dist;
if (u==v)

u dist = 0;
else

u dist = INFINITE;
// setDist(u, u dist);
Locator u loc = Q.insert(new Integer(u dist), u);
setLoc(u, u loc);
}
// grow the cloud, one vertex at a time
while (!Q.isEmpty()) {

// remove from Q and insert into cloud a vertex with minimum distance
Locator u loc = Q.min();
Vertex u = getVertex(u loc);
int u dist = getDist(u loc);
Q.remove(u loc); // remove u from the priority queue
setDist(u, u dist); // the distance of u is final
destroyLoc(u); // remove the locator associated with u
if (u dist == INFINITE)

continue; // unreachable vertices are not processed
// examine all the neighbors of u and update their distances
for (EdgeIterator edges = graph.incidentEdges(u); edges.hasNext();) {

Edge e = edges.nextEdge();
Vertex z = graph.opposite(u,e);
if (hasLoc(z)) { // check that z is in Q, i.e., it is not in the cloud

int e weight = weight(e);
Locator z loc = getLoc(z);
int z dist = getDist(z loc);
if ( u dist + e weight < z dist ) // relaxation of edge e = (u,z)

Q.replaceKey(z loc, new Integer(u dist + e weight));
}
}
}
}

Code Fragment 7.24:MethoddijkstraVisit of classDijkstra.
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/** Attribute for vertex locators in the priority queue Q. */
protected Object LOC = new Object();
/** Check if there is a locator associated with a vertex. */
protected boolean hasLoc(Vertex v) {

return v.has(LOC);
}
/** Get the locator in Q of a vertex. */
protected Locator getLoc(Vertex v) {

return (Locator) v.get(LOC);
}
/** Associate with a vertex its locator in Q. */
protected void setLoc(Vertex v, Locator l) {

v.set(LOC, l);
}
/** Remove the locator associated with a vertex. */
protected void destroyLoc(Vertex v) {

v.destroy(LOC);
}
/** Get the vertex associated with a locator. */
protected Vertex getVertex(Locator l) {

return (Vertex) l.element();
}
/** Get the distance of a vertex given its locator in Q. */
protected int getDist(Locator l) {

return ((Integer) l.key()).intValue();
}

Code Fragment 7.25:Auxiliary methods of classDijkstra. They assume that the
vertices of the graph are decorable (continued from Algorithms 7.23 and 7.24).

/** A specialization of class Dijkstra that extracts edge weights from
* decorations. */

public class MyDijkstra extends Dijkstra {
/** Attribute for edge weights. */
protected Object WEIGHT;
/** Constructor that sets the weight attribute. */
public MyDijkstra(Object weight attribute) {

WEIGHT = weight attribute;
}
/** The edge weight is stored in attribute WEIGHT of the edge. */
public int weight(Edge e) {

return ((Integer) e.get(WEIGHT)).intValue();
}
}

Code Fragment 7.26:ClassMyDijkstra that extendsDijkstra and provides a con-
crete implementation of methodweight(e).
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7.5 Exercises

Reinforcement

R-7.1 Draw a simple, connected, weighted graph with 8 vertices and 16 edges, each
with unique edge weights. Identify one vertex as a “start” vertex and illustrate a
running of Dijkstra’s algorithm on this graph.

R-7.2 Show how to modify Dijkstra’s algorithm for the case when the graph is directed
and we want to compute shortestdirected pathsfrom the source vertex to all the
other vertices.

R-7.3 Show how to modify Dijkstra’s algorithm to not only output the distance fromv
to each vertex inG, but also to output a treeT rooted atv, such that the path inT
from v to a vertexu is actually a shortest path inG from v to u.

R-7.4 Draw a (simple) directed weighted graphG with 10 vertices and 18 edges, such
that G contains a minimum-weight cycle with at least 4 edges. Show that the
Bellman-Ford algorithm will find this cycle.

R-7.5 The dynamic programming algorithm of Algorithm 7.11 usesO(n3) space. De-
scribe a version of this algorithm that usesO(n2) space.

R-7.6 The dynamic programming algorithm of Algorithm 7.11 computes only shortest-
path distances, not actual paths. Describe a version of this algorithm that outputs
the set of all shortest paths between each pair of vertices in a directed graph. Your
algorithm should still run inO(n3) time.

R-7.7 Draw a simple, connected, undirected, weighted graph with 8 vertices and 16
edges, each with unique edge weights. Illustrate the execution of Kruskal’s algo-
rithm on this graph. (Note that there is only one minimum spanning tree for this
graph.)

R-7.8 Repeat the previous problem for the Prim-Jarnı́k algorithm.

R-7.9 Repeat the previous problem for Bar˚uvka’s algorithm.

R-7.10 Consider the unsorted sequence implementation of the priority queueQ used in
Dijkstra’s algorithm. In this case, what is the best-case running time of Dijkstra’s
algorithmΩ(n2) on ann-vertex graph?

Hint: Consider the size ofQ each time the minimum element is extracted.

R-7.11 Describe the meaning of the graphical conventions used in Figures 7.3 and 7.4
illustrating Dijkstra’s algorithm. What do the arrows signify? How about thick
lines and dashed lines?

R-7.12 Repeat Exercise R-7.11 for Figures 7.15 and 7.17 illustrating Kruskal’s algo-
rithm.

R-7.13 Repeat Exercise R-7.11 for Figures 7.19 and 7.20 illustrating the Prim-Jarnı́k
algorithm.

R-7.14 Repeat Exercise R-7.11 for Figure 7.22 illustrating Bar˚uvka’s algorithm.
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Creativity

C-7.1 Give an example of ann-vertex simple graphG that causes Dijkstra’s algorithm
to run in Ω(n2 logn) time when its implemented with a heap for the priority
queue.

C-7.2 Give an example of a weighted directed graph~G with negative-weight edges, but
no negative-weight cycle, such that Dijkstra’s algorithm incorrectly computes the
shortest-path distances from some start vertexv.

C-7.3 Consider the following greedy strategy for finding a shortest path from vertex
start to vertexgoal in a given connected graph.

1: Initializepathto start.
2: InitializeVisitedVerticesto {start}.
3: If start=goal, returnpathand exit. Otherwise, continue.
4: Find the edge (start,v) of minimum weight such thatv is adjacent tostart

andv is not inVisitedVertices.
5: Addv to path.
6: Addv to VisitedVertices.
7: Setstart equal tov and go to step 3.

Does this greedy strategy always find a shortest path fromstart to goal? Either
explain intuitively why it works, or give a counter example.

C-7.4? Suppose we are given a weighted graphG with n vertices andm edges, such that
the weight on each edge is an integer between 0 andn. Show that we can find a
minimum spanning tree forG in O(nlog∗n) time.

C-7.5 Show that if all the weights in a connected weighted graphG are distinct, then
there is exactly one minimum spanning tree forG.

C-7.6 Design an efficient algorithm for finding alongestdirected path from a vertexs
to a vertext of an acyclic weighted digraph~G. Specify the graph representation
used and any auxiliary data structures used. Also, analyze the time complexity
of your algorithm.

C-7.7 Suppose you are given a diagram of a telephone network, which is a graphG
whose vertices represent switching centers, and whose edges represent commu-
nication lines between two centers. The edges are marked by their bandwidth.
The bandwidth of a path is the bandwidth of its lowest bandwidth edge. Give an
algorithm that, given a diagram and two switching centersa andb, will output
the maximum bandwidth of a path betweena andb.

C-7.8 NASA wants to linkn stations spread over the country using communication
channels. Each pair of stations has a different bandwidth available, which is
known a priori. NASA wants to selectn−1 channels (the minimum possible) in
such a way that all the stations are linked by the channels and the total bandwidth
(defined as the sum of the individual bandwidths of the channels) is maximum.
Give an efficient algorithm for this problem and determine its worst-case time
complexity. Consider the weighted graphG = (V,E), whereV is the set of sta-
tions andE is the set of channels between the stations. Define the weightw(e) of
an edgee∈ E as the bandwidth of the corresponding channel.
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C-7.9 Suppose you are given atimetable, which consists of:

• A setA of n airports, and for each airporta∈ A, a minimum connecting
timec(a)

• A setF of m flights, and the following, for each flightf ∈A:
◦ Origin airporta1( f ) ∈ A
◦ Destination airporta2( f ) ∈ A
◦ Departure timet1( f )
◦ Arrival time t2( f ).

Describe an efficient algorithm for the flight scheduling problem. In this problem,
we are given airportsa andb, and a timet, and we wish to compute a sequence of
flights that allows one to arrive at the earliest possible time inb when departing
from a at or after timet. Minimum connecting times at intermediate airports
should be observed. What is the running time of your algorithm as a function of
n andm?

C-7.10 As your reward for saving the Kingdom of Bigfunnia from the evil monster,
“Exponential Asymptotic,” the king has given you the opportunity to earn a big
reward. Behind the castle there is a maze, and along each corridor of the maze
there is a bag of gold coins. The amount of gold in each bag varies. You will
be given the opportunity to walk through the maze, picking up bags of gold.
You may enter only through the door marked “ENTER” and exit through the
door marked “EXIT.” (These are distinct doors.) While in the maze you may not
retrace your steps. Each corridor of the maze has an arrow painted on the wall.
You may only go down the corridor in the direction of the arrow. There is no way
to traverse a “loop” in the maze. You will receive a map of the maze, including
the amount of gold in and the direction of each corridor. Describe an algorithm
to help you pick up the most gold.

C-7.11 Suppose we are given a directed graph~G with n vertices, and letM be then×n
adjacency matrix corresponding to~G.

a. Let the product ofM with itself (M2) be defined, for 1≤ i, j ≤ n, as follows:

M2(i, j) = M(i,1)�M(1, j)⊕·· ·⊕M(i,n)�M(n, j),

where “⊕” is the Booleanor operator and “�” is Booleanand. Given this
definition, what doesM2(i, j) = 1 imply about the verticesi and j? What
if M2(i, j) = 0?

b. SupposeM4 is the product ofM2 with itself. What do the entries ofM4

signify? How about the entries ofM5 = (M4)(M)? In general, what infor-
mation is contained in the matrixMp?

c. Now suppose that~G is weighted and assume the following:
1: for 1≤ i ≤ n, M(i, i) = 0.
2: for 1≤ i, j ≤ n, M(i, j) = weight(i, j) if (i, j) ∈ E.
3: for 1≤ i, j ≤ n, M(i, j) =∞ if (i, j) 6∈ E.

Also, letM2 be defined, for 1≤ i, j ≤ n, as follows:

M2(i, j) = min{M(i,1)+M(1, j), . . . ,M(i,n)+M(n, j)}.
If M2(i, j) = k, what may we conclude about the relationship between ver-
ticesi and j?
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C-7.12 Show how to modify Bar˚uvka’s algorithm so that it runs in worst-caseO(n2)
time.

Projects
P-7.1 Implement Kruskal’s algorithm assuming that the edge weights are integers.

P-7.2 Implement the Prim-Jarnı́k algorithm assuming that the edge weights are inte-
gers.

P-7.3 Implement the Bar˚uvka’s algorithm assuming that the edge weights are inte-
gers.

P-7.4 Perform an experimental comparison of two of the minimum-spanning-tree algo-
rithms discussed in this chapter (that is, two of Kruskal, Prim-Jarnı́k, or Barůvka).
Develop an extensive set of experiments to test the running times of these algo-
rithms using randomly generated graphs.

Chapter Notes

The first known minimum-spanning-tree algorithm is due to Bar˚uvka [22], and was pub-
lished in 1926. The Prim-Jarnı́k algorithm was first published in Czech by Jarnı́k [108]
in 1930 and in English in 1957 by Prim [169]. Kruskal published his minimum-spanning-
tree algorithm in 1956 [127]. The reader interested in further study of the history of the
minimum spanning tree problem is referred to the paper by Graham and Hell [89]. The
current asymptotically fastest minimum-spanning-tree algorithm is a randomized method
of Karger, Klein, and Tarjan [112] that runs inO(m) expected time.

Dijkstra [60] published his single-source, shortest path algorithm in 1959. The Bellman-
Ford algorithm is derived from separate publications of Bellman [25] and Ford [71].

The reader interested in further study of graph algorithms is referred to the books
by Ahuja, Magnanti, and Orlin [9], Cormen, Leiserson, and Rivest [55], Even [68], Gib-
bons [77], Mehlhorn [149], and Tarjan [200], and the book chapter by van Leeuwen [205].

Incidentally, the running time for the Prim-Jarnı́k algorithm, and also that of Dijkstra’s
algorithm, can actually be improved to beO(nlogn+ m) by implementing the queueQ
with either of two more sophisticated data structures, the “Fibonacci Heap” [72] or the
“Relaxed Heap” [61]. The reader interested in these implementations is referred to the
papers that describe the implementation of these structures, and how they can be applied to
the shortest-path and minimum-spanning-tree problems.


