Chapter

Weighted Graphs

Contents
7.1 Single-Source Shortest Paths 341
7.1.1 Dijkstra's Algorithm 342
7.1.2 The Bellman-Ford Shortest Paths Algorithm 349
7.1.3 Shortest Paths in Directed Acyclic Graphs 352
7.2 All-Pairs Shortest Paths 354
7.2.1 A Dynamic Programming Shortest Path Algorithm . 354
7.2.2 Computing Shortest Paths via Matrix Multiplication . 355
7.3 Minimum Spanning Trees 360
7.3.1 Kruskal’'s Algorithm 362
7.3.2 The Prim-Jarnik Algorithm 366
7.3.3 Bardvka's Algorithmo 369
7.3.4 A Comparison of MST Algorithms 372
7.4 Java Example: Dijkstra’s Algorithm 373

7.5 Exercises ¢ i i i i i it e i e e e e e e 376

340

Chapter 7. Weighted Graphs

As we saw in the previous chapter, the breadth-first search strategy can be used
to find a shortest path from some starting vertex to every other vertex in a connected
graph. This approach makes sense in cases where each edge is as good as any other,
but there are many situations where this approach is not appropriate.

For example, we might be using a graph to represent a computer network (such
as the Internet), and we might be interested in finding the fastest way to route a data
packet between two computers. In this case, it is probably not appropriate for all
the edges to be equal to each other, for some connections in a computer network are
typically much faster than others (for example, some edges might represent slow
phone-line connections while others might represent high-speed, fiber-optic con-
nections). Likewise, we might want to use a graph to represent the roads between
cities, and we might be interested in finding the fastest way to travel cross-country.
In this case, it is again probably not appropriate for all the edges to be equal to each
other, for some intercity distances will likely be much larger than others. Thus, it
is natural to consider graphs whose edges are not weighted equally.

In this chapter, we study weighted graphs.w&ighted graphis a graph that
has a numeric label/(e) associated with each edgecalled theweightof edgee.
Edge weights can be integers, rational numbers, or real numbers, which represent
a concept such as distance, connection costs, or affinity. We show an example of a
weighted graph in Figure 7.1.

Figure 7.1: A weighted graph whose vertices represent major U.S. airports and
whose edge weights represent distances in miles. This graph has a path from JFK
to LAX of total weight 2,777 (going through ORD and DFW). This is the minimum
weight path in the graph from JFK to LAX.

7.1. Single-Source Shortest Paths 341

7.1 Single-Source Shortest Paths

Let G be a weighted graph. THength (or weighi of a pathP is the sum of the
weights of the edges d?. That is, if P consists of edgesy, €y, ...,e_1 then the
length ofP, denotedwn(P), is defined as

k—1
wiP)= 3 w(e)

Thedistancefrom a vertexv to a vertexu in G, denotedd(v,u), is the length of a
minimum length path (also calleshortest path from v to u, if such a path exists.

People often use the convention th&t, u) = +oc if there is no path at all from
vtouin G. Even if there is a path fromto u in G, the distance fronv to u may
not be defined, however, if there is a cycleGnwhose total weight is negative.
For example, suppose vertices@represent cities, and the weights of edges in
G represent how much money it costs to go from one city to another. If someone
were willing to actually pay us to go from say JFK to ORD, then the “cost” of the
edge (JFK,ORD) would be negative. If someone else were willing to pay us to go
from ORD to JFK, then there would be a negative-weight cyclé and distances
would no longer be defined. That is, anyone can now build a path (with cycles) in
G from any cityA to another cityB that first goes to JFK and then cycles as many
times as he or she likes from JFK to ORD and back, before going @ tbhe
existence of such paths allows us to build arbitrarily low negative-cost paths (and
in this case make a fortune in the process). But distances cannot be arbitrarily low
negative numbers. Thus, any time we use edge weights to represent distances, we
must be careful not to introduce any negative-weight cycles.

Suppose we are given a weighted gr&aphand we are asked to find a shortest
path from some vertex to each other vertex i, viewing the weights on the
edges as distances. In this section, we explore efficient ways of finding all such
single-source shortest path# they exist.

The first algorithm we discuss is for the simple, yet common, case when all the
edge weights i are nonnegative (that igj(e) > 0 for each edge of G); hence,
we know in advance that there are no negative-weight cycl&s iRecall that the
special case of computing a shortest path when all weights are 1 was solved with
the BFS traversal algorithm presented in Section 6.3.3.

There is an interesting approach for solving thiisgle-sourceproblem based
on thegreedy methodlesign pattern (Section 5.1). Recall that in this pattern we
solve the problem at hand by repeatedly selecting the best choice from among those
available in each iteration. This paradigm can often be used in situations where we
are trying to optimize some cost function over a collection of objects. We can add
objects to our collection, one at a time, always picking the next one that optimizes
the function from among those yet to be chosen.

342

Chapter 7. Weighted Graphs

7.1.1 Dijkstra’s Algorithm

The main idea in applying the greedy method pattern to the single-source shortest-
path problem is to perform a “weighted” breadth-first search startimglatpartic-

ular, we can use the greedy method to develop an algorithm that iteratively grows
a “cloud” of vertices out of, with the vertices entering the cloud in order of their
distances fronv. Thus, in each iteration, the next vertex chosen is the vertex out-
side the cloud that is closest¥o The algorithm terminates when no more vertices
are outside the cloud, at which point we have a shortest path\ftonevery other
vertex of G. This approach is a simple, but nevertheless powerful, example of the
greedy method design pattern.

A Greedy Method for Finding Shortest Paths

Applying the greedy method to the single-source, shortest-path problem, results in
an algorithm known a®ijkstra’s algorithm. When applied to other graph prob-
lems, however, the greedy method may not necessarily find the best solution (such
as in the so-callettaveling salesman problerrin which we wish to find the short-

est path that visits all the vertices in a graph exactly once). Nevertheless, there are
a number of situations in which the greedy method allows us to compute the best
solution. In this chapter, we discuss two such situations: computing shortest paths
and constructing minimum spanning trees.

In order to simplify the description of Dijkstra’s algorithm, we assume, in the
following, that the input grapks is undirected (that is, all its edges are undirected)
and simple (that is, it has no self-loops and no parallel edges). Hence, we denote the
edges ofG as unordered vertex paifg,z). We leave the description of Dijkstra’s
algorithm so that it works for a weighted directed graph as an exercise (R-7.2).

In Dijkstra’s algorithm, the cost function we are trying to optimize in our appli-
cation of the greedy method is also the function that we are trying to compute—the
shortest path distance. This may at first seem like circular reasoning until we realize
that we can actually implement this approach by using a “bootstrapping” trick, con-
sisting of using an approximation to the distance function we are trying to compute,
which in the end will be equal to the true distance.

Edge Relaxation

Let us define a labdD[u] for each vertexu of G, which we use to approximate the
distance inG from v to u. The meaning of these labels is tit] will always store
the length of the best path we have fousal far from v to u. Initially, D[v] = 0
andD[u] = 4o for eachu # v, and we define the s€, which is our ‘tloud” of
vertices, to initially be the empty s@t At each iteration of the algorithm, we select
a vertexu not inC with smallestD|u] label, and we pull into C. In the very first
iteration we will, of course, puli into C. Once a new vertex is pulled intoC,
we then update the labBl[Z of each vertex that is adjacent ta and is outside of

7.1. Single-Source Shortest Paths 343

C, to reflect the fact that there may be a new and better way to getigou. This
update operation is known as@laxation procedure, for it takes an old estimate
and checks if it can be improved to get closer to its true value. (A metaphor for
why we call this a relaxation comes from a spring that is stretched out and then
“relaxed” back to its true resting shape.) In the case of Dijkstra’s algorithm, the
relaxation is performed for an edge, z), such that we have computed a new value
of D[u] and wish to see if there is a better value Bjg] using the edgéu, z). The
specific edge relaxation operation is as follows:

Edge Relaxation

if D[u]+w((u,z)) < D[Z] then
D[Z] < D[u] +w((u,2)).

Note that if the newly discovered pathzds no better than the old way, then we do
not changed|z].

The Details of Dijkstra's Algorithm

We give the pseudo-code for Dijkstra’s algorithm in Algorithm 7.2. Note that we
use a priority queué to store the vertices outside of the clodd

Algorithm DijkstraShortestPaths(G,V):
Input: A simple undirected weighted graghwith nonnegative edge weights,
and a distinguished vertexof G
Output: A label D[u], for each vertexi of G, such thaD|u] is the distance from
viouin G
D[v] <0
for each vertexu £ v of G do
D[u] < 400
Let a priority queud contain all the vertices d& using theD labels as keys.
while Q is not emptydo
{pull a new vertex into the cloud
U < Q.removeMin()
for each vertex adjacent tai such thatzis in Q do
{perform therelaxation procedure on edges,z) }
if D[u] +w((u,2)) < D[Z] then
D[z « D[u] +W((u,2))
Change tdD|[Z] the key of vertexzin Q.
return the labelD[u] of each vertex

Algorithm 7.2: Dijkstra’s algorithm for the single-source shortest path problem for
a graphG, starting from a vertex.

We illustrate several iterations of Dijkstra’s algorithm in Figures 7.3 and 7.4.

344 Chapter 7. Weighted Graphs

Figure 7.3: An execution of Dijkstra’s algorithm on a weighted graph. The start
vertex is BWI. A box next to each vertexstores the labeD[u]. The symbole is

used instead of oc. The edges of the shortest-path tree are drawn as thick arrows,
and for each verten outside the “cloud” we show the current best edge for pulling
in uwith a solid line. (Continued in Figure 7.4.)

7.1. Single-Source Shortest Paths 345

Figure 7.4: Visualization of Dijkstra’s algorithm. (Continued from Figure 7.3.)

Why It Works

The interesting, and possibly even a little surprising, aspect of the Dijkstra algo-
rithm is that, at the moment a vertexis pulled intoC, its labelD[u] stores the
correct length of a shortest path fronto u. Thus, when the algorithm terminates,
it will have computed the shortest-path distance foto every vertex ofc. That
is, it will have solved the single-source shortest path problem.

It is probably not immediately clear why Dijkstra’s algorithm correctly finds
the shortest path from the start verteio each other verten in the graph. Why
is it that the distance froma to u is equal to the value of the labBl[u] at the time
vertexu is pulled into the cloudC (which is also the timei is removed from the
priority queueQ)? The answer to this question depends on there being no negative-
weight edges in the graph, for it allows the greedy method to work correctly, as we
show in the lemma that follows.

346

Chapter 7. Weighted Graphs

Lemma 7.1: In Dijkstra’s algorithm, whenever a vertexs pulled into the cloud,
the labeDlu] is equal tad(v,u), the length of a shortest path fromto u.

Proof: Suppose thaD[t] > d(v,t) for some vertext in V, and letu be thefirst

vertex the algorithm pulled into the clou@ (that is, removed fronQ), such that
D[u] > d(v,u). There is a shortest path from v to u (for otherwised(v,u) =

+oo = DJu). Therefore, let us consider the moment whies pulled intoC, and
let zbe the first vertex P (when going fromv to u) that is not inC at this moment.
Let y be the predecessor afin path P (note that we could havg = v). (See
Figure 7.5.) We know, by our choice af thaty is already inC at this point.
Moreover,D]y] = d(v,y), sinceu is thefirst incorrect vertex. Whewy was pulled
into C, we tested (and possibly updatdfy] so that we had at that point

D[z < D[y +w((y,2)) = d(vy) +W((y,2)).
But sincezis the next vertex on the shortest path freno u, this implies that
D[Z =d(v,2).
But we are now at the moment when we are pickingotz, to joinC; hence,
D[u] <D[Z.

It should be clear that a subpath of a shortest path is itself a shortest path. Hence,
sincezis on the shortest path fromto u,

d(v,2) +d(z,u) = d(v,u).
Moreover,d(z,u) > 0 because there are no negative-weight edges. Therefore,
Dlu] <D[7 =d(v,2) <d(v,2) +d(zu) = d(v,u).
But this contradicts the definition of hence, there can be no such vertex =

the first “wrong” vertex
C u picked next

/ soD[u] < D[7]
u

D[u] > d(v,u)

D[y] = d(v.,y)
y D[z =d(v,2

Figure 7.5: A schematic illustration for the justification of Theorem 7.1.

7.1. Single-Source Shortest Paths 347

The Running Time of Dijkstra's Algorithm

In this section, we analyze the time complexity of Dijkstra’s algorithm. We denote
with n andm, the number of vertices and edges of the input gi@plespectively.
We assume that the edge weights can be added and compared in constant time.
Because of the high level of the description we gave for Dijkstra’s algorithm in
Algorithm 7.2, analyzing its running time requires that we give more details on its
implementation. Specifically, we should indicate the data structures used and how
they are implemented.

Let us first assume that we are representing the g@pising an adjacency
list structure. This data structure allows us to step through the vertices adjacent to
u during the relaxation step in time proportional to their number. It still does not
settle all the details for the algorithm, however, for we must say more about how to
implement the other main data structure in the algorithm—the priority qQ@eue

An efficient implementation of the priority queu@ uses a heap (see Sec-
tion 2.4.3). This allows us to extract the vertexvith smallestD label, by call-
ing theremoveMin method, inO(logn) time. As noted in the pseudo-code, each
time we update ®[z] label we need to update the key oin the priority queue.
If Qis implemented as a heap, then this key update can, for example, be done by
first removing and then insertirgwith its new key. If our priority queu& sup-
ports the locator pattern (see Section 2.4.4), then we can easily implement such
key updates irD(logn) time, since a locator for vertexwould allow Q to have
immediate access to the item storingh the heap (see Section 2.4.4). Assuming
this implementation o€, Dijkstra’s algorithm runs if©((n+ m)logn) time.

Referring back to Algorithm 7.2, the details of the running-time analysis are as
follows:

e Inserting all the vertices ifQ with their initial key value can be done in
O(nlogn) time by repeated insertions, or@(n) time using bottom-up heap
construction (see Section 2.4.4).

¢ Ateach iteration of thevhile loop, we spend(logn) time to remove vertex
u from Q, andO(degv) logn) time to perform the relaxation procedure on
the edges incident om

e The overall running time of thevhile loop is

%(1+ degv))logn,
ve

which isO((n+ m)logn) by Theorem 6.6.

Thus, we have the following.

Theorem 7.2: Given a weightea-vertex graphis with m edges, each with a non-
negative weight, Dijkstra’s algorithm can be implemented to find all shortest paths
from a vertexv in G in O(mlogn) time.

Note that if we wish to express the above running time as a functioroafy,
then it isO(n?logn) in the worst case, since we have assumed@niatsimple.

348

Chapter 7. Weighted Graphs

An Alternative Implementation for Dijkstra’s Algorithm

Let us now consider an alternative implementation for the priority qugusing

an unsorted sequence. This, of course, requires that we spendime to extract

the minimum element, but it allows for very fast key updates, provi@etipports

the locator pattern (Section 2.4.4). Specifically, we can implement each key update
done in a relaxation step i@(1) time—we simply change the key value once we
locate the item iQ to update. Hence, this implementation results in a running time
that isO(n? 4-m), which can be simplified t®(n?) sinceG is simple.

Comparing the Two Implementations

We have two choices for implementing the priority queue in Dijkstra’s algorithm:

a locator-based heap implementation, which yi€@dmlogn) running time, and a
locator-based unsorted sequence implementation, which yieldgngirtime algo-

rithm. Since both implementations would be fairly simple to code up, they are about
equal in terms of the programming sophistication needed. These two implementa-
tions are also about equal in terms of the constant factors in their worst-case running
times. Looking only at these worst-case times, we prefer the heap implementation
when the number of edges in the graph is small (that is, whenn?/logn), and

we prefer the sequence implementation when the number of edges is large (that is,
whenm > n?/logn).

Theorem 7.3: Given a simple weighted grap® with n vertices andn edges,
such that the weight of each edge is nonnegative, and a wedéss, Dijkstra’s
algorithm computes the distance fromto all other vertices of5 in O(mlogn)

time, or, alternatively, ir®(n2) time.

In Exercise R-7.3, we explore how to modify Dijkstra’s algorithm to output a
treeT rooted atv, such that the path iff from v to a vertexu is a shortest path
in G from v to u. In addition, extending Dijkstra’s algorithm for directed graphs
is fairly straightforward. We cannot extend Dijkstra’s algorithm to work on graphs
with negative-weight edges, however, as Figure 7.6 illustrates.

124

Figure 7.6: An illustration of why Dijkstra’s algorithm fails for graphs with
negative-weight edges. Bringirginto C and performing edge relaxations will
invalidate the previously computed shortest path distance (124) to

7.1. Single-Source Shortest Paths 349

7.1.2 The Bellman-Ford Shortest Paths Algorithm

There is another algorithm, which is due to Bellman and Ford, that can find shortest
paths in graphs that have negative-weight edges. We must, in this case, insist that
the graph be directed, for otherwise any negative-weight undirected edge would
immediately imply a negative-weight cycle, where we traverse this edge back and
forth in each direction. We cannot allow such edges, since a negative cycle invali-
dates the notion of distance based on edge weights.

Let G be a weighted directed graph, possibly with some negative-weight edges.
The Bellman-Ford algorithm for computing the shortest-path distance from some
vertexv in G to every other vertex is is very simple. It shares the notion of edge
relaxation from Dijkstra’s algorithm, but does not use it in conjunction with the
greedy method (which would not work in this context; see Exercise C-7.2). That
is, as in Dijkstra’s algorithm, the Bellman-Ford algorithm uses a |&9eg] that is
always an upper bound on the distawi¢e u) from v to u, and which is iteratively
“relaxed” until it exactly equals this distance.

The Details of the Bellman-Ford Algorithm

The Bellman-Ford method is shown in Algorithm 7.7. It performs 1 times a
relaxation of every edge in the digraph. We illustrate an execution of the Bellman-
Ford algorithm in Figure 7.8.

Algorithm BellmanFordShortestPaths(G, v):

Input: A weighted directed grap8 with n vertices, and a vertexof G
Output: A label D[u], for each vertexi of G, such thaD[u] is the distance from
vtouin G, or an indication tha has a negative-weight cycle
D[V] —0
for each vertexu £ v of G do
D[u] < 400
fori<—1lton—1do
for each (directed) edgel, z) outgoing fromu do
{Perform therelaxation operation on(u,z)}
if D[u] +w((u,2)) < D[Z] then
D[z <+ DJu]+w((u,2))
if there are no edges left with potential relaxation operatibas
return the labelD[u] of each vertex
else
return “G contains a negative-weight cycle”

Algorithm 7.7: The Bellman-Ford single-source shortest-path algorithm, which al-
lows for negative-weight edges.

350 Chapter 7. Weighted Graphs

Figure 7.8: An illustration of an application of the Bellman-Ford algorithm. The start
vertex is BWI. A box next to each vertexstores the labdD[u], with “shadows” showing
values revised during relaxations; the thick edges are causing such relaxations.

7.1. Single-Source Shortest Paths 351

Lemma 7.4: If at the end of the execution of Algorithm 7.7 there is an edge)
that can be relaxed (that BJu] +w((u,2)) < D[Z]), then the input digrap@ con-
tains a negative-weight cycle. Otherwig¥y] = d(v,u) for each vertexi in G.

Proof: For the sake of this proof, let us introduce a new notion of distance in
a digraph. Specifically, leti(v,u) denote the length of a path fromto u that is
shortest among all paths fromto u that contain at mostedges. We caldi (v, u)

the i-edge distancdrom v to u. We claim that after iteratiom of the main for-
loop in the Bellman-Ford algorith®[u] = d;(v,u) for each vertex irG. This is
certainly true before we even begin the first iteration,Bov] = 0 = dy(v,v) and,

for u # v, D[u] = +o00 = dp(V,u). Suppose this claim is true before iteratiofwe

will now show that if this is the case, then this claim will be true after iteration
as well). In iterationi, we perform a relaxation step for every edge in the digraph.
Thei-edge distance;(v,u), from v to a vertexy, is determined in one of two ways.
Eitherd;(v,u) = di_1(v,u) or di(v,u) = di_1(v,2) +w((z u)) for some vertexz in

G. Because we do a relaxation feveryedge ofG in iterationi, if it is the former
case, then after iteratiarwe haveD[u] = di_1(v,u) = d;(v,u), and if it is the latter
case, then after iteratidgrwe haveD[u] = D[zl +w((z u)) =di_1(v,2) +W((z,u)) =
di(v,u). Thus, ifD[u] = di_1(v,u) for each vertexu before iteratiori, thenD[u] =
di(v,u) for each vertexu after iterationi.

Therefore, aften— 1 iterations,D[u] = dn_1(V,) for each vertexuin G. Now
observe that if there is still an edge @that can be relaxed, then there is some
vertexu in G, such that the-edge distance fromto u is less than thén— 1)-edge
distance fronvtou, thatis,dq(v,u) < dn_1(v,u). But there are only vertices inG;
hence, if there is a shortestedge path fronv to u, it must repeat some vertexn
G twice. Thatis, it must contain a cycle. Moreover, since the distance from a vertex
to itself using zero edges is O (that @,z z) = 0), this cycle must be a negative-
weight cycle. Thus, if there is an edgeGrthat can still be relaxed after running the
Bellman-Ford algorithm, thef contains a negative-weight cycle. If, on the other
hand, there is no edge @ that can still be relaxed after running the Bellman-Ford
algorithm, therG does not contain a negative-weight cycle. Moreover, in this case,
every shortest path between two vertices will have at mesi edges; hence, for
each vertexuin G, D[u] = dn_1(v,u) = d(v,u). m

Thus, the Bellman-Ford algorithm is correct and even gives us a way of telling
when a digraph contains a negative-weight cycle. The running time of the Bellman-
Ford algorithm is easy to analyze. We perform the main for-loepl times, and
each such loop involves spendi@(1) time for each edge iS. Therefore, the
running time for this algorithm i©(nm). We summarize as follows:

Theorem 7.5: Given a weighted directed gragh with n vertices andn edges,
and a vertex of G, the Bellman-Ford algorithm computes the distance framall
other vertices o6 or determines thdb contains a negative-weight cycle@{nm)
time.

352

Chapter 7. Weighted Graphs

7.1.3 Shortest Paths in Directed Acyclic Graphs

As mentioned above, both Dijkstra’s algorithm and the Bellman-Ford algorithm
work for directed graphs. We can solve the single-source shortest paths problem
faster than these algorithms can, however, if the digraph has no directed cycles, that
is, it is a weighted directed acyclic graph (DAG).

Recall from Section 6.4.4 that a topological ordering of a DB a listing of
its vertices(vy, Vo, ..., Vn), such that ifv,v;) is an edge i, theni < j. Also, recall
that we can use the depth-first search algorithm to compute a topological ordering
of the n vertices in anm-edge DAGG in O(n+m) time. Interestingly, given a
topological ordering of such a weighted DA we can compute all shortest paths
from a given vertex in O(n+ m) time.

The Details for Computing Shortest Paths in a DAG

The method, which is given in Algorithm 7.9, involves visiting the vertice$Sof
according to the topological ordering, relaxing the outgoing edges with each visit.

Algorithm DAGShortestPaths(G, s):

Input: Aweighted directed acyclic graph (DAGwith nvertices andnedges,
and a distinguished vertesin G .

Output: A label D]ul, for each vertexi of G, such thaD[u] is the distance from
vtouin G

Compute a topological orderingi,Vz, ..., V,) for G
D[g O
for each vertexy # sof G do

D[u] « 400
fori—lton—1do

{Relax each outgoing edge frow}

for each edgév;, u) outgoing fromv; do

if D[vi] +w((vi,u)) < D[u] then
D[u] < D[vi] +w((v;,u))

Output the distance labely as the distances from

Algorithm 7.9: Shortest path algorithm for a directed acyclic graph.

The running time of the shortest path algorithm for a DAG is easy to analyze.
Assuming the digraph is represented using an adjacency list, we can process each
vertex in constant time plus an additional time proportional to the number of its
outgoing edges. In addition, we have already observed that computing the topolog-
ical ordering of the vertices i can be done ifD(n+ m) time. Thus, the entire
algorithm runs irO(n+ m) time. We illustrate this algorithm in Figure 7.10.

7.1. Single-Source Shortest Paths 353

Figure 7.10: An illustration of the shortest-path algorithm for a DAG.

Theorem 7.6: DAGShortestPaths computes the distance from a start vergegr
each other vertex in a directedvertex graphs with m edges irO(n+ m) time.

Proof: Suppose, for the sake of a contradiction, thas the first vertex in the
topological ordering such th&[v;] is not the distance frorato v;. First, note that
D]vi] < 400, for the initial D value for each vertex other thalis +co and the value

of aD label is only ever lowered if a path frosiis discovered. Thus, D[v;] =
+o00, thenv; is unreachable frors. Thereforey; is reachable frons, so there is a
shortest path frons to v;. Let v be the penultimate vertex on a shortest path from
stov;. Since the vertices are numbered according to a topological ordering, we
have thatk < i. Thus,D|v] is correct (we may possibly hawg = s). But when

Vi is processed, we relax each outgoing edge figmincluding the edge on the
shortest path fronw to v;. Thus,D[vi] is assigned the distance frosrto vi. But
this contradicts the definition af; hence, no such vertex can exist. []

354

Chapter 7. Weighted Graphs

7.2 All-Pairs Shortest Paths

Suppose we wish to compute the shortest path distance between every pair of ver-
tices in a directed grap® with n vertices andm edges. Of course, & has no
negative-weight edges, then we could run Dijkstra’s algorithm from each vertex in
G in turn. This approach would take(n(n + m)logn) time, assumings is rep-
resented using an adjacency list structure. In the worst case, this bound could be
as large a©(n®logn). Likewise, if G contains no negative-weight cycles, then we
could run the Bellman-Ford algorithm starting from each verte& in turn. This
approach would run iﬁ)(nzm) time, which, in the worst case, could be as large as
O(n*). In this section, we consider algorithms for solving the all-pairs shortest path
problem inO(n%) time, even if the digraph contains negative-weight edges (but not
negative-weight cycles).

7.2.1

A Dynamic Programming Shortest Path Algorithm

The first all-pairs shortest path algorithm we discuss is a variation on an algorithm
we have given earlier in this book, namely, the Floyd-Warshall algorithm for com-
puting the transitive closure of a directed graph (Algorithm 6.16).

Let G be a given weighted directed graph. We number the vertic& arbi-
trarily as(vi,Va,...,Vn). As in any dynamic programming algorithm (Section 5.3),
the key construct in the algorithm is to define a parameterized cost function that is
easy to compute and also allows us to ultimately compute a final solution. In this
case, we use the cost functiddy;, which is defined as the distance framto v;
using only intermediate vertices in the g&{, vy, ..., w}. Initially,

0 ifi—
DY, =< w((vi,v})) if (vi,v)) is an edge irG
+00 otherwise.

Given this parameterized cost functlm*f and its initial valueD?;, we can then

easily define the value for an arbltrak)b O as

Df; = min{D};*,D¥, t + D'}
In other words, the cost for going from to v; using vertices numbered 1 through
k is equal to the shorter of two possible paths. The first path is simply the shortest
path fromy; to v; using vertices numbered 1 through- 1. The second path is
the sum of the costs of the shortest path frgnto vy using vertices numbered 1
throughk — 1 and the shortest path fromto v; using vertices numbered 1 through
k— 1. Moreover, there is no other shorter path freno v; using vertices of
{v1,V2,..., %} than these two. If there was such a shorter path and it exchded
then it Would violate the definition CH)I‘J ! and if there was such a shorter path and
it included vi, then it would violate the definition dek or Dt;l. In fact, note

Ij’

7.2. All-Pairs Shortest Paths 355

Algorithm AllPairsShortestPaths(G):

Input: A simple weighted directed gragh without negative-weight cycles
Output: A numberingvy,Va,...,V, of the vgrtices ofG and a matrixD, such
thatD]i, j] is the distance fromy; to vj in G

letvy,Vo,..., vy be an arbitrary numbering of the vertices®f
fori —1tondo
for j«— 1tondo
if i = j then
DOfi,i] <0
if (vi,v;) is an edge irG then
DOfi,] w((%.v}))
else
DOfi, j] < +o0
for k< 1tondo
fori<— 1tondo
for j«— 1tondo
DXfi, j] < min{D*1[i, j],D*1[i, K -+ DXk,]}
return matrix D"

Algorithm 7.11: A dynamic programming algorithm to compute all-pairs shortest
path distances in a digraph without negative cycles.

that this argument still holds even if there are negative cost edd@sjirst so long
as there are no negative cost cycles. In Algorithm 7.11, we show how this cost-
function definition allows us to build an efficient solution to the all-pairs shortest
path problem.

The running time for this dynamic programming algorithm is clea®gn®).
Thus, we have the following theorem

Theorem 7.7: Given a simple weighted directed grafhwith n vertices and
no negative-weight cycles, Algorithm 7.1Al(PairsShortestPaths) computes the
shortest-path distances between each pair of vertic8smO(n3) time.

7.2.2

Computing Shortest Paths via Matrix Multiplication

We can view the problem of computing the shortest-path distances for all pairs of
vertices in a directed grap® as a matrix problem. In this subsection, we describe
how to solve the all-pairs shortest-path problen®im?) time using this approach.

We first describe how to use this approach to solve the all-pairs probl&nit

time, and then we show how this can be improve®to®) time by studying the
problem in more depth. This matrix-multiplication approach to shortest paths is
especially useful in contexts where we represent graphs using the adjacency matrix
data structure.

356 Chapter 7. Weighted Graphs
The Weighted Adjacency Matrix Representation

Let us number the vertices & as (Vo,V1,...,Vn_1), returning to the convention

of numbering the vertices starting at index 0. Given this numbering of the vertices
of G, there is a natural weighted view of the adjacency matrix representation for a
graph, where we defing(i, j] as follows:

0 if i = |
Ali, i1 =< w((v,vj)) if (w,vj) is an edge irG
+00 otherwise.

(Note that this is the same definition used for the cost fundﬂ@jmrom the previ-
ous subsection.)

Shortest Paths and Matrix Multiplication

In other wordsAli, j] stores the shortest path distance franto v; using one or
fewer edges in the path. Let us therefore use the mattixdefine another matrix

AZ, such that\?[i, j] stores the shortest path distance frgro v; using at most two
edges. A path with at most two edges is either empty (a zero-edge path) or it adds
an extra edge to a zero-edge or one-edge path. Therefore, we canAféififeas

Al J) = min (AL + AL

Thus, giverA, we can compute the matrd in O(n®) time, by using an algorithm
very similar to the standard matrix multiplication algorithm.

In fact, we can view this computation as a matrix multiplication in which we
have simply redefined what the operators “plus” and “times” mean in the matrix
multiplication algorithm (the programming language C++ specifically allows for
such operator overloading). If we let “plus” be redefined to mean “min” and we
let “times” be redefined to meant;” then we can writeA?[i, j] as a true matrix
multiplication:

AZfi j] = Ali,1]-AllL]
1=0,1,~,n—1
Indeed, this matrix-multiplication viewpoint is the reason why we have written this
matrix as ‘A2,” for it is the square of the matriA.

Let us continue this approach to define a matixso thatA[i, j] is the shortest-
path distance from; to vj using at mosk edges. Since a path with at méstdges
is equivalent to a path with at mokt- 1 edges plus possibly one additional edge,
we can definedX so that

A l= 5 ATHLITALL]
1=0,1,-,n—1
continuing the operator redefining so that™ stands for “min” and *’ stands
for “+.

7.2. All-Pairs Shortest Paths 357

The crucial observation is that & contains no negative-weight cycles, then
A1 stores the shortest-path distance between each pair of vertic®s his
observation follows from the fact that any well-defined shortest path contains at
mostn— 1 edges. If a path has more than 1 edges, it must repeat some vertex;
hence, it must contain a cycle. But a shortest path will never contain a cycle (unless
there is a negative-weight cycle @). Thus, to solve the all-pairs shortest path
problem, all we need to do is to multipAtimes itselfn— 1 times. Since each such
multiplication can be done i®(n%) time, this approach immediately gives us the
following.

Theorem 7.8: Given a weighted directadvertex graplé containing no negative-
weight cycles, and the weighted adjacency mairar G, the all-pairs shortest path
problem forG can be solved by computii§'—1, which can be performed @(n*)
time.

In Section 10.1.4, we discuss an exponentiation algorithm for numbers, which
can be applied in the present context of matrix multiplication to complité in
O(n3logn) time. We can actually compu&—1 in O(n?) time, however, by taking
advantage of additional structure present in the all-pairs shortest-path problem.

Matrix Closure

As observed above, & contains no negative-weight cycles, th&h ! encodes all

the shortest-path distances between pairs of verticEs i well-defined shortest

path can contain no cycles; hence, a shortest path restricted to contain atniost

edges must be a true shortest path. Likewise, a shortest path containing &t most

edges is a true shortest path, as is a shortest path containing at snastdges,

n+ 2 edges, and so on. ThereforeGitontains no negative-weight cycles, then
Anfl _ An —_ An+1 —_ An+2 — ...

Theclosureof a matrixA is defined as
[oe)

A =S A,
=0

if such a matrix exists. 1A is a weighted adjacency matrix, thé#(i, j] is the sum
of all possible paths frong to vj. In our caseA is the weighted adjacency matrix
for a directed grapls and we have redefinedr” as “min.” Thus, we can write
A= min {A}.
i=0,...,00

Moreover, since we are computing shortest path distances, the entAEs iare
never larger than the entriesA. Therefore, for the weighted adjacency matrix of
ann-vertex digraph with no negative-weight cycles,

A* :Anflen:An+1:An+2:
That is,A*[i, j| stores the length of the shortest path franto v;.

358

Chapter 7. Weighted Graphs

Computing the Closure of a Weighted Adjacency Matrix

We can compute the closus by divide-and-conquer i©(n®) time. Without
loss of generality, we may assume timais a power of two (if not, then pad the
digraph G with extra vertices that have no in-going or out-going edges). Let us
divide the seV of vertices inG into two equal-sized setg = {Vo,.-,Vn/2—1} and

V2 = {Vn/2;---,Vn-1}. Given this division, we can likewise divide the adjacency
matrix A into four blocks,B, C, D, andE, each withn/2 rows and columns, defined
as follows:

e B: weights of edges fror; toV;
e C: weights of edges fror¥; to V,
e D: weights of edges fron, to V1
e E: weights of edges frork, to V,.

B C
(39,
We illustrate these four sets of edges in Figure 7.12.

Likewise, we can partitiod* into four blocksw, X, Y, andZ, as well, which
are similarly defined.

That is,

W: weights of shortest paths frox to Vy
X: weights of shortest paths frovf to V»
Y: weights of shortest paths frox to Vi
Z: weights of shortest paths frox to V>,

. (W X
o (WX,

C
. E
B ' g
D
Figure 7.12: An illustration of the four sets of edges used to partition the adjacency
matrix A in the divide-and-conquer algorithm for computiAg.

That is,

7.2. All-Pairs Shortest Paths 359

Submatrix Equations

By these definitions and those above, we can derive simple equations to\Wefine
X, Y, andZ directly from the submatriceB, C, D, andE.

e W= (B+C-E*-D)*, for paths inW consist of the closure of subpaths that
either stay iy or jump toV,, travel inV, for a while, and then jump back
toV;.

e X=W.C-E*, for paths inX consist of the closure of subpaths that start and
end inV; (with possible jumps t&, and back), followed by a jump %, and
the closure of subpaths that stayvn

e Y =E*"-D-W, for paths inY consist of the closure of subpaths that stay in
V>, followed by a jump tov/; and the closure of subpaths that start and end in
V1 (with possible jumps t&, and back).

e Z=E*4+E*-D-W.C-E*, for paths inZ consist of paths that stay W
or paths that travel i, jump toV;, travel inV; for a while (with possible
jumps toV, and back), jump back td,, and then stay iN>.

Given these equations it is a simple matter to then construct a recursive algo-
rithm to computeA*. In this algorithm, we divideA into the blocksB, C, D, and
E, as described above. We then recursively compute the cl&ur@ivenE*, we
can then recursively compute the clos@iBe+-C-E* - D)*, which isW.

Note that no other recursive closure computations are then needed to compute
X,Y, andZ. Thus, after a constant number of matrix additions and multiplications,
we can compute all the blocks Atf. This gives us the following theorem.

Theorem 7.9: Given a weighted directagvertex graplé containing no negative-
weight cycle§, and the weighted adjacency matrigr G, the all-pairs shortest path
problem forG can be solved by computirf§y’, which can be performed i@ (n?)
time.

Proof: We have already argued why the computatiorhbfsolves the all-pairs
shortest-path problem. Consider, then, the running time of the divide-and-conquer
algorithm for computingA*, the closure of then x n adjacency matrixA. This
algorithm consists of two recursive calls to compute the closur@/) x (n/2)
submatrices, plus a constant number of matrix additions and multiplications (using
“min” for “ +-” and “+” for “ -"). Thus, assuming we use the straightforwar?)-

time matrix multiplication algorithm, we can characterize the running tifi{@),

for computingA* as

b ifn=1
T(n) = { 2T (n/2) + e if n> 1,

whereb > 0 andc > 0 are constants. Therefore, by the Master Theorem (5.6), we
can computé* in O(n3) time. n

360 Chapter 7. Weighted Graphs

7.3 Minimum Spanning Trees

Suppose we wish to connect all the computers in a new office building using the
least amount of cable. Likewise, suppose we have an undirected computer network
in which each connection between two routers has a cost for usage; we want to
connect all our routers at the minimum cost possible. We can model these problems
using a weighted grap@® whose vertices represent the computers or routers, and
whose edges represent all the possible pairg) of computers, where the weight
w((v,u)) of edge(v,u) is equal to the amount of cable or network cost needed to
connect computerto computeiu. Rather than computing a shortest path tree from
some particular vertex, we are interested instead in finding a (free) tfethat
contains all the vertices @ and has the minimum total weight over all such trees.
Methods for finding such trees are the focus of this section.

Problem Definition

Given a weighted undirected grag$) we are interested in finding a trdethat
contains all the vertices i® and minimizes the sum of the weights of the edges
of T, that is,

We recall from Section 6.1 that a tree such as this, which contains every vertex
of a connected grap®, is said to be &panning tree Computing a spanning tree
T with smallest total weight is the problem of constructingnenimum spanning
tree (or MST).

The development of efficient algorithms for the minimum-spanning-tree prob-
lem predates the modern notion of computer science itself. In this section, we
discuss two algorithms for solving the MST problem. These algorithms are all
classic applications of thgreedy methodAs was discussed in Section 5.1, we ap-
ply the greedy method by iteratively choosing objects to join a growing collection,
by incrementally picking an object that minimizes some cost function.

The first MST algorithm we discuss is Kruskal's algorithm, which “grows”
the MST in clusters by considering edges in order of their weights. The second
algorithm we discuss is the Prim-Jé&ralgorithm, which grows the MST from
a single root vertex, much in the same way as Dijkstra’s shortest-path algorithm.
We conclude this section by discussing a third algorithm, due tonEar, which
applies the greedy approach in a parallel way.

As in Section 7.1.1, in order to simplify the description the algorithms, we
assume, in the following, that the input gra@hs undirected (that is, all its edges
are undirected) and simple (that is, it has no self-loops and no parallel edges).
Hence, we denote the edges®ts unordered vertex paifg, z).

7.3. Minimum Spanning Trees 361
A Crucial Fact about Minimum Spanning Trees

Before we discuss the details of these algorithms, however, let us give a crucial fact
about minimum spanning trees that forms the basis of the algorithms. In particular,
all the MST algorithms we discuss are based on the greedy method, which in this
case depends crucially on the following fact. (See Figure 7.13.)

e Belongs to a Minimum Spanning Tree

e

Vi min-weight Va

“bridge” edge

Figure 7.13: An illustration of the crucial fact about minimum spanning trees.

Theorem 7.10: Let G be a weighted connected graph, andMgtandV, be a
partition of the vertices o6 into two disjoint nonempty sets. Furthermore,ddte
an edge il with minimum weight from among those with one endpoiri/jrand
the other inv,. There is a minimum spanning tréethat hase as one of its edges.

Proof: LetT be a minimum spanning tree &. If T does not contain edge
the addition ofeto T must create a cycle. Therefore, there is some ddgkthis
cycle that has one endpointVh and the other iv,. Moreover, by the choice d,
w(e) <w(f). If we removef from T U {e}, we obtain a spanning tree whose total
weight is no more than before. SinGewas a minimum spanning tree, this new
tree must also be a minimum spanning tree. [

In fact, if the weights inG are distinct, then the minimum spanning tree is
unique; we leave the justification of this less crucial fact as an exercise (C-7.5).

In addition, note that Theorem 7.10 remains valid even if the gapton-
tains negative-weight edges or negative-weight cycles, unlike the algorithms we
presented for shortest paths.

362 Chapter 7. Weighted Graphs

7.3.1 Kruskal's Algorithm

The reason Theorem 7.10 is so important is that it can be used as the basis for
building a minimum spanning tree. In Kruskal's algorithm, it is used to build the
minimum spanning tree in clusters. Initially, each vertex is in its own cluster all
by itself. The algorithm then considers each edge in turn, ordered by increasing
weight. If an edgee connects two different clusters, thens added to the set
of edges of the minimum spanning tree, and the two clusters connectecrey
merged into a single cluster. If, on the other haadionnects two vertices that
are already in the same cluster, thesis discarded. Once the algorithm has added
enough edges to form a spanning tree, it terminates and outputs this tree as the
minimum spanning tree.

We give pseudo-code for Kruskal's method for solving the MST problem in

Algorithm 7.14, and we show the working of this algorithm in Figures 7.15, 7.16,
and 7.17.

Algorithm KruskalMST(G):

Input: A simple connected weighted grahwith n vertices andn edges
Output: A minimum spanning tre& for G
for each vertex in G do
Define an elementary clust€v) « {v}.
Initialize a priority queueQ to contain all edges i, using the weights as
keys.
T—0 {T will ultimately contain the edges of the M$T
while T has fewer tham — 1 edgesio
(U,v) < Q.removeMin()
LetC(v) be the cluster containing and letC(u) be the cluster containing
if C(v) # C(u) then
Add edge(v,u) to T.
MergeC(v) andC(u) into one cluster, that is, unidd(v) andC(u).
return treeT

Algorithm 7.14: Kruskal’s algorithm for the MST problem.

As mentioned before, the correctness of Kruskal’s algorithm follows from the
crucial fact about minimum spanning trees, Theorem 7.10. Each time Kruskal's
algorithm adds an edge/,u) to the minimum spanning treg, we can define a
partitioning of the set of verticeg (as in the theorem) by letting; be the cluster
containingv and lettingV, contain the rest of the verticesVh This clearly defines
a disjoint partitioning of the vertices &f and, more importantly, since we are
extracting edges fron® in order by their weightse must be a minimum-weight
edge with one vertex iN; and the other ifv,. Thus, Kruskal’s algorithm always
adds a valid minimum-spanning-tree edge.

7.3. Minimum Spanning Trees 363

(@) (b)

(e) (f)

Figure 7.15: Example of an execution of Kruskal's MST algorithm on a graph with
integer weights. We show the clusters as shaded regions and we highlight the edge
being considered in each iteration (continued in Figure 7.16).

364 Chapter 7. Weighted Graphs

(k) v

Figure 7.16: An example of an execution of Kruskal’s MST algorithm (continued).
Rejected edges are shown dashed. (continued in Figure 7.17).

7.3. Minimum Spanning Trees 365

Figure 7.17: Example of an execution of Kruskal's MST algorithm (continued from
Figures 7.15 and 7.16). The edge considered in (n) merges the last two clusters,
which concludes this execution of Kruskal's algorithm.

Implementing Kruskal's Algorithm

We denote the number of vertices and edges of the input déapith n andm,
respectively. We assume that the edge weights can be compared in constant time.
Because of the high level of the description we gave for Kruskal's algorithm in
Algorithm 7.14, analyzing its running time requires that we give more details on its
implementation. Specifically, we should indicate the data structures used and how
they are implemented.

We implement the priority queu® using a heap. Thus, we can initialigg
in O(mlogm) time by repeated insertions, or @(m) time using bottom-up heap
construction (see Section 2.4.4). In addition, at each iteration afltie loop, we
can remove a minimum-weight edge@ilogm) time, which actually iSO(logn),
sinceG is simple.

A Simple Cluster Merging Strategy

We use a list-based implementation of a partition (Section 4.2.2) for the clusters.
Namely, we represent each clusizwith an unordered linked list of vertices, stor-

ing, with each vertew, a reference to its clust€(v). With this representation,
testing whetheC(u) # C(v) takesO(1) time. When we need to merge two clus-
ters,C(u) andC(v), we move the elements of tlemnaller cluster into the larger

one and update the cluster references of the vertices in the smaller cluster. Since
we can simply add the elements of the smaller cluster at the end of the list for the
larger cluster, merging two clusters takes time proportional to the size of the smaller
cluster. That is, merging cluste@gu) andC(v) takesO(min{|C(u)|,|C(v)|}) time.

There are other, more efficient, methods for merging clusters (see Section 4.2.2),
but this simple approach will be sufficient.

366

Chapter 7. Weighted Graphs

Lemma 7.11: Consider an execution of Kruskal’s algorithm on a graph with
vertices, where clusters are represented with sequences and with cluster references
at each vertex. The total time spent merging cluste@idogn).

Proof: \We observe that each time a vertex is moved to a new cluster, the size of
the cluster containing the vertex at least doubles.t8tbe the number of times
that vertexv is moved to a new cluster. Since the maximum cluster sine is

t(v) <logn.

The total time spent merging clusters in Kruskal's algorithm can be obtained by
summing up the work done on each vertex, which is proportional to

t(v) <nlogn.
2

Using Lemma 7.11 and arguments similar to those used in the analysis of Di-
jkstra’s algorithm, we conclude that the total running time of Kruskal’s algorithm
is O((n+ m)logn), which can be simplified a®(mlogn) sinceG is simple and
connected.

Theorem 7.12: Given a simple connected weighted grdphvith n vertices and
m edges, Kruskal’s algorithm constructs a minimum spanning tre& for time
O(mlogn).

7.3.2

The Prim-Jarnik Algorithm

In the Prim-Jarfk algorithm, we grow a minimum spanning tree from a single
cluster starting from some “root” vertex The main idea is similar to that of
Dijkstra’s algorithm. We begin with some vertexdefining the initial “cloud” of
verticesC. Then, in each iteration, we choose a minimum-weight ezige(v, u),
connecting a vertex in the cloudC to a vertexu outside ofC. The vertexu is then
brought into the clou€ and the process is repeated until a spanning tree is formed.
Again, the crucial fact about minimum spanning trees comes to play, for by always
choosing the smallest-weight edge joining a vertex in€lde one outsideC, we

are assured of always adding a valid edge to the MST.

Growing a Single MST

To efficiently implement this approach, we can take another cue from Dijkstra’s
algorithm. We maintain a lab&]u] for each vertexu outside the clouc, so that

DJu] stores the weight of the best current edge for joinirtg the cloudC. These
labels allow us to reduce the number of edges that we must consider in deciding
which vertex is next to join the cloud. We give the pseudo-code in Algorithm 7.18.

7.3. Minimum Spanning Trees 367

Algorithm PrimJarnikMST(G):
Input: A weighted connected grapgBwith n vertices andn edges
Output: A minimum spanning tre& for G

Pick any vertex of G
D[V] —0
for each vertexu # v do
D[u] < +o0
Initialize T « 0.
Initialize a priority queueQ with an item((u,null),D[u]) for each vertex,
where(u, null) is the element anB|u] is the key.
while Q is not emptydo
(u,e) < Q.removeMin()
Add vertexu and edgesto T.
for each vertex adjacent tai such thatzis in Q do
{perform the relaxation procedure on edgez) }
if w((u,z)) < D[Z] then
D[Z] — w((u,2))
Change tqz (u,z)) the element of vertexin Q.
Change tdD|[Z] the key of vertexzin Q.
return the treeT

Algorithm 7.18: The Prim-Jarfk algorithm for the MST problem.

Analyzing the Prim-Jarnik Algorithm

Let n andm denote the number of vertices and edges of the input gégplspec-

tively. The implementation issues for the Prim-Jeralgorithm are similar to those

for Dijkstra’s algorithm. If we implement the priority que@@as a heap that sup-
ports the locator-based priority queue methods (see Section 2.4.4), we can extract
the vertexu in each iteration irD(logn) time.

In addition, we can update eaé}z] value inO(logn) time, as well, which
is a computation considered at most once for each @dgg. The other steps in
each iteration can be implemented in constant time. Thus, the total running time is
O((n+m)logn), which isO(mlogn). Hence, we can summarize as follows:

Theorem 7.13: Given a simple connected weighted grdphvith n vertices and
m edges, the Prim-Jaithalgorithm constructs a minimum spanning tree @m
O(mlogn) time.

We illustrate the Prim-Jafk algorithm in Figures 7.19 and 7.20.

368 Chapter 7. Weighted Graphs

(e) (f)

Figure 7.19: Visualizing the Prim-Jarft algorithm (continued in Figure 7.20).

7.3. Minimum Spanning Trees 369

Figure 7.20: Visualizing the Prim-Jarik algorithm (continued from Figure 7.19).

7.3.3 Barilivka's Algorithm

Each of the two minimum-spanning-tree algorithms we have described previously
has achieved its efficient running time by utilizing a priority qu€yevhich could
be implemented using a heap (or even a more sophisticated data structure). This
usage should seem natural, for minimum-spanning-tree algorithms involve appli-
cations of the greedy method—and, in this case, the greedy method must explicitly
be optimizing certain priorities among the vertices of the graph in question. It
may be a bit surprising, but as we show in this section, we can actually design an
efficient minimum-spanning-tree algorithm without using a priority queue. More-
over, what may be even more surprising is that the insight behind this simplification
comes from the oldest known minimum-spanning-tree algorithm—the algorithm of
Barivka.

We present a pseudo-code description of UB&R’s minimum-spanning-tree
algorithm in Algorithm 7.21, and we illustrate an execution of this algorithm in
Figure 7.22.

370 Chapter 7. Weighted Graphs

Algorithm BarivkaMST(G):
Input: A weighted connected gragh = (V, E) with n vertices andnedges
Output: A minimum spanning tre& for G.

Let T be a subgraph d& initially containing just the vertices .
while T has fewer tham — 1 edges(T is not yet an MST do
for each connected componégitof T do
{Perform the MST edge addition procedure for cluggr
Find the smallest-weight edge= (v,u), in E with v e C; andu ¢ Ci.
Add eto T (unlesseis already inT).
return T

Algorithm 7.21: Pseudo-code for Bavka’s algorithm.

Implementing Bartivka's Algorithm

Implementing Banvka’s algorithm is quite simple, requiring only that we be able

to do the following:

e Maintain the foresT subject to edge insertion, which we can easily support

in O(1) time each using an adjacency list fbr

e Traverse the forest to identify connected components (clusters), which we

can easily do irD(n) time using a depth-first search of

e Mark vertices with the name of the cluster they belong to, which we can do

with an extra instance variable for each vertex

o Identify a smallest-weight edge Eincident upon a clustes;, which we can
do by scanning the adjacency lists@Gfor the vertices irC;.

Like Kruskal's algorithm, Bauvka's algorithm builds the minimum spanning

tree by growing a number of clusters of vertices in a series of rounds, not just one

cluster, as was done by the Prim-Jaralgorithm. But in BanVka’s algorithm, the

clusters are grown by applying the crucial fact about minimum spanning trees to
each cluster simultaneously. This approach allows many more edges to be added in

each round.

Why Is This Algorithm Correct?

In each iteration of Bawka's algorithm, we choose the smallest-weight edge com-

ing out of each connected componé&nof the current set of minimum-spanning-

tree edges. In each case, this edge is a valid choice, for if we consider a partitioning

of V into the vertices irC; and those outside d;, then the chosen edgefor

C; satisfies the condition of the crucial fact about minimum spanning trees (Theo-

rem 7.10) for guaranteeing thabelongs to a minimum spanning tree.

7.3. Minimum Spanning Trees 371

()

Figure 7.22: Example of an execution of Bavka’s algorithm. We show clusters as
shaded regions. We highlight the edge chosen by each cluster with an arrow and
we draw each such MST edge as a thick line. Edges determined not to be in the

MST are shown dashed.

372

Chapter 7. Weighted Graphs

Analyzing Barlivka's Algorithm

Let us analyze the running time of BaKa’s algorithm (Algorithm 7.21). We can
implement each round performing the searches to find the minimum-weight edge
going out of each cluster by an exhaustive search through the adjacency lists of
each vertex in each cluster. Thus, the total running time spent in searching for
minimum-weight edges can be made to®@n), for it involves examining each
edge(v,u) in G twice: once forv and once fou (since vertices are labeled with the
number of the cluster they are in). The remaining computations in the main while-
loop involve relabeling all the vertices, which tak@gn) time, and traversing alll

the edges ifT, which takesO(n) time. Thus, each round in Barka's algorithm
takesO(m) time (sincen < m). In each round of the algorithm, we choose one edge
coming out of each cluster, and we then merge each new connected component of
T into a new cluster. Thus, each old clusteffafnust merge with at least one other

old cluster of T. That is, in each round of Bavka’s algorithm, the total number

of clusters is reduced by half. Therefore, the total number of roun@glegn);
hence, the total running time of Barka’s algorithm i<O(mlogn). We summarize:

Theorem 7.14: Banivka’s algorithm computes a minimum spanning tree for a
connected weighted graghwith n vertices anan edges ifO(mlogn) time.

7.3.4

A Comparison of MST Algorithms

Although each of the above MST algorithms has the same worst-case running time,
each one achieves this running time using different data structures and different
approaches to building the minimum spanning tree.

Concerning auxiliary data structures, Kruskal’s algorithm uses a priority queue,
to store edges, and a collection of sets, implemented with lists, to store clusters. The
Prim-Jariik algorithm uses only a priority queue, to store vertex-edge pairs. Thus,
from an ease of programming viewpoint, the Prim-damdgorithm is preferable.
Indeed, the Prim-Jafk algorithm is so similar to Dijkstra’s algorithm that an im-
plementation of Dijkstra’s algorithm could be converted into an implementation
for the Prim-Jarfk algorithm without much effort. Bawvka's algorithm requires a
way of representing connected components. Thus, from an ease of programming
viewpoint, the Prim-Jarfik and Bativka algorithms seem to be the best.

In terms of the constant factors, the three algorithms are fairly similar in that
they both have relatively small constant factors in their asymptotic running times.
The asymptotic running time for Kruskal’s algorithm can be improved if the edges
are given in sorted order by their weights (using the partition data structure of Sec-
tion 4.2.2). Also, the running time of Bavka’s algorithm can be changed to be
O(n?) in the worst case with a slight modification to the algorithm (which we ex-
plore in Exercise C-7.12). Thus, there is no clear winner among these three algo-
rithms, although Bawvka'’s algorithm is the easiest of the three to implement.

7.4. Java Example: Dijkstra’s Algorithm 373

7.4 Java Example: Dijkstra’s Algorithm

In this section, we present Java code for performing Dijkstra’s algorithm (Al-
gorithm 7.2), assuming we are given an undirected graph with positive integer
weights.

We express our implementation of Dijkstra’s algorithm by means of an abstract
classDijkstra (Code Fragments 7.23-7.25), which declares the abstract method
weight(e) to extract the weight of edge ClassDijkstra is meant to be extended by
subclasses that implement metheelght(e). See, for example, claddyDijkstra
shown in Code Fragment 7.26.

/** Dijkstra's algorithm for the single-source shortest path problem
*in an undirected graph whose edges have integer weights. Classes
* extending ths abstract class must define the weight(e) method,

* which extracts the weight of an edge. */
public abstract class Dijkstra {
/** Execute Dijkstra's algorithm. */
public void execute(InspectableGraph g, Vertex source) {
graph = g;
dijkstraVisit(source);

/** Attribute for vertex distances. */
protected Object DIST = new Object();
/** Set the distance of a vertex. */
protected void setDist(Vertex v, int d) {
v.set(DIST, new Integer(d));

/** Get the distance of a vertex from the source vertex. This method
* returns the length of a shortest path from the source to u after
* method execute has been called. */

public int getDist(Vertex u) {
return ((Integer) u.get(DIST)).intValue();

/** This abstract method must be defined by subclasses.
* Qreturn weight of edge e. */

protected abstract int weight(Edge e);

/** Infinity value. */

public static final int INFINITE = Integer. MAX_VALUE;

/** Input graph. */

protected InspectableGraph graph;

/** Auxiliary priority queue. */

protected PriorityQueue Q;

Code Fragment 7.23:ClassDijkstra implementing Dijkstra’s algorithm (continued
in Code Fragments 7.24 and 7.25).

374

Chapter 7. Weighted Graphs

The algorithm is executed by methdgkstraVisit. A priority queueQ support-
ing locator-based methods (Section 2.4.4) is used. We insert a werexQ with
methodinsert, which returns the locator afin Q. Following the decorator pattern,
we “attach” tou its locator by means of methadtLoc, and we retrieve the locator
of u with methodgetLoc. Changing the label of a vertexto d in the relaxation
procedure is done with methedplaceKey(¢,d), wherel is the locator of.

/** The actual execution of Dijkstra's algorithm.
* @param v source vertex. */
protected void dijkstraVisit (Vertex v) {
// initialize the priority queue Q and store all the vertices in it
Q = new ArrayHeap(new IntegerComparator());
for (Vertexlterator vertices = graph.vertices(); vertices.hasNext();) {
Vertex u = vertices.nextVertex();
int u_dist;
if (u==v)
u_dist = 0;
else
u_dist = INFINITE;
// setDist(u, u_dist);
Locator u_loc = Q.insert(new Integer(u_dist), u);
setLoc(u, u_loc);
}
// grow the cloud, one vertex at a time
while (1Q.isEmpty()) {
// remove from Q and insert into cloud a vertex with minimum distance
Locator u_loc = Q.min();
Vertex u = getVertex(u_loc);
int u_dist = getDist(u_loc);
Q.remove(u_loc); // remove u from the priority queue
setDist(u, u_dist); // the distance of u is final
destroyLoc(u); // remove the locator associated with u
if (u_dist == INFINITE)
continue; // unreachable vertices are not processed
// examine all the neighbors of u and update their distances
for (Edgelterator edges = graph.incidentEdges(u); edges.hasNext();) {
Edge e = edges.nextEdge();
Vertex z = graph.opposite(u,e);
if (hasLoc(z)) { // check that z is in Q, i.e., it is not in the cloud
int e_weight = weight(e);
Locator z_loc = getlLoc(z);
int z_dist = getDist(z_loc);
if ((u_dist + e_weight < z_dist) // relaxation of edge e = (u,z)
Q.replaceKey(z_loc, new Integer(u_dist + e_weight));

Code Fragment 7.24:MethoddijkstraVisit of classDijkstra.

7.4. Java Example: Dijkstra’s Algorithm 375

/** Attribute for vertex locators in the priority queue Q. */
protected Object LOC = new Object();
/** Check if there is a locator associated with a vertex. */
protected boolean hasLoc(Vertex v) {

return v.has(LOC);

/** Get the locator in Q of a vertex. */
protected Locator getLoc(Vertex v) {
return (Locator) v.get(LOC);

/** Associate with a vertex its locator in Q. */
protected void setLoc(Vertex v, Locator 1) {
v.set(LOC, I);

/** Remove the locator associated with a vertex. */
protected void destroylLoc(Vertex v) {
v.destroy(LOC);

/** Get the vertex associated with a locator. */
protected Vertex getVertex(Locator 1) {
return (Vertex) l.element();

/** Get the distance of a vertex given its locator in Q. */
protected int getDist(Locator 1) {
return ((Integer) l.key()).intValue();

Code Fragment 7.25: Auxiliary methods of clas®ijkstra. They assume that the
vertices of the graph are decorable (continued from Algorithms 7.23 and 7.24).

/** A specialization of class Dijkstra that extracts edge weights from
* decorations. */
public class MyDijkstra extends Dijkstra {
/** Attribute for edge weights. */
protected Object WEIGHT;
/** Constructor that sets the weight attribute. */
public MyDijkstra(Object weight_attribute) {
WEIGHT = weight_attribute;

¥
/** The edge weight is stored in attribute WEIGHT of the edge. */
public int weight(Edge €) {

return ((Integer) e.get(WEIGHT)).intValue();

}

Code Fragment 7.26:ClassMyDijkstra that extendDijkstra and provides a con-
crete implementation of methatkight(e).

376 Chapter 7. Weighted Graphs

7.5 Exercises

Reinforcement

R-7.1 Draw a simple, connected, weighted graph with 8 vertices and 16 edges, each
with unique edge weights. Identify one vertex as a “start” vertex and illustrate a
running of Dijkstra’s algorithm on this graph.

R-7.2 Show how to modify Dijkstra’s algorithm for the case when the graph is directed
and we want to compute shortebtected pathgrom the source vertex to all the
other vertices.

R-7.3 Show how to modify Dijkstra’s algorithm to not only output the distance from
to each vertex i, but also to output a tree rooted atv, such that the path i
fromv to a vertexu is actually a shortest path @& from v to u.

R-7.4 Draw a (simple) directed weighted grafhwith 10 vertices and 18 edges, such
that G contains a minimum-weight cycle with at least 4 edges. Show that the
Bellman-Ford algorithm will find this cycle.

R-7.5 The dynamic programming algorithm of Algorithm 7.11 us¥®°) space. De-
scribe a version of this algorithm that use&?) space.

R-7.6 The dynamic programming algorithm of Algorithm 7.11 computes only shortest-
path distances, not actual paths. Describe a version of this algorithm that outputs
the set of all shortest paths between each pair of vertices in a directed graph. Your
algorithm should still run ir0(n%) time.

R-7.7 Draw a simple, connected, undirected, weighted graph with 8 vertices and 16
edges, each with unique edge weights. Illustrate the execution of Kruskal’s algo-
rithm on this graph. (Note that there is only one minimum spanning tree for this

graph.)
R-7.8 Repeat the previous problem for the Prim-Jladgorithm.
R-7.9 Repeat the previous problem for Baka's algorithm.

R-7.10 Consider the unsorted sequence implementation of the priority cQeised in
Dijkstra’s algorithm. In this case, what is the best-case running time of Dijkstra’s
algorithmQ(n?) on ann-vertex graph?

Hint: Consider the size d each time the minimum element is extracted.

R-7.11 Describe the meaning of the graphical conventions used in Figures 7.3 and 7.4
illustrating Dijkstra’s algorithm. What do the arrows signify? How about thick
lines and dashed lines?

R-7.12 Repeat Exercise R-7.11 for Figures 7.15 and 7.17 illustrating Kruskal's algo-
rithm.

R-7.13 Repeat Exercise R-7.11 for Figures 7.19 and 7.20 illustrating the PrinfkJarn
algorithm.

R-7.14 Repeat Exercise R-7.11 for Figure 7.22 illustratingiBea’s algorithm.

7.5. Exercises 377

Creativity

C-7.1 Give an example of an-vertex simple grapls that causes Dijkstra’s algorithm
to run in Q(nlogn) time when its implemented with a heap for the priority
queue.

C-7.2 Give an example of a weighted directed grﬁ)bvith negative-weight edges, but
no negative-weight cycle, such that Dijkstra’s algorithm incorrectly computes the
shortest-path distances from some start vertex

C-7.3 Consider the following greedy strategy for finding a shortest path from vertex
startto vertexgoalin a given connected graph.

1. Initialize pathto start

2: Initialize VisitedVerticego {start}.

3: If start=goal, returnpathand exit. Otherwise, continue.

4: Find the edgestart,\) of minimum weight such that is adjacent tcstart
andv is not inVisitedVertices

5: Addvto path

6: Addvto VisitedVertices

7: Setstartequal tovand go to step 3.

Does this greedy strategy always find a shortest path &tamto goal? Either
explain intuitively why it works, or give a counter example.

C-7.4% Suppose we are given a weighted gr&pwith n vertices anan edges, such that
the weight on each edge is an integer between Onarfghow that we can find a
minimum spanning tree fdé in O(nlog* n) time.

C-7.5 Show that if all the weights in a connected weighted gr@pdre distinct, then
there is exactly one minimum spanning tree®r

C-7.6 Design an efficient algorithm for findinglangestdirected path from a vertex
to a vertext of an acyclic weighted digrapﬁ. Specify the graph representation
used and any auxiliary data structures used. Also, analyze the time complexity
of your algorithm.

C-7.7 Suppose you are given a diagram of a telephone network, which is a Graph
whose vertices represent switching centers, and whose edges represent commu-
nication lines between two centers. The edges are marked by their bandwidth.
The bandwidth of a path is the bandwidth of its lowest bandwidth edge. Give an
algorithm that, given a diagram and two switching cengeandb, will output
the maximum bandwidth of a path betweseandb.

C-7.8 NASA wants to linkn stations spread over the country using communication
channels. Each pair of stations has a different bandwidth available, which is
known a priori. NASA wants to seleat— 1 channels (the minimum possible) in
such a way that all the stations are linked by the channels and the total bandwidth
(defined as the sum of the individual bandwidths of the channels) is maximum.
Give an efficient algorithm for this problem and determine its worst-case time
complexity. Consider the weighted gragh= (V,E), whereV is the set of sta-
tions ancE is the set of channels between the stations. Define the weighof
an edgee € E as the bandwidth of the corresponding channel.

378 Chapter 7. Weighted Graphs

C-7.9 Suppose you are givertianetable which consists of:

o A set A of nairports, and for each airpoate A, a minimum connecting
timec(a)

o A setF of mflights, and the following, for each flight € A:

Origin airporta; (f) € A

Destination airporéy(f) € A

Departure time (f)

Arrival time t(f).

Describe an efficient algorithm for the flight scheduling problem. In this problem,
we are given airporta andb, and a time, and we wish to compute a sequence of
flights that allows one to arrive at the earliest possible timewhen departing
from a at or after timet. Minimum connecting times at intermediate airports
should be observed. What is the running time of your algorithm as a function of
nandm?

o

O O O

C-7.10 As your reward for saving the Kingdom of Bigfunnia from the evil monster,
“Exponential Asymptotic,” the king has given you the opportunity to earn a big
reward. Behind the castle there is a maze, and along each corridor of the maze
there is a bag of gold coins. The amount of gold in each bag varies. You will
be given the opportunity to walk through the maze, picking up bags of gold.
You may enter only through the door marked “ENTER” and exit through the
door marked “EXIT.” (These are distinct doors.) While in the maze you may not
retrace your steps. Each corridor of the maze has an arrow painted on the wall.
You may only go down the corridor in the direction of the arrow. There is no way
to traverse a “loop” in the maze. You will receive a map of the maze, including
the amount of gold in and the direction of each corridor. Describe an algorithm
to help you pick up the most gold.

C-7.11 Suppose we are given a directed gr&ptvith n vertices, and leM be then x n
adjacency matrix corresponding@®

a. Letthe product oM with itself (M?) be defined, for K i, j < n, as follows:
M2(i,}) = M(i.1) ©M(1,j) ®--- ®M(i,n) ©M(n, j),

where ‘®" is the Boolearor operator and®” is Booleanand. Given this
definition, what doe#?(i, j) = 1 imply about the verticesand j? What
if M2(i, j) =0?

b. SupposeM* is the product oM? with itself. What do the entries dl*
signify? How about the entries d° = (M4)(M)? In general, what infor-
mation is contained in the matriMP?

c. Now suppose thds is weighted and assume the following:

1: for1<i<n,M(,i)=0.
2: for1<i,j <n,M(i,]) =weighti,j) if (i,]) € E.
3: forl<i,j<n,M(i,j)=cif (i,]) €E.

Also, letM? be defined, for K i, j < n, as follows:

M2(i,j) = min{M(i,1) + M(1,),...,M(i,n) + M(n, j)}.

If M2(i, j) = k, what may we conclude about the relationship between ver-
ticesi andj?

Chapter Notes 379

C-7.12 Show how to modify BauVka’s algorithm so that it runs in worst-ca€¥n?)
time.

Projects
P-7.1 Implement Kruskal's algorithm assuming that the edge weights are integers.

P-7.2 Implement the Prim-Jark algorithm assuming that the edge weights are inte-
gers.

P-7.3 Implement the Barvka’s algorithm assuming that the edge weights are inte-
gers.

P-7.4 Perform an experimental comparison of two of the minimum-spanning-tree algo-
rithms discussed in this chapter (that is, two of Kruskal, PrimiBaon Barivka).
Develop an extensive set of experiments to test the running times of these algo-
rithms using randomly generated graphs.

Chapter Notes

The first known minimum-spanning-tree algorithm is due touB&g’[22], and was pub-
lished in 1926. The Prim-Jaithalgorithm was first published in Czech by J&rfl08]

in 1930 and in English in 1957 by Prim [169]. Kruskal published his minimum-spanning-
tree algorithm in 1956 [127]. The reader interested in further study of the history of the
minimum spanning tree problem is referred to the paper by Graham and Hell [89]. The
current asymptotically fastest minimum-spanning-tree algorithm is a randomized method
of Karger, Klein, and Tarjan [112] that runs@(m) expected time.

Dijkstra [60] published his single-source, shortest path algorithmin 1959. The Bellman-
Ford algorithm is derived from separate publications of Bellman [25] and Ford [71].

The reader interested in further study of graph algorithms is referred to the books
by Ahuja, Magnanti, and Orlin [9], Cormen, Leiserson, and Rivest [55], Even [68], Gib-
bons [77], Mehlhorn [149], and Tarjan [200], and the book chapter by van Leeuwen [205].

Incidentally, the running time for the Prim-Jdkralgorithm, and also that of Dijkstra’s
algorithm, can actually be improved to nlogn+ m) by implementing the queu®
with either of two more sophisticated data structures, the “Fibonacci Heap” [72] or the
“Relaxed Heap” [61]. The reader interested in these implementations is referred to the
papers that describe the implementation of these structures, and how they can be applied to
the shortest-path and minimum-spanning-tree problems.

