
When Will a Genetic Algorithm Outperform

Hill Climbing?

Melanie Mitchell
Santa Fe Institute

1660 Old Pecos Trail, Suite A

Santa Fe, NM 87501

John H. Holland
Dept. of Psychology

University of Michigan

Ann Arbor, MI 48109

Stephanie Forrest
Dept. of Computer Science

University of New Mexico
Albuquerque, NM 87131

Abstract

We analyze a simple hill-climbing algorithm (RMHC) that was previously shown
to outperform a genetic algorithm (GA) on a simple “Royal Road” function. We then
analyze an “idealized” genetic algorithm (IGA) that is significantly faster than RMHC
and that gives a lower bound for GA speed. We identify the features of the IGA that
give rise to this speedup, and discuss how these features can be incorporated into a
real GA.

In J. D. Cowan, G. Tesauro, and J. Alspector (editors), Advances in Neural Information
Processing Systems 6. San Mateo, CA: Morgan Kaufmann, 1994.

Introduction

Our goal is to understand the class of problems for which genetic algorithms (GA) are most
suited, and in particular, for which they will outperform other search algorithms. Several
studies have empirically compared GAs with other search and optimization methods such
as simple hill-climbing (e.g., Davis, 1991), simulated annealing (e.g., Ingber & Rosen, 1992),
linear, nonlinear, and integer programming techniques, and other traditional optimization
techniques (e.g., De Jong, 1975). However, such comparisons typically compare one version

1

s1 = 11111111**; c1 = 8
s2 = ********11111111**; c2 = 8
s3 = ****************11111111**; c3 = 8
s4 = ************************11111111********************************; c4 = 8
s5 = ********************************11111111************************; c5 = 8
s6 = **11111111****************; c6 = 8
s7 = **11111111********; c7 = 8
s8 = **11111111; c8 = 8
sopt=11

Figure 1: Royal Road function R1.

of the GA with a second algorithm on a single problem or set of problems, often using
performance criteria which may not be appropriate. These comparisons typically do not
identify the features that led to better performance by one or the other algorithm, making it
hard to distill general principles from these isolated results. In this paper we look in depth
at one simple hill-climbing method and an idealized form of the GA, in order to identify
some general principles about when and why a GA will outperform hill climbing.

In previous work we have developed a class of fitness landscapes (the “Royal Road”
functions; Mitchell, Forrest, & Holland, 1992; Forrest & Mitchell, 1993) designed to be the
simplest class containing the features that are most relevant to the performance of the GA.
One of our purposes in developing these landscapes is to carry out systematic comparisons
with other search methods.

A simple Royal Road function, R1, is shown in Figure 1. R1 consists of a list of partially
specified bit strings (schemas) si in which ‘∗’ denotes a wild card (either 0 or 1). Each
schema si is given with a coefficient ci. The order of a schema is the number of defined
(non-‘∗’) bits. A bit string x is said to be an instance of a schema s, x ∈ s, if x matches s
in the defined positions. The fitness R1(x) of a bit string x is defined as follows:

R1(x) =
∑

i

ciδi(x), where δi(x) =

{

1 if x ∈ si

0 otherwise.

For example, if x is an instance of exactly two of the order-8 schemas, R1(x) = 16. Likewise,
R1(111 . . . 1) = 64.

The Building Block Hypothesis (Holland, 1975/1992) states that the GA works well when
instances of low-order, short schemas (“building blocks”) that confer high fitness can be re-
combined to form instances of larger schemas that confer even higher fitness. Given this hy-
pothesis, we initially expected that the building-block structure of R1 would lay out a “royal
road” for the GA to follow to the optimal string. We also expected that simple hill-climbing
schemes would perform poorly since a large number of bit positions must be optimized simul-
taneously in order to move from an instance of a lower-order schema (e.g., 11111111**. . . *) to
an instance of a higher-order intermediate schema (e.g., 11111111********11111111**. . . *).

2

200 runs GA SAHC NAHC RMHC
Mean 61,334 (2304) > 256,000 (0) > 256,000 (0) 6179 (186)
Median 54,208 > 256,000 > 256,000 5775

Table 1: Mean and median number of function evaluations to find the optimum string over
200 runs of the GA and of various hill-climbing algorithms on R1. The standard error is
given in parentheses.

However both these expectations were overturned (Forrest & Mitchell, 1993). In our exper-
iments, a simple GA (using fitness-proportionate selection with sigma scaling, single-point
crossover, and point mutation) optimized R1 quite slowly, at least in part because of “hitch-
hiking”: once an instance of a higher-order schema is discovered, its high fitness allows the
schema to spread quickly in the population, with 0s in other positions in the string hitch-
hiking along with the 1s in the schema’s defined positions. This slows down the discovery
of schemas in the other positions, especially those that are close to the highly fit schema’s
defined positions. Hitchhiking can in general be a serious bottleneck for the GA, and we
observed similar effects in several variations of our original GA.

Our other expectation—that the GA would outperform simple hill-climbing on these
functions—was also proved wrong. Forrest and Mitchell (1993) compared the GA’s per-
formance on a variation of R1 with three different hill-climbing methods: steepest ascent
hill-climbing (SAHC), next-ascent hill-climbing (NAHC), and a zero-temperature Monte
Carlo method, which Forrest and Mitchell called “random mutation hill-climbing” (RMHC).
In RMHC, a string is chosen at random and its fitness is evaluated. The string is then
mutated at a randomly chosen single locus, and the new fitness is evaluated. If the mutation
leads to an equal or higher fitness, the new string replaces the old string. This procedure is
iterated until the optimum has been found or a maximum number of function evaluations
has been performed.

Here we have repeated these experiments for R1. The results (similar to those given for R2

in Forrest & Mitchell, 1993) are given in Table 1. We compare the mean and median number
of function evaluations to find the optimum string rather than mean and median absolute run
time, because in almost all GA applications (e.g., evolving neural-network architectures), the
time to perform a function evaluation vastly dominates the time required to execute other
parts of the algorithm. For this reason, we consider all parts of the algorithm excluding the
function evaluations to take negligible time.

The results on SAHC and NAHC were as expected—while the GA found the optimum
on R1 in an average of 61,334 function evaluations, neither SAHC nor NAHC ever found
the optimum within the maximum of 256,000 function evaluations. However, RMHC found
the optimum on R1 in an average of 6179 function evaluations—nearly a factor of ten faster
than the GA. This striking difference on landscapes originally designed to be “royal roads”
for the GA underscores the need for a rigorous answer to the question posed earlier: “Under
what conditions will a GA outperform other search algorithms, such as hill climbing?”

3

Analysis of RMHC and an Idealized GA

To begin to answer this question, we analyzed the RMHC algorithm with respect to R1.
Suppose the fitness function consists of N adjacent blocks of K 1s each (in R1, N = 8 and
K = 8). What is the expected time (number of function evaluations) E(K, N) to find the
optimum string of all 1s? We can first ask a simpler question: what is the expected time
E(K, 1) to find a single block of K 1s? A Markov-chain analysis (not given here) yields
E(K, 1) slightly larger than 2K, converging slowly to 2K from above as K → ∞ (Richard
Palmer, personal communication). For example, for K = 8, E(K, 1) = 301.2.

Now suppose we want RMHC to discover a string with N blocks of K 1s. The time to
discover a first block of K 1s is E(K, 1), but, once it has been found, the time to discover
a second block is longer, since many of the function evaluations are “wasted” on testing
mutations inside the first block. The proportion of non-wasted mutations is (KN −K)/KN ;
this is the proportion of mutations that occur in the KN−K positions outside the first block.
The expected time E(K, 2) to find a second block is E(K, 1) + E(K, 1)[KN/(KN − K)].
Similarly, the total expected time is:

E(K, N) = E(K, 1) + E(K, 1)
N

N − 1
+ . . . + E(K, 1)

N

N − (N − 1)

= E(K, 1)N
[

1 +
1

2
+

1

3
+ . . . +

1

N

]

. (1)

(The actual value may be a bit larger, since E(K,1) is the expected time to the first block,
whereas E(K, N) depends on the worst time for the N blocks.) Expression (1) is approx-
imately E(K, 1)N(logN + γ), where γ is Euler’s constant. For K = 8, N = 8, the value
of expression (1) is 6549. When we ran RMHC on the R1 function 200 times, the average
number of function evaluations to the optimum was 6179, which agrees reasonably well with
the expected value.

Could a GA ever do better than this? There are three reasons why we might expect a GA
to perform well on R1. First, at least theoretically the GA is fast because of implicit paral-
lelism (Holland, 1975/1992): each string in the population is an instance of many different
schemas, and if the population is large enough and is initially chosen at random, a large
number of different schemas—many more than the number of strings in the population—are
being sampled in parallel. This should result in a quick search for short, low-order schemas
that confer high fitness. Second, fitness-proportionate reproduction under the GA should
conserve instances of such schemas. Third, a high crossover rate should quickly combine
instances of low-order schemas on different strings to create instances of longer schemas that
confer even higher fitness. Our previous experiments (Forrest & Mitchell, 1993) showed that
the simple GA departed from this “in principle” behavior. One major impediment was hitch-
hiking, which limited implicit parallelism by fixing certain schema regions suboptimally. But
if the GA worked exactly as described above, how quickly could it find the optimal string of
R1?

4

To answer this question we consider an “idealized genetic algorithm” (IGA) that explicitly
has the features described above. The IGA knows ahead of time what the desired schemas
are, and a “function evaluation” is the determination of whether a given string contains one
or more of them. In the IGA, at each time step a single string is chosen at random, with
uniform probability for each bit. The string is “evaluated” by determining whether it is an
instance of one or more of the desired schemas. The first time such a string is found, it is
sequestered. At each subsequent discovery of an instance of one or more not-yet-discovered
schemas the new string is instantaneously crossed over with the sequestered string so that
the sequestered string contains all the desired schemas that have been discovered so far.

This procedure is unusable in practice, since it requires knowing a priori which schemas
are relevant, whereas in general an algorithm such as the GA or RMHC directly measures
the fitness of a string, and does not know ahead of time which schemas contribute to high
fitness. However, the idea behind the GA is to do implicitly what the IGA is able to do
explicitly. This idea will be elaborated below.

Suppose again that our desired schemas consist of N blocks of K 1s each. What is
the expected time (number of function evaluations) until the saved string contains all the
desired schemas? Solutions have been suggested by G. Huber (personal communication),
and A. Shevoroskin (personal communication), and a detailed solution is given in (Holland,
1993). The main idea is to note that the probability of finding a single desired block s on a
random string is p = 1/2K, and the probability of finding s by time t is 1 − (1 − p)t. Then
the probability PN(t) that all N blocks have been found by time t is:

PN(t) = (1 − (1 − p)t)N ,

and the probability PN(t) that all N blocks are found at exactly time t is:

PN(t) = [1 − (1 − p)t]N − [1 − (1 − p)t−1]N .

The expected time is then

EN =
∞
∑

1

t ([1 − (1 − p)t]N − [1 − (1 − p)t−1]N).

This sum can be expanded and simplified, and with some work, along with the approximation
(1 − p)n ≈ 1 − np for small p, we obtain the following approximation:

EN ≈ (1/p)
N

∑

n=1

1

n
≈ 2K(log N + γ).

The major point is that the IGA gives an expected time that is on the order of 2K log N ,
where RMHC gives an expected time that is on the order of 2KN log N , a factor of N slower.
This kind of analysis can help us predict how and when the GA will outperform hill climbing.

5

What makes the IGA faster than RMHC? A primary reason is that the IGA perfectly
implements implicit parallelism: each new string is completely independent of the previous
one, so new samples are given independently to each schema region. In contrast, RMHC
moves in the space of strings by single-bit mutations from an original string, so each new
sample has all but one of the same bits as the previous sample. Thus each new string
gives a new sample to only one schema region. The IGA spends more time than RMHC
constructing new samples, but since we are counting only function evaluations, we ignore the
construction time. The IGA “cheats” on each function evaluation, since it knows exactly the
desired schemas, but in this way it gives a lower bound on the number of function evaluations
that the GA will need on this problem.

Independent sampling allows for a speed-up in the IGA in two ways: it allows for the
possibility of more than one desirable schema appearing simultaneously on a given sample,
and it also means that there are no wasted samples as there are in RMHC. Although the
comparison we have made is with RMHC, the IGA will also be significantly faster on R1

(and similar landscapes) than any hill-climbing method that works by mutating single bits
(or a small number of bits) to obtain new samples.

The hitchhiking effects described earlier also result in a loss of independent samples for
the real GA. The goal is to have the real GA, as much as possible, approximate the IGA. Of
course, the IGA works because it explicitly knows what the desired schemas are; the real GA
does not have this information and can only estimate what the desired schemas are by an
implicit sampling procedure. But it is possible for the real GA to approximate a number of
the features of the IGA. Independent samples: The population size has to be large enough,
the selection process has to be slow enough, and the mutation rate has to be sufficient to
make sure that no single locus is fixed at a single value in every (or even a large majority) of
strings in the population. Sequestering desired schemas: Selection has to be strong enough
to preserve desired schemas that have been discovered, but it also has to be slow enough (or,
equivalently, the relative fitness of the non-overlapping desirable schemas has to be small
enough) to prevent significant hitchhiking on some highly fit schemas, which can crowd out
desired schemas in other parts of the string. Instantaneous crossover: The crossover rate
has to be such that the time for a crossover to occur that combines two desired schemas
is small with respect to the discovery time for the desired schemas. Speed-up over RMHC:
The string length (a function of N) has to be large enough to make the N speed-up factor
significant.

These mechanisms are not all mutually compatible (e.g., high mutation works against
sequestering schemas), and thus must be carefully balanced against one another. A discussion
of how such a balance might be achieved is given in Holland (1993).

6

Level 1: s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

Level 2: (s1 s2) (s3 s4) (s5 s6) (s7 s8) (s9 s10) (s11 s12) (s13 s14) (s15 s16)
Level 3: (s1 s2 s3 s4) (s5 s6 s7 s8) (s9 s10 s11 s12) (s13 s14 s15 s16)
Level 4: (s1 s2 s3 s4 s5 s6 s7 s8) (s9 s10 s11 s12 s13 s14 s15 s16)

Figure 2: Royal Road Function R4.

Results of Experiments

As a first step in exploring these balances, we designed R3, a variant of our previous function
R2 (Forrest & Mitchell, 1993), based on some of the features described above. In R3 the
desired schemas are s1–s8 (shown in Fig. 1) and combinations of them, just as in R2.
However, in R3 the lowest-level order-8 schemas are each separated by “introns” (bit positions
that do not contribute to fitness—see Forrest & Mitchell, 1993; Levenick, 1991) of length 24.

In R3, a string that is not an instance of any desired schema receives fitness 1.0. Every
time a new level is reached—i.e., a string is found that is an instance of one or more schemas
at that level—a small increment u is added to the fitness. Thus strings at level 1 (that are
instances of at least one level-1 schema) have fitness 1 + u, strings at level 2 have fitness
1 + 2u, etc. For our experiments we set u = 0.2.

The purpose of the introns was to help maintain independent samples in each schema
position by preventing linkage between schema positions. The independence of samples was
also helped by using a larger population (2000) and the much slower selection scheme given
by the function. In preliminary experiments on R3 (not shown) hitchhiking in the GA was
reduced significantly, and the population was able to maintain instances of all the lowest-level
schemas throughout each run.

Next, we studied R4 (illustrated in Figure 2). R4 is identical to R3, except that it does
not have introns. Further, R4 is defined over 128-bit strings, thus doubling the size of the
problem. In preliminary runs on R4, we used a population size of 500, a mutation rate of
0.005 (mutation always flips a bit), and multipoint crossover, where the number of crossover
points for each pair of parents was selected from a Poisson distribution with mean 2.816.

Table 2 gives the mean number of evaluations to reach levels 1, 2, and 3 (neither algorithm
reached level 4 within the maximum of 106 function evaluations). As can be seen, the time to
reach level one is comparable for the two algorithms, but the GA is much faster at reaching
levels 2 and 3. Further, the GA discovers level 3 approximately twice as often as RMHC. As
was said above, it is necessary to balance the maintenance of independent samples with the
sequestering of desired schemas. These preliminary results suggest that R4 does a better
job of maintaining this balance than the earlier Royal Road functions. Working out these
balances in greater detail is a topic of future work.

7

Level 1 Level 2 Level 3
GA evals 500 (0) 4486 (478) 86,078 (17,242)

% runs 100 100 86
RMHC evals 230 (36) 8619 (1013) 95,027 (17,948)

% runs 100 100 41

Table 2: R4: Mean function evaluations (over 37 runs) to attain each level for the GA and for
RMHC. In the GA runs, the number of function evaluations is sampled every 500 evaluations,
so each value is actually an upper bound for an interval of length 500. The standard errors
are in parentheses. The percentage of runs which reached each level is shown next to the
heading “% runs.” Only runs which successfully reached a given level were included in the
function evaluation calculations for that level.

Conclusion

We have presented analyses of two algorithms, RMHC and the IGA, and have used the
analyses to identify some general principles of when and how a genetic algorithm will out-
perform hill climbing. We then presented some preliminary experimental results comparing
the GA and RMHC on a modified Royal Road landscape. These analyses and results are a
further step in achieving our original goals—to design the simplest class of fitness landscapes
that will distinguish the GA from other search methods, and to characterize rigorously the
general features of a fitness landscape that make it suitable for a GA.

Our modified Royal Road landscape R4, like R1, is not meant to be a realistic example of
a problem to which one might apply a GA. Rather, it is meant to be an idealized problem in
which certain features most relevant to GAs are explicit, so that the GA’s performance can
be studied in detail. Our claim is that in order to understand how the GA works in general
and where it will be most useful, we must first understand how it works and where it will be
most useful on simple yet carefully designed landscapes such as these. The work reported
here is a further step in this direction.

Acknowledgments

We thank R. Palmer for suggesting the RMHC algorithm and for sharing his careful analysis
with us, and G. Huber for his assistance on the analysis of the IGA. We also thank E.
Baum, L. Booker, T. Jones, and R. Riolo for helpful comments and discussions regarding
this work. We gratefully acknowledge the support of the Santa Fe Institute’s Adaptive
Computation Program, the Alfred P. Sloan Foundation (grant B1992-46), and the National
Science Foundation (grants IRI-9157644 and IRI-9224912).

8

References

L. D. Davis (1991). Bit-climbing, representational bias, and test suite design. In R. K. Belew
and L. B. Booker (eds.), Proceedings of the Fourth International Conference on Genetic
Algorithms, 18–23. San Mateo, CA: Morgan Kaufmann.

K. A. De Jong (1975). An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. Unpublished doctoral dissertation. University of Michigan, Ann Arbor, MI.

S. Forrest and M. Mitchell (1993). Relative building-block fitness and the building-block
hypothesis. In D. Whitley (ed.), Foundations of Genetic Algorithms 2, 109–126. San Mateo,
CA: Morgan Kaufmann.

J. H. Holland (1975/1992). Adaptation in Natural and Artificial Systems. Cambridge,
MA: MIT Press. (First edition 1975, Ann Arbor: University of Michigan Press.)

J. H. Holland (1993). Innovation in complex adaptive systems: Some mathematical
sketches. Working Paper 93-10-062, Santa Fe Institute, Santa Fe, NM.

L. Ingber and B. Rosen (1992). Genetic algorithms and very fast simulated reannealing:
A comparison. Mathematical Computer Modelling, 16 (11), 87–100.

J. R. Levenick (1991). Inserting introns improves genetic algorithm success rate: Taking
a cue from biology. In R. K. Belew and L. B. Booker (eds.), Proceedings of the Fourth Inter-
national Conference on Genetic Algorithms, 123–127. San Mateo, CA: Morgan Kaufmann.

M. Mitchell, S. Forrest, and J. H. Holland (1992). The royal road for genetic algorithms:
Fitness landscapes and GA performance. In F. J. Varela and P. Bourgine (eds.), Proceedings
of the First European Conference on Artificial Life, 245–254. Cambridge, MA: MIT Press.

9

