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Olufsen, Mette S. Structured tree outflow condition for
blood flow in larger systemic arteries. Am. J. Physiol. 276
(Heart Circ. Physiol 45): H257–H268, 1999.—A central prob-
lem in modeling blood flow and pressure in the larger
systemic arteries is determining a physiologically based
boundary condition so that the arterial tree can be truncated
after a few generations. We have used a structured tree
attached to the terminal branches of the truncated arterial
tree in which the root impedance is estimated using a
semianalytical approach based on a linearization of the
viscous axisymmetric Navier-Stokes equations. This provides
a dynamic boundary condition that maintains the phase lag
between blood flow and pressure as well as the high-
frequency oscillations present in the impedance spectra.
Furthermore, it accommodates the wave propagation effects
for the entire systemic arterial tree. The result is a model that
is physiologically adequate as well as computationally fea-
sible. For validation, we have compared the structured tree
model with a pure resistance and a windkessel model as well
as with measured data.

arterial modeling; mathematical modeling; arterial outflow
boundary condition

THE ABILITY TO PREDICT blood flow and pressure at any
position along the larger systemic arteries can lead to a
better understanding of the arterial function. Wave
shapes of arterial pressure are strongly influenced by
the wave reflections resulting from tapering of the
vessels, bifurcations, changes in the arterial distensibil-
ity, and a high resistance in the arterioles, i.e., a high
downstream peripheral resistance (27, 31, 36). The
appearance of the dicrotic wave can be important in
clinical situations. For example, the dicrotic wave is
diminished in some patients suffering from diabetes or
vascular diseases such as atherosclerosis (13, 22, 23,
27, 31). Furthermore, it has been observed that pa-
tients with stiffer arteries have a less pronounced
dicrotic wave but an increased systolic pressure (5, 18,
27, 31). Therefore, studies of the dicrotic wave and
comparison of pressure profiles at different positions
could possibly be used for diagnostic purposes, e.g., to
locate stenosis (39).

The purpose of this study was to formulate a nonlin-
ear physiological model predicting blood flow and pres-
sure at any position along the larger systemic arteries.
These quantities are regarded as functions of time and
one spatial dimension; hence, by definition, the model
is one dimensional. We focus on how to restrict the
computational domain while maintaining a physiologi-
cal approach, i.e., on deriving a physiologically correct
downstream boundary condition allowing the model to
be implemented and executed without excessive compu-
tational costs. In previous arterial models (see, e.g.,
Refs. 1, 6, 12, 40, 45–47, 53) the peripheral beds have

received little attention. Models of the peripheral beds
have mostly used rather simple boundary conditions,
e.g., pure resistor conditions (1, 47) or a windkessel
condition (38, 40, 45, 46).

The problem with these models is that they are
lumped models, and thus they cannot include wave
propagation effects in the part of the arterial system
that they model. However, the overall wave shape can
be approximated by having good values for the total
resistance and compliance, but these quantities are not
easy to measure and the pulse profiles are sensitive to
the value of these parameters. Furthermore, it is hard
to avoid artificial reflections in a system using lumped
models as outflow boundary conditions.

Our approach to overcoming these problems is to
terminate the larger arteries by attaching a structured
tree representing the remainder of the arterial system.
This is illustrated in Fig. 1. Although the model for the
larger arteries is fully nonlinear, we construct a semi-
analytical solution based on a linear hydrodynamic
model for the structured tree.

Physiologically it makes sense to split the model in
two parts. The role of the larger arteries is to distribute
blood to all parts of the body, whereas the role of the
smaller arteries is to allow perfusion of specific tissues.
In fact, several papers (see, e.g., Refs. 9, 44) showed
that the smaller arteries are distributed in an optimal
and structured way such that they cover the tissue
evenly using a minimization principle. They also showed
that the larger arteries do not follow such rules.
Furthermore, blood flow in the larger systemic arteries
is dominated by inertia, whereas blood flow in the
smaller arteries is dominated by viscosity (11).

This paper is divided into four sections, the model for
the larger systemic arteries and its boundary condi-
tions, the model for the smaller arteries (the structured
tree model), the results of these models, and discussion.
It should be emphasized that relations derived for the
larger arteries do not necessarily apply to the smaller
arteries because of the inherent differences mentioned
above.

LARGER SYSTEMIC ARTERIES

A one-dimensional model for blood flow and pressure in the
larger systemic arteries can be derived using Navier-Stokes
equations. Numerous papers discuss such models (see, e.g.,
Refs. 1, 7, 40, 46, 47). They differ in the way they treat the
shear stresses, the relation between pressure and cross-
sectional area, and the boundary conditions. The derivation
presented here is based primarily on Barnard et al. (7) and
Peskin (36), but where appropriate we discuss some of the
other approaches. The larger systemic arteries can be viewed
as compliant and tapering vessels connected in a bifurcating
tree. We have chosen to define the larger arteries as those
shown in Fig. 1. For computational reasons we lump some of
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the branches together (the coronary arteries, the intercostals,
and the arteries branching from the celiac axis), and we
assume more symmetry, by letting arteries that have both a
left and right branch be identical, than is actually the case in
the human body.

We assume that the fluid is incompressible and Newtonian,
that the flow is axisymmetric and laminar, and that the
vessels are circular and tapering, i.e., that they can be rep-
resented by a surface of revolution (see Fig. 2) with length L,
radius R, cross-sectional area A, surface S, and volume V. Al-
though this holds for the larger arteries (14), it does not apply
to the smaller arteries and arterioles because they do not
taper significantly. Furthermore, we assume that S moves with
velocity v 5 [vr(x, t), vx(x, t)], the fluid moves with velocity u 5
[ur(r, x, t), ux(r, x, t)], and the pressure in the system is p(r, x, t).
R(x, t) is the actual radius of the vessel, and r and x are the
cylindrical coordinates in radial (r) and length (x) directions.

From Barnard et al. (7) and Peskin (36) we get the
following axisymmetric Navier-Stokes equations for conserva-
tion of volume and x momentum
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where r is the density, µ is the dynamic viscosity, and the last
term represents the viscous wall shear stress. Equations 1
and 2 constitute the exact mathematical model for the
system. It is not one dimensional, because both ux and p vary
with r as well as x. To obtain a one-dimensional model we
assume that p and thus ­p/­x are functions of x and t only, i.e.,
that the pressure is constant over the cross-sectional area.
Furthermore, we assume that the velocity profile is flat but
with a boundary layer of thickness d, hence

ux 5 5
u, for r # R 2 d

u(R 2 r)/d for R 2 d , r # R

where ux(x,t) is the mean value of ux(r,x,t). According to
Lighthill (24) the thickness of the boundary layer for the
larger arteries can be estimated from (n/v)1/2 5 [nT/(2p)]2 <
0.01 cm, where n 5 µ/r 5 0.046 cm2/s is the kinematic
viscosity, v is the angular frequency, and T 5 1.25 s is the
period of one heartbeat. Measurements show that the velocity
profile changes throughout the arterial system, from being
almost flat in the aorta to a more parabolic shape in the
peripheral arteries (25, 33, 34). This is a result of the fact that
the boundary layer remains constant (1 mm) as the vessels
are getting smaller.

Integrating over the cross-sectional area and disregarding
terms of first and higher orders of d gives
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where q(x, t) 5 A(x, t)u(x, t) is the flow and p(x, t) is the
pressure averaged over the cross-sectional area.

Fig. 1. Systemic arterial tree. Tree consisting of larger arteries, in
which nonlinear equations are solved, originates at the heart (A) and
terminates at the points marked with B. Structured trees represent-
ing smaller arteries originate at these terminals and provide main
tree with outflow boundary conditions. r, Radius; ri, i 5 0–3 is the
minimum radius used for terminating the structured trees.

Fig. 2. A typical vessel shown in a cylindrical coordinate system (r,
radial coordinate; x, longitudinal coordinate; t, time). R(x,t) is the
radius, and A(x,t) is the cross-sectional area. The end surfaces are
given at x 5 0 and x 5 L (vessel length).
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Equations 3 and 4 are the basic equations for the one-
dimensional model of arterial pulse wave propagation. How-
ever, we only have two equations and three dependent
variables, namely, p(x, t), q(x, t), and A(x, t). Therefore, we
need a third relation, the so-called state equation. This is
based on the compliance of the vessels and gives an equation
for the motion of the vessel walls. Several approaches can be
taken on how to model these ‘‘elastic’’ properties. The arterial
wall is not purely elastic but exhibits a viscoelastic behavior
(11, 25, 42), i.e., there is a time delay in the response from a
change in pressure to the corresponding change in cross-
sectional area. However, to keep the model simple we disre-
gard viscoelasticity and use a relation derived from the linear
theory of elasticity. This is a reasonable assumption because
the viscoelastic effects are small within the physiological
range of the flow and pressure (50). We need to examine the
equilibrium of the internal and external forces acting on a
unit element of the wall. We assume that the arterial vessels
are circular, that the walls are thin, i.e., that wall thickness
(h)/r 9 1, that the loading and deformation are axisymmetric,
and finally that the vessels are tethered in the longitudinal
direction. In this case the external forces are reduced to
stresses acting only in the circumferential direction (3) and
from what is often known as Laplace’s law we get the
circumferential tensile stress

tu 5
rpe

h
5

Eu

1 2 sxsu

r 2 r0

r0

where pe 5 p 2 p0 is the excess pressure, i.e., the pressure of
the vessel minus the pressure of the surroundings, h is the
wall thickness, (r 2 r0)/r0 is the corresponding circumferen-
tial strain, Eu is Young’s modulus in the circumferential
direction, su 5 sx 5 0.5 are the Poisson ratios in the
circumferential and longitudinal directions, and r0 is the
radius at zero transmural pressure, i.e., at p 5 p0. Because we
assumed that the vessel is tethered in the longitudinal
direction this is the only contribution we get when balancing
the internal and external forces, and we can without loss of
generality drop the u subscript on E. Solving for pe we get

p(x, t ) 2 p0 5
4

3

Eh

r0 (x) 31 2 Î A0 (x)

A (x, t ) 4 (5)

where A0(x) 5 pr0(x)2 is the cross-sectional area at zero
transmural pressure. It should be noted that Eq. 5 has the
property that the area A(x, t) becomes infinite at a finite
transmural pressure (‘‘blow out’’). Real arteries resist this
tendency by having a nonlinear Young’s modulus E that
increases with increasing strain. For a given position x in
each arterial segment it is possible to compute Eh/r0 from the
corresponding radius r0(x), estimates for the volume compli-
ance Cvol, and the approximation

Cvol 5
­p

­V
<

3r0

2Eh

Plotting Eh/r0 as a function of r0 one can fit (empirically) the
exponential function

Eh

r0
5 k1 exp (k2r0 ) 1 k3 (6)

to these estimates. k1, k2, and k3 are constants.
With data for Cvol from Westerhof et al. (53), Stergiopulos et

al. (46), and Segers et al. (45) we obtain k1 5 2.00 3 107

g·s22·cm21, k2 5 222.53 cm21, and k3 5 8.65 3 105 g·s22·cm21.
The data and the fitted curve are shown in Fig. 3.

Boundary Conditions

The system of Eqs. 3–5 is hyperbolic, and the square of the
wave propagation velocity (c0

2) is
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Because c0 is always positive, and the wave propagation
velocity generally is much larger than the velocity of blood
( 0u 0 9 c0), the characteristics will cross and have opposite
directions. We thus need one boundary condition at each end
of the vessels. The boundary condition at the inflow to the
arterial tree is applied at A in Fig. 1, and the outflow
boundary conditions are applied at each of the terminals,
marked by B in the figure. Finally, we need three conditions
at each of the bifurcations to close the system of equations.

Inflow boundary condition. At the inflow boundary we need
to specify the flow, the pressure, or a relation between them.
Because the shape of the pulse wave in the upper ascending
aorta is generated by the inflow from the aortic valve, we have
chosen to represent the inflow by a periodic extension of a
measured flow wave (see Fig. 4). This curve is measured in
the upper ascending aorta using magnetic resonance (20).

Fig. 3. Young’s modulus E times wall thickness (h) relative to radius
at zero transmural pressure (r0) as a function of r0.

Fig. 4. Inflow (q) as a function of time over 3 periods of length 1.25 s.
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The measured curve is modified in a number of ways. First, it
is made periodic, such that q(0, 0) 5 q(0, T ) where T 5 1.25 s
is the length of the period. Second, it is smoothed to avoid too
many oscillations in our simulated results. Finally, we have
scaled the curve so that the cardiac output is changed from
4.14 to 4.03 l/min, a reduction of 3%. This is a consequence of
the fact that we have not included all branches in our arterial
model, and hence there is a certain amount of blood not
included in our system.

Outflow boundary condition. The outflow boundary condi-
tion can be determined in several ways. The simplest reason-
able approach is to let the outflow be proportional to the
pressure, i.e., to let the boundary condition be determined by
a pure resistive load. This is commonly used in previous work
(1, 29, 43, 47, 48). However, it is not obvious how to choose the
correct value for the peripheral resistance at the points where
the larger arteries are terminated. Furthermore, if we as-
sume a constant relation between flow and pressure at the
downstream boundary they are forced to be in phase, which is
generally not physiologically valid in these relatively large
arteries. This is also pointed out by Anliker et al. (2), who note
that the pure resistance boundary condition only applies if
the arteries are sufficiently small. This can be seen (see Fig.
7A) from the hysteresis curves appearing when we plot p(x, t)
versus q(x, t) parametrized by t and for a fixed x. The forced
in-phase condition propagates back through the vessel, chang-
ing the overall slope as well as narrowing the width of the
loop, which means that the phase is disturbed throughout the
vessel. Because we are looking for some reflections in the
system (just enough to produce the dicrotic wave), we would
expect a small change in the loop rating curves but not as
drastic as the one appearing with this boundary condition.

As mentioned in the introductory paragraphs, the other
approach often used is to apply a windkessel model at the
outflow boundary (see, e.g., Refs. 40, 46, 52), among others.
The most commonly used windkessel model is the three-
element model, which represents the resistance and elasticity
of the vessels by an electrical analog model consisting of a
resistance in series with a parallel combination of a resis-
tance and a capacitor (see Fig. 5). The frequency-dependent
impedance (Z ) of the windkessel model is given by

Z (0, v) 5
R11 R2 1 ivCTR1R2

1 1 ivCTR2
(7)

where RT 5 R1 1 R2 is the total resistance and CT is the total
compliance of the vascular bed. These three parameters must
be specified for each boundary condition. Also from this model
the hysteresis curves, appearing when plotting p(x, t) versus
q(x, t) parametrized by t and for a fixed x (see Fig. 7B) show
that flow and pressure are almost in phase. However, the
windkessel model does not change the slope and width of the
curves significantly. Furthermore, none of these models is

able to include wave-propagation effects. Therefore, we have
investigated how the physical domain extends beyond the
boundary of the larger arteries using a one-dimensional fluid
dynamic approach.

The arterial system consists essentially of a large asymmet-
ric tree with a varying number of generations, ranging to .20
generations before the precapillary arterioles are reached. It
would be too comprehensive to compute the full nonlinear
model for such a tree. Therefore, a more appropriate strategy
is to describe the flow and pressure in these smaller arteries
using a simpler model that can be solved analytically, e.g., a
linear model. From these subtrees for the smaller arteries we
can obtain a suitable boundary condition for the system of
nonlinear equations as a time-dependent relation between
flow and pressure. We treat these subtrees of smaller arteries
as a structured network of straight vessels in which the
corresponding linear equations are solved; this is treated in
detail in SMALLER SYSTEMIC ARTERIES. From these solutions it
is possible, using Fourier analysis, to determine a more
physiological relation between flow and pressure. In this case
we actually see a phase lag between flow and pressure (see
Fig. 7C).

Because the inlet boundary condition is periodic, we as-
sume that the flow and pressure can be expressed using
complex periodic Fourier series. Then any feature of the
system response can be determined separately for each term.
Let

p(x, t ) 5 o
k52`

`

P(x, vk )e ivkt, q(x, t ) 5 o
k52`

`

Q(x, vk )e ivkt

where vk 5 2pk/T is the angular frequency and

P(x, vk ) 5
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T e
2T/2

T/2
p(x, t )e 2ivktdt

Q(x, vk ) 5
1

T e
2T/2

T/2
q(x, t )e 2ivktdt

For any Fourier mode we define the frequency-dependent
impedance Z(x, v) as

P(x, v) 5 Z (x, v)Q(x, v) (8)

where we have used the terminology of electrical networks,
with P playing the role of voltage and Q the role of current. If
we can find an expression for Z(x, v) and hence by inverse
Fourier transform find z(x, t), we arrive at an analytic
relation between p(x, t) and q(x, t) by the convolution theorem

p(x, t ) 5
1

T e
2T/2

T/2
z (x, t 2 t)q(x, t)dt (9)

This is our new outflow boundary condition for the larger
arteries, which should be evaluated at each of the terminals
marked by B in Fig. 1, i.e., at x 5 Li where Li is the length of
the ith terminal segment. In SMALLER SYSTEMIC ARTERIES we
discuss in detail how the impedance can be obtained.

The convolution integral in Eq. 9 spans one entire period;
hence, it requires knowledge of the solution at all times. But,
because we are solving Eq. 3 using an explicit method
(Richtmeyer’s 2-step version of Lax-Wendroff’s method), the
solution will not be computed simultaneously at all times in
the period. However, because the pulse wave propagation is a
periodic phenomenon, this difficulty can be overcome by using
an iterative approach to determine the convolution integral;

Fig. 5. Three-element windkessel model. For each terminal vessel,
where the model is applied, 3 parameters must be estimated, that is,
resistances R1 and R2 as well as total compliance (capacitance) CT.
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at any time t we use values from the previous period for
t8 [ [t:T ] and the ones already calculated for t8 [ [0:t]. We
then iterate over a number of periods until a stable solution is
reached. Numerical experiments suggest that this happens
after no more than three to four periods.

Bifurcation conditions. The bifurcations can be modeled
using a number of different approaches (1, 24, 47). We assume
that the bifurcation takes place at a point; hence, we need
three conditions to close the system of equations. Because no
blood is leaving the system at that point we get

qpa 5 qd1
1 qd2

(10)

The subscript pa refers to the parent vessel, and the sub-
scripts d1 and d2 refer to the daughter vessels. Assuming that
the pressure is continuous over the bifurcation

ppa 5 pd1
5 pd2

(11)

we get the other two conditions. These conditions pose some
questions because of the Bernoulli law that may or may not
apply depending on the details of the flow pattern at the
junction. At a boundary where the total cross-sectional area
decreases proceeding downstream, one would, according to
the Bernoulli law, expect a drop in pressure associated with
the increase in velocity. In the arterial system, however, the
total cross-sectional area typically increases at junctions
(again, proceeding downstream toward the periphery), and
hence an increase in pressure would be expected. On the
other hand, because the change in area at the junction is
discontinuous, flow separation and vortex formation are
expected just downstream from the bifurcation and the
Bernoulli law does not apply. Under these circumstances,
which invoke dissipation of kinetic energy, it is more appropri-
ate to use pressure continuity.

SMALLER SYSTEMIC ARTERIES

Modeling biological networks as structured trees has been
done previously but mainly for the pulmonary airways or for
smaller systems of arteries, such as the coronary arteries (8).
However, because the purpose of all of the smaller arteries is
to cover some tissue evenly with blood we have found it
natural to assume that the smaller arteries as a whole are
structured in some way.

We assume that it is possible to construct an asymmetric
binary structured tree where at each bifurcation the radius of
the two daughter vessels is scaled by factors a and b
(0 , a, b , 1), respectively, and where the branching termi-
nates when the radius of any given vessel is less than some
given minimum radius. We then need to derive a system of
equations that gives the root impedance of the structured
tree. Such a tree is shown in Fig. 6 and is indicated at the
outflow from each of the larger arteries in Fig. 1.

In the following sections we first set up the system of
equations needed to determine the root impedance and then
discuss the actual geometrical properties of the tree.

Root Impedance

We have chosen to use the linear hydrodynamic model
originally suggested by Womersley (54), Atabek and Lew (4),
and Pedley (35). We assume that blood is incompressible and
Newtonian and that the viscosity terms, which are dominant
for the smaller arteries (11), are included in the derivation of
the flow equations. The model predicts flow Q(x, v) and
pressure P(x, v) in the frequency domain by balancing the

forces of the elastic wall with those acting inside the fluid. As
for the larger arteries, the fluid equations are based on the
axisymmetric Navier-Stokes equations for flow in a circular
cylinder and the wall equations are determined from balanc-
ing forces on a thin shell representing an infinitesimal
element of the surface of the cylinder. The boundary condition
linking these equations together is the no-slip condition that
adheres the fluid particles to the inner surface of the tube and
hence to the motion of the elastic wall. The result after
averaging over the cross-sectional area and linearizing the
equations is the following x momentum equation

ivQ 1 K
A0

r

­P

­x
5 0 (12)

where

K 5 5
1 2 2i 21/2w21 for w . 4

(4/3 2 8iw22 ) 21 for w # 4

and w 5 r(v/n)1/2 is the Womersley parameter [for details see
Atabek (3) and Pedley (35)]. It should be noted that K is not
continuous. The reason for this is that it is derived from
asymptotic expansions for w = 0 and w = `; however,
because the jump is small it is possible to construct a smooth
function for K for all w. We define the compliance C by the
approximation

C 5
­A

­p
5

3A0r0

2Eh 11 2
3pr0

4Eh2
23

<
3A0r0

2Eh

The latter approximation applies because Eh : pr0 and the
corresponding continuity equation therefore becomes

iv/CP 1
­Q

­x
5 0 (13)

Equations 12 and 13 can be combined into the following wave
equation

v2
rC

KA0
Q 1

­2Q

­x 2
5 0 (14)

Fig. 6. A structured tree. At each bifurcation radius of the daughter
vessels are scaled by a factors a and b, respectively, i.e., for any radius
rpa of a parent vessel the radii of its 2 daughters are arpa and brpa.
Because each branch is terminated when the radius is less than some
given minimum radius, the tree does not have a fixed number of
generations.
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A similar equation can be derived for P. Solving Eq. 14 for Q
and using this solution together with Eq. 12 or 13 gives P.
From these we get the following equation for the impedance

Z (x, v) 5
P(x, v)

Q(x, v)
5 2

b cos(vx/c) 2 a sin(vx/c)

ig [a cos(vx/c) 1 b sin(vx/c)]
(15)

where a and b are arbitrary constants. Furthermore, we have
introduced the wave propagation velocity c 5 ÎA0K/(rC)
(which is complex) and the short-hand notation g 5 ÎCA0K/r.
If we assume that Z(L, v) is known, it is possible to find an
expression for b/a using Eq. 15

b

a
5

sin(vL/c) 2 igZ (L, v) cos(vL/c)

cos(vL/c) 1 igZ (L, v) sin(vL/c)

Evaluating Eq. 15 at x 5 0 and inserting the expression for
b/a gives the following input impedance

Z (0, v) 5
ig 21 sin(vL/c) 1 Z (L, v) cos(vL/c)

cos(vL/c) 1 igZ (L, v) sin(vL/c)
(16)

To extend this analysis to the more general case of a tree we
need to determine how to ‘‘cross’’ a bifurcation.

This does not require much more than we have already
established. As for the larger arteries, we assumed in Eqs. 10
and 11 that the pressures are continuous and that the flows,
and hence the admittances, add

1

Zp
5

1

Zd1

1
1

Zd2

(17)

If we know g and L for each vessel together with the
impedance at each of the distal terminals (leaves of the tree)
we can use Eqs. 16 and 17 recursively to find the input
impedance.

The peripheral resistance for the larger arteries arises
mainly from viscous flow in the arterioles (27). In our model of
the smaller arteries (the structured tree) we include suffi-
ciently many branches on the arteriolar level to generate a
realistic peripheral resistance. Hence we can assume a zero
impedance at the leaves of the structured tree. However,
arterioles are muscular and are able to dynamically regulate
the flow to the organs in question depending on their need.
This can be modeled by changing the zero impedance to a
nonzero impedance at the leaves of the structured tree.
Furthermore, it is possible to simulate vasodilation or vasocon-
striction by changing the radius and the elasticity of the
vessels. Vasodilation, for example, could be simulated by
lowering k1 in the relation for Eh/r0 (6), implying a lower
value for the very small radius, as well as increasing the
radius at all levels of the structured tree but without chang-
ing the asymmetry ratio or the length of the vessels. This can
be done for some or just one of the vessels because the
parameters for the relation are local to each branch.

For any vessel, the average impedance, or in electrical
terminology the DC term (for v 5 0), can be found as

Z (0, 0) 5 lim
v=0

Z (0, v) 5
8µl

pr 0
3

1 Z (L, 0) (18)

where l is a constant defining the length-to-radius ratio; this
is discussed further in Geometry of Structured Tree. Equation
18 suggests that in general for any network the root imped-
ance will be proportional to r0

23. For the case we are looking at,
where the tree is terminated whenever the radius of the

leaves of the tree is less than some given minimum radius,
the constant of proportionality cannot be derived analytically,
but in the special case of a symmetric tree with N generations
we get

Z (0, 0) 5
8µl

pr 0
3 o

j50

N

1
1

2a32
j

5
8µl

pr 0
3

1
1

2a32
N11

2 1

1
1

2a32 2 1

Geometry of Structured Tree

To construct the structured tree in which Eqs. 16 and 17
are solved for all the individual vessels, we need information
about the order of the tree and the impedance at the
terminals and some structured way to present the geometry
of the vessels, i.e., the length, the radius, the wall thickness,
and Young’s modulus.

From knowledge about the total cross-sectional area of the
arterial bed we can estimate the order of the structured tree.
The arteriolar diameters of the vascular bed vary from 10 to
50 µm according to the organ in question. At a diameter of 50
µm (for large arterioles) the total cross-sectional area is ,55
cm2 (27). In case of a symmetric tree this gives ,2.8 3 106

terminal branches. Because we start approximately at the
second generation after the aorta and create a number of
structured trees this must be modified accordingly. In case of
the tree presented in Fig. 1 there are 21 subtrees, and we
therefore need ,17 generations, because

21 3 2gen < 2.8 3 106 ⇒ gen < 17

However, the arterial tree is asymmetric, and therefore this
estimate will only apply approximately. Therefore, the best
condition to apply is to continue the binary bifurcation of the
structured tree until the diameter of any vessel in the
structured tree becomes less than the arteriolar diameter of
the vascular bed in the given organ.

At each bifurcation we need a law determining how the
geometry (radius or cross-sectional area) changes over the
junction. Such a relation is suggested by Uylings (51) among
others. It is derived from the principle of minimum work in
the arterial system and is given by

rpa
j 5 rd1

j 1 rd2

j (19)

where rpa is the radius of the parent vessel, and the subscripts
d1 and d2 refer to the two daughter vessels. This relation is
valid for a range of flows; the radius exponent j 5 3.0 is
optimal for laminar flow and j 5 2.33 for turbulent flow. The
exponent has been discussed rather extensively in the litera-
ture (37, 49), and on the basis of these reports we have chosen
j 5 2.76.

We could choose to construct a completely symmetric tree.
Although this is not what appears in the physical world, it
may still reflect the essential behavior of the tree. In a
symmetric tree all vessels will be terminated at the same
point, and as a result the impedance propagated from the
leaves of the tree will be in phase accentuating the reflections
from the boundary. This will not happen in an asymmetric
tree. In this case the impedance is scattered, and as a result
reflections will be attenuated. Hence, it makes sense that the
arteries in the human body branch asymmetrically. Further-
more, we can easily include an asymmetry relation in the
structured tree, i.e., the ratio between the cross-sectional
area of two daughter branches. The following relations for the
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area and asymmetry ratios are suggested by Zamir (55)

h 5
rd1

2 1 rd2

2

rpa
2

, g 5 (rd2
/rd1

) 2 (20)

where h and g are constants that characterize the structured
tree. The parameters j, h, and g are not independent but are
related as follows

h 5
1 1 g

(1 1 gj/2 ) 2/j
(21)

As with the radius exponent j, the values for h have also been
discussed extensively (see especially Refs. 16, 32, 51). On
basis of these reports we have chosen to keep h constant
throughout the tree at a value of 1.16, giving an asymmetry
ratio of g 5 0.41. Using these relations we are able to
determine the structure of the tree, i.e., how the radius of the
two daughter vessels should scale relative to their parent.
Assuming that they scale with factors a and b, respectively,
these can be found from Eqs. 19 and 20 as

a 5 (1 1 gj/2 ) 21/j, b 5 aÎg

It is also necessary to describe the length of each vessel as a
function of some property of its parent, because this param-
eter appears in Eq. 16. There are a number of papers
discussing how to determine the lengths of the vessels, but
only a few of these suggest any connection with the other
geometric parameters. Iberall (17) estimates that the length-
to-radius ratio lrr 5 l/r < 50 6 10. This is also supported by
Suwa et al. (49), Bergel (10), and Bassingthwaighte and Van
Beek (9), among others.

Finally, to compute the compliance C and wave speed c, we
need information about how wall thickness h and Young’s
modulus E change or depend on other parameters throughout
the tree. This is exactly what we have estimated for the larger
arteries, and because the smaller arteries are essentially
composed of the same types of tissue, we have extended the
dependencies to apply here as well, i.e., Eh/r0 is estimated as
a function of r0 as shown in Fig. 3.

Together these considerations constitute all the informa-
tion needed to construct an asymmetric binary structured
tree. The tree will be structured with respect to the radius in
such a way that all parameters are related to the radius of a
given vessel and at each bifurcation the radius of the daugh-
ter vessels scale with a and b, respectively, where 0 , a, b , 1.

RESULTS

The results in this section are generated from the
model shown in Fig. 1, in which we solve Eqs. 3–5 in the
larger arteries, with the inflow condition from Fig. 4
and the outflow condition (8) obtained by solving Eqs.
16 and 17 in the structured tree. These are then
compared with both the windkessel and the pure
resistance models as well as with experimental data.

First, we present some features from the outflow
boundary condition, and afterwards we give some
results showing the overall behavior of this model.

Outflow Boundary Condition

To judge the performance of the structured tree
model we will show 1) a comparison of the three outflow
boundary conditions (the pure resistance condition, the

windkessel model, and the structured tree model)
applied to a single isolated vessel and 2) a comparison
of measured data for the impedance in humans and
results from simulations using both the windkessel and
the structured tree boundary conditions. The advan-
tage of both the pure resistance and windkessel models
is that they are easy to understand and computation-
ally inexpensive, whereas the disadvantage is that they
are not able to capture the wave propagation phenom-
ena in the part of the arterial system that they model.
Furthermore, neither the pure resistance nor the wind-
kessel model can account for the phase lag between flow
and pressure. The windkessel model requires estimates
of the total arterial resistance, RT 5 R1 1 R2, and
compliance CT for each terminal segment, and the pure
resistance model needs the total arterial resistance.
Still, when coupled to the nonlinear equations for the
larger arteries, both models are able to capture the
overall behavior of the system.

To show the differences between the three models we
have (for simplicity) used a single tapering vessel of
length 100 cm, with top radius 0.4 cm and bottom
radius of 0.25. We then have applied the three outflow
boundary conditions to the vessel. To make them match
as well as possible we have estimated the parameters
for the windkessel and the pure resistance models from
the root impedance determined by the structured tree
model. RT (the DC term from the structured tree model)
is the same for all three models, and CT for the
windkessel model is fitted empirically to match that
given by the structured tree model. It should be empha-
sized that this study is theoretical, and hence the
parameters should not be compared with physiological
values. However, the same differences can be seen
when applying the three models to the whole tree.

The result of this comparison is shown in Fig. 7, in
which we have plotted pressure versus flow at five
equidistant locations along the vessel. Figure 7A is for
the pure resistance model, Fig. 7B for the windkessel
model, and Fig. 7C for the structured tree model. When
these figures are compared, the most striking difference
is that the pure resistance model affects the overall
shape of the curve. The forced in-phase condition at the
outflow boundary results in a narrowing of the width of
the loop back through the vessel. Furthermore, it is
worth noticing that the pure resistance model can be
seen as a special case of the windkessel model incorpo-
rating only the DC resistance. For the windkessel
model flow and pressure are also nearly in phase, but
the narrowing is not reflected back through the vessel.
Finally, it is observed that the structured tree model
does indeed retain some phase lag between flow and
pressure. The overall shape of the pressure profiles are
similar, but there are some significant differences.
These have to do with the fact that the structured tree
model includes wave propagation effects for the entire
tree, which the windkessel model cannot do. Hence, the
windkessel and pure resistance models are likely to
introduce artificial reflections. When we compare the
result for the pressure waves (see Fig. 8), this is exactly
what we see as a difference between the models. The

H263STRUCTURED TREE OUTFLOW CONDITION FOR ARTERIES



reflections from the pressure when the windkessel
model and especially the pure resistance model are
used are more pronounced than for the structured tree
model.

However, these differences are more easily seen if we
instead make a so-called Bode plot of the impedance at
the bottom of the large vessel [ZL(v)] versus the angu-
lar frequency (v), i.e., making a plot of log(0ZL(v) 0)
versus log (v) and a plot of phase (Z ) versus log(v). In
this paper we have made such plots for the windkessel
and the structured tree model and compared these with
human measured data [adapted from Nichols and
O’Rourke (27)]. However, all these are from the larger
arteries. Therefore, to be able to compare we have
applied the two models directly as outflow boundary
conditions for these larger arteries even though the
outflow boundary conditions usually are applied fur-
ther downstream. We show the comparisons of the
windkessel, the structured tree, and the measured data
for the brachiocephalic artery. However, similar results
can be obtained for the other parts of the arterial tree
(both larger and smaller arteries). It should be noted
that the structured tree model is not designed to be
valid for the large arteries, and as a result one should
not assume perfect matches without some adjustments
of the parameters. For the brachiocephalic artery we
had to modify the length-to-radius ratio from 50 to 130.
This much larger length-to-radius ratio corresponds
with the arteries of the arm. From anatomic data (see,
e.g., Ref. 27), we see that starting from the subclavian
artery no large side branches occur before the bifurca-
tion between the ulnar and interosseous arteries, which,
in fact, gives a length-to-radius ratio of ,130. The
brachiocephalic artery has a major bifurcation after
only ,3.5 cm, resulting in a very short length-to-radius
ratio. However, this is then followed by a rather long
length-to-radius ratio that is not taken into account
here. Because we know that the length-to-radius ratio
gets smaller for the smaller arteries, further studies
might be able to reveal some functional dependence,
e.g., on the radius, of the length-to-radius ratio. For the
model of the brachiocephalic artery we have chosen a
root radius of 0.5 cm and a minimum radius of 0.025
cm. A root radius of 0.5 cm is rather small, but Nichols
and O’Rourke (27) do not specify exactly where the data
have been measured. Thus the comparisons should be
interpreted with all of these reservations in mind. For
the vessel wall parameters we have used the relation
Eh/r0 5 k1 exp (k2r0) 1 k3 as shown in Fig. 3. The results
for these comparisons are shown in Fig. 9.

From these results the difference between the models
becomes evident, namely, that the windkessel model
cannot include the high-frequency oscillations present
in real human data. These observations can also be
seen when investigating the pressure profiles (see Fig.
8) in which the reflections and the maximum pressure
are more damped for the structured tree model than for
the windkessel or constant resistance models.

It is common knowledge that organs have different
peripheral resistances reflecting the physiological char-
acteristics of the organs they supply, and for any given

Fig. 7. Pressure (p; mmHg) vs. flow (q; cm3/s) over 1 cardiac cycle for
a single vessel at 5 equidistant locations, i.e., for a vessel of length L,
with x 5 0, L/4, L/2, 3L/4, and L, where curve with highest flow is for
x 5 0. Both q and p are plotted as functions of time during 1 cardiac
cycle. A: pure resistance model. B: windkessel model. C: structured
tree model.
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organ or muscle the minimum radius should be chosen
to match the total peripheral resistance of the corre-
sponding organ. For example, the renals have a small
peripheral resistance reflected in a large minimum
terminal radius, and the femoral arteries have a large
peripheral resistance reflected in a small minimal

terminal radius. For the simulations in this paper we
have used four different minimum radius values. These
are r0 5 0.06 cm, r1 5 0.04 cm, r2 5 0.02 cm, and r3 5
0.01 cm. They are distributed as shown in Fig. 1. The
compliance of the vessels is determined from the pres-
sure cross-sectional area relation using the radius-
dependent relation for Eh/r0. Similar relations are
needed for the windkessel model; it requires estimates
of arterial resistance and compliance.

This leads to the next question, namely, what hap-
pens if the root radius is changed. This is interesting
because the various structured trees applied at the
boundaries of the larger arteries have different root
radii. Because the most significant change appears in
the average impedance Z(0, 0), or in the electrical
terminology the DC term, we can assume that it should
depend on the area, and hence the radius, of the vessels
in the structured tree. As expected from our derivation
in the impedance section the average impedance is
approximately inversely proportional to the root radius
to the third power. The agreement is not exact, how-
ever, because the number of generations in the network

Fig. 8. Pressure in a single vessel with 3 outflow boundary conditions
as a function of x and t during 1 period. A: pure resistance condition.
B: windkessel condition. C: structured tree condition.

Fig. 9. A: brachiocephalic impedance 0Z(0, v) 0 vs. angular frequency
v 5 2pf for v [ [0:125] Hz. B and C: Bode plots, i.e., a log-log plot of
modulus of the impedance 0Z(0, v) 0 versus angular frequency v 5 2pf
(B) and a single-log plot of phase of impedance vs. frequency (C).
Dotted lines indicate results from windkessel model (wk), solid lines
indicate results from structured tree (st), and dashed lines indicate
measured results (md 0 and md 1). Measured data are from Mills et
al. (26).
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is not fixed. Instead, the tree is continued until a
terminal radius is reached. Thus increasing r0 results
in a tree with more branches. The reason for the
decrease in impedance with increased root radius is
that the total cross-sectional area at the bottom of the
structured tree is increased, and hence it can accommo-
date a larger outflow. The total cross-sectional area is
increased simply because starting at a larger root
radius and terminating the tree when the radius of the
terminals are less than some fixed minimum value
gives a larger tree with more terminals.

Coupled Model

Using the structured tree as a boundary condition is
a feasible way of determining the blood flow and
pressure in the larger arteries. To verify this we have
chosen to depict pressures in the aorta and the subcla-
vian and brachial arteries, because these graphs show
all the significant phenomena and because they can be
compared with measured data (see Figs. 10–12). Corre-
sponding results for the other branches shown in Fig. 1
behave similarly. The geometrical data for this model
are taken from Segers et al. (45) except that we have

restricted the concept of larger arteries to consist only
of those that are at most one generation away from the
aorta, iliac, and femoral arteries (see Fig. 1).

First, we observe that the simulated pressure profiles
exhibit all the qualitative characteristics that must be
present in an arterial model: 1) the maximum pressure
increases away from the heart toward the periphery; 2)
the steepness of the incoming pressure profile increases
toward the periphery; 3) the reflected dicrotic wave
separates from the incoming pressure wave and is more
prominent toward the periphery; and 4) the incoming
wave of the ascending aorta is round whereas the
incoming wave, at more peripheral locations, is nar-
rower because it is accentuated by the reflected wave.
Aside from the features mentioned above, which are
obviously also present in the measured data, we ob-
serve a good quantitative correspondence between our
simulated results and the measured data. The systolic
and diastolic pressures are similar, and in the ascend-
ing aorta there is a shoulder before the maximum of the

Fig. 10. Pressure p(x, t) in aorta (A) and subclavian and brachial
arteries (B).

Fig. 11. Pressure p(xf, t) in aorta (for xf 5 0, 10, . . . , 50 cm; A) and
subclavian and brachial arteries (for xf 5 0, 10, . . . , 40 cm; B).
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incoming wave that disappears at locations further
distally. The latter is caused by the large wave propaga-
tion velocity that results in a reflected wave returning
before the peak of the incoming wave. However, it
should be noted that the results of the simulation
depend strongly on the inflow profile from the aortic
valve, cardiac output, the geometry of the arteries, the
minimum radius, and the relation for Young’s modulus,
the wall thickness, and the vessel radius (6). Because
these parameters are not quoted by Remington and
Wood (41), who refer to the measured curve as stem-
ming from a normal subject, discrepancies are likely to
occur, especially because the pulse curve generally
varies considerably, depending on the parameters men-
tioned above, even among normal subjects. Even though
we do not know these specific details we do see a great
potential with a model such as the one described in this
paper, and we are currently working on setting up a
number of experiments ourselves to validate the model
further.

DISCUSSION

This work has shown the feasibility of limiting the
computational domain. On the basis of physiological
information alone we have succeeded in deriving a
boundary condition for the nonlinear model predicting
blood flow and pressure in the larger systemic arterial

tree that is able to retain the high-frequency oscilla-
tions present in the impedance spectra. This applies at
all levels, even at the peripheral level where the
boundary condition is applied. We also showed that
retaining the high-frequency oscillations is not possible
using the simpler pure resistance or windkessel mod-
els. Applying a structured tree gives a physiological
boundary condition in which we only need to estimate
the minimum order of the structured tree in accordance
with the total peripheral resistance of the organ/muscle
to which it leads. This is a result of the viscous
treatment of blood flow in the smaller arteries in the
structured tree. We thus get a peripheral resistance at
the terminal of the larger arteries, i.e., the root imped-
ance from the structured tree, entirely from the struc-
tured tree itself, and no terminal resistance needs to be
applied at its leaves. This is consistent with the obser-
vations (15) that the smaller arteries generate the
peripheral resistance and not the capillaries. However,
to model pathological situations such as vasodilation or
vasoconstriction it is possible to apply a nonzero termi-
nal resistance, change the radius throughout the struc-
tured tree, or modify the relation including Young’s
modulus if required. Furthermore, it should be noted
that it is possible to estimate and compare the param-
eters of a pure resistance and a windkessel element
boundary condition from the structured tree (30). The
structured tree provides an alternative to the windkes-
sel boundary condition, and its advantage is that it is
based on the fluid mechanics of the arteries, hence it
naturally includes the wave propagation effects, which
cannot be modeled by a lumped model. The only
parameter that must be estimated separately for each
structured tree is the radius at the root of the tree.

When plotting the pressure of the larger arteries
seen in Figs. 10 and 11, we not only retain the phase
lag, as seen in Fig. 7C, and the high-frequency oscilla-
tions evident from the impedance plots, but we also get
realistic results. However, it is necessary to reduce
cardiac output with ,3% to achieve these results. This
is a natural consequence of the fact that we do not
include all branches of the arteries, and hence we
should lower the cardiac output accordingly. As we
show in RESULTS our model reflects the most important
phenomena of arterial function. The maximum pres-
sure and the steepness of the incoming pressure waves
are increased distally, and the dicrotic wave separates
from the incoming pressure wave and is more promi-
nent at more peripheral locations.
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Fig. 12. Measured data for pressure p(x, t) in aorta (A) and subcla-
vian and brachial arteries (B) are from Ref. 41.
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