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ABSTRACT

Interest in Genetic algorithms is expanding rapidly. This paper reviews
software environments for programming Genetic Algorithms (GAs). As
background, we initially preview genetic algorithms' models and their
programming. Next we classify GA software environments into three main
categories: Application-oriented, Algorithm-oriented and Tool-Kits.

For each category of GA programming environment we review their
common features and present a case study of a leading environment.
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1. Introduction

Evolution is a remarkable problem solving machine. Genetic Algorithms are an attractive
class of computational models that attempt to mimic the mechanisms of natural evolution to
solve problems in a wide variety of domains.

The theory behind Genetic Algorithms was proposed by John Holland in his landmark
book Adaptation in Natural and Artificial Systems published in 1975 [8]. In conjunction with
the GA theory, he developed the concept of Classifier Systems, a machine learning technique.
Classifier Systems are basically induction systems with a genetic component [3]. Holland's
goal was two-fold: firstly, to explain the adaptive process of natural systems [3] and secondly,
to design computing systems capable of embodying the important mechanisms of natural
systems [3]. Pioneering work of Holland [8], Goldberg [3], De Jong [2], Grefenstette [5], Davis
[1], Mihlenbein [10] and others is fuelling the spectacular growth of GAs.

GAs are particularly suitable for the solution of complex optimisation problems, and
consequently are good for applications that require adaptive problem solving strategies!. In
addition, GAs are inherently parallel, since their search for the best solution is performed over
genetic structures (building blocks) which can represent a number of possible solutions.
Furthermore GAs' computational models can be easly parallelised. Many parallel models have
been proposed recently [4,11,17] which attempt to exploit GA's parallelism on massively
parallel computers and distributed systems.

1.1. Classes of Search Techniques

Genetic Algorithms are one very important class of search techniques. Search techniques
in general, as illustrated in figure 1 can be grouped into three broad classes [3]: Calculus-
based, Enumerative and Guided Random search.
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Figure 1 - Classes of Search Techniques

Ia survey of GA applications is beyond the scope of this paper, and the interested reader is referred to [1,3]




Calculus-based techniques use a set of necessary/sufficient conditions to be satisfied by the
optimal solutions of an optimisation problem. These techniques sub-divide into indirect and
direct methods. Indirect methods look for local extrema by solving the usually non-linear set of
equations resulting from setting the gradient of the objective function equal to zero. The search
for possible solutions (function peaks) starts by restricting the search to points with zero slope
in all directions. Direct methods, such as Newton and Fibonacci, seek extrema by "hopping"
around the search space and assessing the gradient of the new point, which guides the direction
of the search. This is simply the notion of Hill-Climbing which finds the best local point by
"climbing" the steepest permissible gradient. However, these techniques can only be employed
on a restricted set of "well behaved" problems.

Enumerative techniques search every point related to an objective function's domain space
(finite or discretised), one point at a time. They are very simple to implement but may require
significant computation. The domain space of many applications is too large to search using
these techniques. Dynamic programming is a good example of an enumerative technique.

Guided Random search techniques are based on enumerative techniques, but use additional
information to guide the search. They are quite general on their scope, being able to solve very
complex problems. Two major sub-classes are: Simulated Annealing and Evolutionary
Algorithms, although both are evolutionary processes. Simulated Annealing uses a
thermodynamic evolution process to search minimum energy states. Evolutionary Algorithms,
on the other hand, are based on natural selection principles. This form of search evolves
throughout generations, improving the features of potential solutions by means of biological-
inspired operations. These techniques sub-divide, in turn, into Evolution Strategies and Genetic
Algorithms. Evolution Strategies were proposed by Rechenberg and Schwefel [12,15] in the
early seventies. They present the ability to adapt the process of "artificial evolution” to the
requirements of the local response surface?. This means that ESs are able to adapt their major
strategy parameters according to the local topology of the objective function [7]. This
represents a significant difference to traditional GAs.

Following Holland's original Genetic Algorithm proposal, many variations of the basic
algorithm have been introduced. However, an important and distinctive feature of all GAs is the
population handling technique. The original GA adopted a generational replacement policy [1]
where the whole population is replaced in each generation. Conversely, the steady-state policy
[1] used by many subsequent GAs employ a selective replacement for the population. It is
possible, for example, to keep one or more individuals within the population for several
generations, while those individuals sustain a better fitness than the rest of the population.

1.2. Survey Structure

Having reviewed search techniques, we next present our survey of GA programming
environments. The environments presented here, are those most readily accessible in the
literature.

To make the paper self-contained, we start by introducing GA models and their
programming. This is followed by our survey of GA programming environments. We have
grouped environments into three major classes according to their specific objectives:
Application-oriented, Algorithm-oriented, and Tool Kits. Application-oriented systems are
"black box" environments designed to hide the details of GAs and help the user in developing
applications for specific domains, such as Finance, Scheduling, etc. These application domains
form a natural subdivision. Algorithm-oriented systems are based on specific genetic algorithm
models, such as the GENESIS algorithm. This class may be further sub-divided into:

2For a formal description on Evolutionary Strategy refer to[6].



Algorithm-specific systems which support a single genetic algorithm, and Algorithm Libraries
which support a group of agorithms in a library format. Lastly, Tool Kits are flexible
environments for programming a range of GAs and applications. These systems sub-divide
into: Educational systems which introduce GA concepts to novice users, and General-purpose
systems to modify, develop and supervise a wide range of genetic operators, genetic algorithms
and applications.

For each class and sub-class, a review of the available environments is presented with a
description of their common features and requirements. As a case study, one specific system
per class is examined in more detail. Finally, we discuss the likely future developments of GA
programming environments.



2. Genetic Algorithms

A Genetic Algorithm is a computational model that emulates biological evolutionary
theories to solve optimisation problems. A GA comprises a set of individual elements (the
population) and a set of biologically inspired operators defined over the population itself.
According to evolutionary theories, only the most suited elements in a population are likely to
survive and generate offspring, thus transmitting their biological heredity to new generations.

In computing terms, a genetic algorithm maps a problem on to a set of (binary) strings3,
each string representing a potential solution. The GA then manipulates the most promising
strings searching for improved solutions. A GA operates typically through a simple cycle of
four stages:

i) creation of a "population” of strings,

ii) evaluation of each string,

iii) selection of "best" strings, and

iv) genetic manipulation, to create the new population of strings.

Figure 2 shows these four stages using the biologically inspired GA terminology. In each
cycle a new generation of possible solutions for a given problem is produced. At the first stage,
an initial population of potential solutions is created as a starting point for the search process.
Each element of the population is encoded into a string (the chromosome), to be manipulated
by the genetic operators. In the next stage, the performance (or fitness) of each individual of
the population is evaluated, with respect to the constraints imposed by the problem. Based on
each individual's fitness a selection mechanism chooses "mates™ for the genetic manipulation
process. The selection policy is ultimately responsible for assuring survival of the best fitted
individuals. The combined evaluation/selection process is called reproduction.
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Figure 2 - The GA cycle

The manipulation process employs genetic operators to produce a new population of
individuals (offspring) by manipulating the "genetic information”, referred to as genes,
possessed by members (parents) of the current population. It comprises two operations, namely
crossover and mutation. Crossover is responsible for recombining the genetic material of a
population. The selection process associated to recombination, assure that special genetic

3Although binary strings are typical, other alphabets such as real numbers are also used.



structures, called "building blocks", are retained for future generations. The building blocks
then represent the most fitted genetic structures in a population. Nevertheless, the
recombination process alone can not avoid the loss of promising building blocks in the presence
of other genetic structures, which could lead to local minima. Also, it is not capable to explore
search space sections not represented in the population's genetic structures. The mutation
operator comes then into action. It introduces new genetic structures in the population by
randomly modifying some of its building blocks. It helps the search algorithm to escape from
local minima's traps. Since the modification introduced by the mutation operator is not related
to any previous genetic structure of the population, it allows the creation of different structures
representing other sections of the search space.

The crossover operator takes two chromosomes and swaps part of their genetic
information to produce new chromosomes. This operation is analogous to sexual reproduction
in nature. After the crossover point has been randomly chosen, the portions of the parent
strings P1 and P2 are swapped to produce the new offspring strings O1 and O2. For instance,
figure 3 shows the crossover operator being applied to the fifth and sixth elements of the string.

ooooloo ®®®G>I®® Parents

crossover point crossover point
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Figure 3 - Crossover

Mutation is implemented by occasionally altering a random bit in a string. Figure 4
presents the mutation operator being applied to the fourth element of the string.
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Figure 4 - Mutation

A number of different genetic operators have been introduced since this basic model was
proposed by Holland. They are, in general, versions of the recombination and genetic alteration
processes adapted to the requirements of particular problems. Examples of other genetic
operators are: inversion, dominance, genetic edge recombination, etc.

The offspring produced by the genetic manipulation process originate the next population
to be evaluated. Genetic Algorithms can either replace a whole population (generational
approach) or theirs less-fitted members only (steady-state approach). The creation-evaluation-
selection-manipulation cycle is repeated until a satisfactory solution to the problem is found.

The description of the genetic algorithm computational model given in this section
presented an overall idea of the steps needed to design a genetic algorithm. However, real
implementations, as exemplified in the next section, have to consider a number of problem-
dependent parameters such as the population size, crossover and mutation rates, convergence
criteria, etc. GAs are very sensitive to most of these parameters, and the discussion of the
methods to help in setting them up is beyond the scope of this paper.



2.1. Sequential GAs

To illustrate the implementation of a sequential genetic algorithm we will use the simple
function optimisation example given in Goldberg [3], and examine its programming in C.

The first step in optimising the function f(x)=x2, over the interval (i.e. parameter set)
[0-31], is to encode the parameter set x, for example as a five digit binary string
{00000-11111}. Next we need to generate our initial population of 4 potential solutions, shown
in table 1, using a random number generator.

Table 1 - Initial strings and fitness values

Initial f(x) strength
Population X (fitness) (% of Total)
01101 13 169 14.4
11000 24 576 49.2
01000 8 64 55
10011 19 361 30.9

Sum_Fitness = 1170 (100.0)

To program this GA function optimisation we declare the population pool as an array with
four elements, as in figure 5, and then initialise the structure using a random generator as
shown in figure 6.

#define POPULATION_SIZE 4 [* Size of the population */
#define CHROM_LENGTH 5 [* String size */
#define PCROSS 0.6 [* Crossover probability */
#define PMUT 0.001 [* Mutation probability — */

struct population

{

int value;
unsigned char string[CHROM_LENGTH];
int fitness;

h
struct population pool[POPULATION_SIZE];

Figure 5 - Global constants and variables declarationsin C

initialise_population()

randomise(); /* random generator set-up */
for (i=0; i < POPULATION_SIZE; i++)
encode(i, random(pow(2.0,CHROM_LENGTH));

Figure 6 - Initialisation routine

Having initialised the GA, the next stage is reproduction. Reproduction evaluates and
selects pairs of strings for mating — for instance using a "roulette wheel” method [3] —
according to their relative strengths (see table 1 and the associated C code in figure 7). One
copy of string 01101, two copies of 11000 and one copy of string 10011 are selected.



select(sum_fitness)
{

parsum = 0;

rnd = rand() % sum_fitness; /* spin the roulette */

for (i=0; i < POPULATION_SIZE, parsum <= rnd; i++)

parsum += pool[i].fitness; /* look for the slot */

return (--i); /* returns a selected string */

}

Figure 7 - Selection function
Next we apply the crossover operator, asillustrated in table 2.

Table 2 - Mating pool strings and crossover

Mating . New
Pool Mates Swapping Population
01101 1 0110/[1] 01100
11000 2 1100/[0] 11001
11000 2 11[000] 11011
10011 4 10[011] 10000

Crossover operates in two steps (see figure 8). Firstly, it determines whether crossover is
to occur on a pair of strings by using a flip function; tossing a biased coin. If heads (true) with
praobability pcross, the strings are swapped; the crossover _point being determined by a random
number generator. If tails (false) the strings are simply copied. In the example, crossover
occurs at the fifth position for the first pair and the third position for the other.

crossover (parentl, parent2, childl, child2)
if (flip(PCROSS))
{ crossover_point = random(CHROM_LENGTH);
for (i=0; i <= CHROM_LENGTH; i++)
if (i <= site)

new_pool[child1].string[i] = pool[parent1].string[i];
new_pool[child2].string]i] = pool[parent2].string[i];

else

new_pool[child1].string[i] = pool[parent2].string[i];
new_pool[child2].string]i] = pool[parent1].string[i];

Figure 8 - The crossover routine

After crossover, the mutation operator is applied to the new population, which may have a
random bit in a given string modified. The mutation function in figure 9 uses the biased coin
toss (flip) with probability pmut to determine whether to change a bit or not.



mutation ()
for (i=0; i < POPULATION_SIZE; i++)

for (j=0; j < CHROM_LENGTH; j++)
if (flip(PMUT))
pool[i].string[j ]= ~new_pool[i].string[j] & 0x01;
else
pool[i].string[j] = new_pool[i].string][j];

Figure 9 - The mutation operator C implementation

A new population has now been generated (see table 3), and a termination test is applied.
Termination criteria may include: the simulation time being up, the number of generations
exceeded, or the convergence criterion satisfied. In the example, we might set the number of
generations to 50, and the convergence as an average fitness improvement of less than 5%,
between generations. For the initial population, the average is 293 (i.e. (169+576+64+361)+4),
while for the new population it has improved to 439 (i.e. 66%).

Table 3 - Second generation and its fithess values

Initial f(x) strength
Population X (fitness) (% of Total)
01100 12 144 8.2
11001 25 625 35.6
11011 27 729 41.5
10000 16 256 14.7

Sum_Fitness = 1754 (100.0)

A complete C code listing of this simple example is given in Appendix A, for the
interested reader.

2.2. Parallel GAs

The Genetic Algorithms paradigm offer intrinsic parallelism when looking for the best
solution on a large search space, as demonstrated on Holland's schema theorem[8]. Besides the
intrinsic parallelism, GAs computational models can also exploit several levels of parallelism,
due to the natural independence of the genetic manipulation operations.

A parallel GA is generally formed by parallel components each responsible for
manipulating sub-populations. There are two classes of PGAs employing centralised and
distributed selection mechanisms. With centralised selection mechanisms, a single selection
operator works on the global population (of sub-populations). Thus the PGA has a synchronous
selection stage.

With distributed mechanisms, each parallel component has its own copy of the selection
operator. In addition, each component communicates its best strings to a sub-set of the other
components. This is supported by a migration operator, and a migration frequency defining
the communication interval. These PGAs have an asynchronous selection stage. The
ASPARAGOS [4] algorithm is an excellent example of this class.

As an illustration of parallel GAs, figure 10 shows a skeleton C-like program, based on
the ASPARAGOS algorithm, for the simple function optimisation discussed in the previous
section. In this parallel program the statements for initialisation, selection, crossover and
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mutation remain almost the same as for the sequential program. For the main loop, PARallel
sub-populations are set up for each component, as well as values for the new parameters. Each
component then executes SEQuentially, apart from the PARallel migration operator.

#define MAX_GEN 50

#define POPULATION_SIZE 32

#define SUB_POP_SIZE 8

#define NUM_OF_GAS POPULATION_SIZE/SUB_POP_SIZE

#define NUM_OF_NEIGHBOURS 2

#define MIGRATION_FREQ 5

#define NUM_OF_EMIGRANTS 2

main()

PAR for (i=0; i<SUB_POP_SIZE; i++) [* Parallel execution ~ */

[* over sub-populations */

SEQ { initialise(); }

do;
{
for (j=0; <MIGRATION_FREQ); j++)

SEQ { selection(..) /* evaluate & select  */
crossover(..); /* of the standard GA */
mutation(..);

}
for (j=0; j<NUM_OF_EMIGRANTS; j++)

SEQ { emigrant[j] = select_emigrant(..);}

for (j=0; j<NUM_OF_NEIGHBOURS; j++)

PAR { send_emigrants(..);

receive_emigrants(..);

}

}
while (generations <= MAX_GEN);

Figure 10 - Parallel GA with migration

Following this brief review of GAs' concepts and implementations, we next survey GA
programming environments.
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3. Taxonomy for GA Programming Environments

For our review of genetic algorithms programming environments, we utilise a simple
taxonomy of three major classes: Application-oriented systems, Algorithm-oriented systems
and Tool Kits.

¢ Application-oriented systems are essentially "black box" programming systems,
hiding the GA implementation details, and are targeted at business professionals.
Some of these systems support a range of applications, such as scheduling,
telecommunications, etc. (a good example being PC/BEAGLE ); others focus on a
specific domain, such as finance (as with OMEGA).

¢ Algorithm-oriented systems are programming systems which support specific
genetic algorithms. They sub-divide into:

«  Algorithm-specific systems — which contain a single genetic algorithm; the
classic example being GENESIS [5].

« Algorithm Libraries— where a variety of genetic algorithms and operators
are grouped in library; as in Lawrence Davis' OOGA[1].

Algorithm-oriented systems are often supplied in source code and can be easily
incorporated into user applications.

¢ Tool Kits are programming systems that provide many programming utilities,
algorithms and genetic operators that can be used for a wide range of application
domains. These programming systems sub-divide into:

e Educational systems — to help the novice user to obtain a hands-on
introduction on GA concepts. Typically these systems support a small set
of options for configuring an algorithm. See GA Workbench [9].

« General-purpose systems — to provide a comprehensive set of tools for
programming any GA and application. These systems may even allow the
expert user to customise any part of the software, as in Splicer.

As an illustration of our Taxonomy, table 4 lists the GA programming environments
examined in the next sections, according to their categories. For each category we initially
present a generic system overview, then briefly review example systems, and finally examine
one system in more detail, as a case study. Examples of parallel environments like GAucsb,
PeGAsuS, and GAME are also covered, but there are no commercial parallel environments
currently available. A more comprehensive list of programming environments and their
developers is given in appendix B.

Table 4 - Programming Environments and their categories

Application Algorithm Oriented Tool Kits
Oriented Algorit_h_m- Al_gorit_hm- Educational General
Specific Libraries Purpose
EVOLVER ESCAPADE EnGENEer
OMEGA GAGA EM GA GAME
PC/BEAGLE GAucsD Workbench MicroGA
XpertRule GENESIS OOGA PeGAsuS
GenAsys GENITOR Splicer
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4. Application-oriented systems

Application-oriented systems are designed for use by business professionals who wish to
utilise genetic algorithms in specific applications domains, without having to acquire detailed
knowledge of the workings of genetic algorithms.

As we have seen with expert systems and neural networks, many potential users of a novel
computing technique, such as genetic algorithms, are only interested in the applications, rather
than the details of the technique. For example, a manager in a trading company may wish to
optimise its delivery scheduling. By using an application-oriented programming environment, it
is possible to configure a particular application for schedule optimisation based on the
Travelling Salesman Problem (TSP) model, without having to know the encoding technique nor
the genetic operators involved.

Overview

A typical Application-oriented environment is analogous to a Spreadsheet or Word-
processing utility. It comprises a menu-driven interface (tailored to business users) giving
access to a suite of parameterised modules (targeted at specific domains). The user interfaces
provide menus to configure an application, monitor its execution, and, in certain cases,
program an application. Help facilities are also provided.

urvey

Application-oriented systems follow many innovative strategies. Systems, such as
PC/BEAGLE and XpertRule GenAsys, are expert systems using GAs to generate new rules to
expand their knowledge base of the application domain. EVOLVER is a companion utility for
Spreadsheets; and systems like OMEGA, are targeted at financial applications.

EVOLVER — is an add-on utility that works within the Excel, WingZ and Resolve
spreadsheets on Macintosh and PC computers. It is being marketed by Axcélis Inc., who
describes it as "an optimisation program that extends mechanisms of natural evolution to the
world of business and science applications”. The user starts with a model of his system in the
spreadsheet and calls the EVOLVER program from a menu. After filling a dialogue box with
the information required (e.g. cell to minimise/maximise) the program starts working,
evaluating thousands of scenarios automatically until it is sure it has found an optimal answer.
The program runs in background freeing the user to work in the foreground. When the program
finds the best result it notifies the user and places the values into the spreadsheet for analysis.
This is an excellent design strategy given the importance of interfacing with spreadsheet in
business. In an attempt to improve the system and expand its market, Axcélis introduced
Evolver 2.0 that is being shipped with many tool-kit-like features. The new version is capable
to integrate with other applications, besides spreadsheets. Also it offers more flexibility in
accessing the "Evolver Engine" from any MS-Windows application capable of calling a
Dynamic Link Library (DLL).

OMEGA — the OMEGA Predictive Modelling System, marketed by KiQ Limited, is a
powerful approach to developing predictive models. It exploits advanced genetic algorithms
techniques to create a tool which is "flexible, powerful, informative and straightforward to
use". OMEGA is geared to the financial domain and can be applied in the following sectors:
Direct Marketing, Insurance, Investigations (case scoring) and Credit Management. The
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environment offers facilities for automatic handling of data; business, statistical or custom
measures of performance; simple and complex profit modelling; validation sample tests;
advanced confidence tests; real-time graphics, and optional control over the internal genetic
algorithm.

PC/BEAGLE — produced by Pathway Research Ltd, is a rule-finder program that applies
machine-learning techniques to create a set of decision rules for classifying examples
previously extracted from a database. It has a module that generates rules by natural selection.
Further details are given in the case study section.

XpertRule GenAsys — is an expert system shell with embedded genetic algorithms, marketed
by Attar Software. This GA expert system is targeted to solve scheduling and design
applications. The system combines the power of genetic algorithms in evolving solutions with
the power of rule-base programming in analysing the effectiveness of solutions. Rule-base
programming can also be used to generate the initial solutions for the genetic algorithm and for
post optimisation planning. Some examples of design and scheduling problems that can be
solved by this system includes: optimisation of design parameters in electronic and avionics
industries, route optimisation in the distribution sector, production scheduling in
manufacturing, etc.

As our case study, we will examine PC/BEAGLE.

Case Study — PC/BEAGLE

PC/BEAGLE is a rule-finder program that examines a database of examples and uses
machine-learning techniques to create a set of decision rules for classifying those examples,
turning data into knowledge. In particular, the software analyses an expression via a historical
database and develops a series of rules to explain when the target expression is false or true.

The system contains six main components that are generally run in sequence:

e SEED (Sdectively Extracts Example Data) puts external data into a suitable
format, and may append leading or lagging data-fields as well.

« ROOT (Rule Oriented Optimisation Tester) tests an initial batch of user-
suggested rules.

e HERB (Heurigtic Evolutionary Rule Breeder) generates decision rules by
Naturalistic Selection, using GA philosophy (ranking) mechanisms are also
supported).

e« STEM (Sgnature Table Evaluation Module) makes a signature table from the
rules produced by HERB.

e LEAF (Logical Evaluator and Forecaster) uses STEM output to do forecasting or
classification.

e PLUM (Procedural Language Utility Maker) can be used to convert a BEAGLE
rule-file into a language such as Pascal or Fortran; In this form the knowledge
gained may be used by other software.

PC/BEAGLE accepts data in ASCII format, with items delimited either by commas, spaces or
tabs. Rules are produced as logical expressions. The system is a highly versatile package
covering a wide range of applications. Insurance, weather forecasting, finance and forensic
science are some examples.

14



The software requirements are an IBM/PC compatible computer with at least 256K
bytes RAM and MS-DOS or PC-DOS operating system version 2.1 or later.
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5. Algorithm-oriented systems

5.1. Algorithm-specific systems

Algorithm-specific environments embody a single powerful genetic algorithm. These
systems have typically two groups of users: system developers requiring a general-purpose GA
for their applications, and researchers interested in the development and testing of a specific
algorithm and genetic operators.

Overview

In general, Algorithm-specific systems come in source code and allow the expert user to
make alterations for specific requirements. They present a modular structure providing a high
degree of modifiability. In addition, user interfaces are frequently rudimentary, often command-
line driven. Typically the code has been developed in universities and research centres, and are
available free over world-wide computer research networks.

urvey

The most well known programming system in this category is the pioneering GENESIS [5]
which has been used to implement and test a variety of new genetic operators. In Europe,
probably the earliest Algorithm-specific system was GAGA. For scheduling problems,
GENITOR [19] is another influential system that has been successfully used. GAucsp allows
parallel execution by distributing several copies of a GENESIS-based GA into UNIX machines
in a network. Finally, ESCAPADE [7] employs a somewhat different approach — being based on
an Evolutionary Strategy (see Section 1.1) — as discussed below.

ESCAPADE — Evolution Strategies capable of adaptive evolution — this software package
provides a sophisticated environment for a particular class of Evolutionary Algorithms, called
Evolution Srategies. ESCAPADE is based upon KORR, Schwefel's implementation of a
(K FA) — evolutionary strategy. The system provides an elaborated set of monitoring tools to
gather data from an optimisation run of KORR. According to the author, it should be possible
to incorporate a different implementation of an ES or even a GA into the system using its
runtime support. The program structure is separated into several rather independent
components that support the various tasks during a simulation run. The major modules are:
Parameter Set-up, Runtime Control, KORR, Generic Data Monitors, Customised Data
Monitors, and Monitoring Support.

During an optimisation run the monitoring modules are invoked by the main algorithm
(KORR or some other ES or GA implementation) to realise the logging of internal quantities.
The system is not equipped with any kind of graphics interface. All parameters for a particular
simulation are passed over as command line options. In the output, each data monitor writes its
data into separate log files.

GAGA — Genetic Algorithms for General Application — was originally programmed by
Hillary Adams, University of York, in Pascal. The program was later modified by lan Poole
and translated to the C language by Jon Crowcroft at University College London. It is a task
independent genetic algorithm. The user must supply the target function to be optimised
(minimised/maximised) and some technical GA parameters, and wait for the output. It is
suitable for the minimisation of many "difficult” cost functions.
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GAucsD — This software package was developed by Nicol Schraudolph at the University of
California, San Diego [14]. The system is based on GENESIS 4.5 and runs on Unix, MS-DOS,
CrayOs and VMS platforms; but presumes a Unix environment. It comes with an awk script
called wrapper, which provides a higher level of abstraction for defining the evaluation
function. By supplying the code for decoding and printing the evaluation function parameters
automatically, it allows the direct use of most "C" functions as evaluation functions, with few
restrictions. The software also includes a Dynamic Parameter Encoding (DPE) technique
developed by Schraudolph, which facilitates a radical reduction of the gene length while
keeping the desired level of precision for the results. It is possible to run the system in
background at low priority using the go command. This command can also be used to execute
GAuUCsD in remote hosts. The results are then copied back to the user's local directory and a
report is produced if appropriate. If the host is not binary compatible, GAuUcsD compiles the
whole system in the remote host. Experiments can be queued in files, distributed to several
hosts and executed in parallel. The ex command will notify the user via write or mail when all
experiments are completed. The experiments are distributed according to a specified loading
factor (how many programs will be sent to each host) along with the remote execution
arguments to the go command. GAUCSD is clearly a very powerful system.

GENESIS — GENEtic Search Implementation System — was written by John Grefenstette [5]
to promote the study of genetic algorithms for function optimisation. It has been under
development since 1981, and has been widely distributed to the research community since
1985. The software package is a set of routines written in the "C" language. To build their own
genetic algorithm, the user has only to provide a routine with the fitness function and link it
with the other routines. It is also possible to modify or add new modules (e.g. genetic operators,
data monitors) and create a different version of GENESIS. In fact, GENESIS has been used as a
base for test and evaluation of a variety of genetic algorithms and operators. It was primarily
developed to work in a scientific environment offering a suitable software tool for research. It
provides a high modifiability degree and a variety of statistical information on outputs.

GENITOR — GENetic ImplemenTOR — is a modular GA package containing examples for
floating-point, integer and binary representations. Its features include many sequencing
operators as well as sub-population modelling. This software package is, in fact, the
implementation of the GENITOR algorithm developed by Darrel Whitley [19]. The algorithm
presents two major differences from standard genetic algorithms. The first one is the explicit
use of ranking. Reproductive trials are allocated according to the rank of the individual in the
population rather than using fitness proportionate reproduction. The second difference is that
GENITOR abandons the generational* approach and reproduces new genotypes on an individual
basis. It does so in such a way that parents and offspring can, typically, co-exist. The newly
created offspring replaces the lowest ranking individual in the population rather than a parent.
This approach is known as Steady State. GENITOR only produces one new genotype at a time,
so inserting a single new individual is relatively simple. Furthermore, the insertion
automatically ranks the individual with relation to the existing pool — no further measure of
the relative fitness is needed.

Case Study — GENESIS

GENESIS [5] is the most well known software package for genetic algorithm development
and simulation. It is now on version 5.0, which is available from The Software Partnership
company. GENESIS runs on most machines with a C compiler. The present version runs
successfully on both Sun workstations and IBM/PC's compatible computers, according to the

4The whole population is replaced in each generation.
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author. The code has been designed to be portable, but minor changes may be necessary for
other systems. The system provides the fundamental procedures for genetic selection,
crossover and mutation. Since GAs are task independent optimisers, the user must provide only
an evaluation function which returns a value when given a particular point in the search space.

GENESIS has three levels of representation for the structures it is evolving. The lowest
level, or packed representation, is used to maximise both space and time efficiency in
manipulating structures. In general, this level of representation is transparent to the user. The
next level, or the string representation, represents structures as null-terminated arrays of chars.
This structure is provided for users who wish to provide an arbitrary interpretation of the
genetic structures, for example, non-numeric concepts. The third level, or floating-point
representation, is the appropriate level for many numeric optimisation problems. At this level,
the user can think about genetic structures as vectors or real numbers. For each parameter, or
gene, the user specifies its range, its number of values, and its output format. The system then
automatically lays out the string representation, and translates between the user-level genes and
lower representation levels. The system contains five major modules:

 Initialisation — the initialisation procedure sets up the initial population. It is possible
to "seed" the initial population with heuristically chosen structures. The rest of the
population is filled with random structures. It is also possible to initialise the
population with real numbers.

« Generation — this is responsible for the execution of the selection, crossover, mutation,
and evaluation procedures; and perform some data collection.

» Sdlection — this is the process of choosing structures for the next generation from the
structures in the current generation. The default selection procedure is a stochastic
procedure, which guarantees that the number of offspring of any structure is bounded
by the floor and the ceiling of the (real-valued) expected number of offspring. The
procedure is based on the roulette wheel algorithm. It is also possible to perform
selection based on a ranking algorithm. Ranking helps prevent premature convergence
by preventing super individuals from taking over the population within a few
generations.

« Mutation — after the new population is selected, mutation is applied to each structure in
the new population. Each position is given a chance (mutation rate) of undergoing
mutation. If mutation does occur, a random value is chosen from {0,1} for that
position. If the mutated structure differs from the original one, it is marked for
evaluation.

» Crossover — exchanges alleles among adjacent pairs of the first n structures in the new
population. The result of the crossover rate applied to the population size gives the
number n of structures to operate. Crossover can be implemented in a variety of ways.
If, after crossover, the offspring are different from the parents, then the offspring
replace the parents, and are marked for evaluation.

These basic modules are added to the evaluation function supplied by the user to create
the customised version of the system. The evaluation procedure takes one structure as input
and returns a double precision value.

To execute GENESIS three programs are necessary: Set-up, report and ga. The set-up
program prompts for a number of input parameters. All the information is stored in files for
future use. It is possible to set the type of representation, the number of genes, number of
experiments, trials per experiment, population size, length of the structures in bits, crossover
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and mutation rates, generation gap, scaling window and many other parameters. Each
parameter has a default value.

The report program runs the ga and produces a description of the algorithm performance.
It summarises the mean, variance and range of several measurements, including on-line
performance, off-line performance, average performance of the current population, and the
current best value.

5.2. Algorithm Libraries

Algorithm Libraries provide a powerful collection of parameterised genetic algorithms and
operators generally coded in a common language, and so are easily incorporated in user
applications.

Overview

These systems are modular, allowing the user to select a variety of algorithms, operators
and parameters to solve a particular problem. Their parameterised libraries provide the ability
to use different models (algorithms, operators and parameter settings) to compare the results
for the same problem. New algorithms coded in high level languages, like "C" or Lisp, can be
easily incorporated into the libraries. The user interface is designed to facilitate the
configuration and manipulation of the models as well as to present the results in different
shapes (tables, graphics, etc.).

urvey

The two leading algorithm-libraries are EM and OOGA. Both systems provide a
comprehensive library for genetic algorithms, and EM also supports evolution strategies
simulation. In addition, OOGA can be easily tailored for specific problems. It runs in Common
Lisp and CLOS (Common Lisp Object System), an object oriented extension of the Common
Lisp.

EM — Evolution Machine — has been developed by Hans-Michael Voigt, Joachim Born and
Jens Treptow [18] at the Institute for Informatics and Computing Techniques in Germany. The
EM simulates natural evolution principles to obtain efficient optimisation procedures for
computer models. The evolutionary methods included in EM were chosen to provide algorithms
with different numerical characteristics. The programming environment supports the following
algorithms:

i) Evolution Strategy by Rechenberg [12],
ii) Evolution Strategy by Rechenberg & Schwefel [12,15],
iii) Evolution Strategy by Born,
iv) Simple Genetic Algorithm by Goldberg [3], and
v) Genetic Algorithm by Voigt and Born [18].
To run a simulation session the user provides the fitness function coded in the "C"

programming language. The system calls the compiler and the linker to produce an executable
file containing the selected algorithm and the user supplied fitness function.
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EM uses extensive menus with default parameter settings, data processing for repeated
runs and graphical presentation of results (on-line presentation of the evolution progress, one,
two, and three-dimensional graphs). The system runs on IBM-PC compatible computers with
MS-DOS operating system and uses the Turbo C (or Turbo C++) compiler to generate the
executable files.

OOGA — Ohbiject Oriented Genetic Algorithm — is a simplified version of the Lisp-based
software that has been developed since 1980 by Lawrence Davis. It was mainly created as a
support for Davis' book [1] but can also be used to develop and test customised or new genetic
algorithms and genetic operators.

Case Study — OOGA

OOGA is a system designed so that each of the techniques employed by a GA is an object
that can be modified, displayed or replaced in an object-oriented fashion. The highly modular
OOGA architecture makes it easy for the user to define and use a variety of genetic algorithm
techniques, by incrementally writing and modifying components in Common Lisp. The files in
the OOGA system contain descriptions of several techniques used by genetic algorithm
researchers, but they are not exhaustive. OOGA contains three major modules:

« Evaluation Module which has the evaluation (or fitness) function that measures the
worth of any chromosome on the problem to be solved,

» Population Module contains a population of chromosomes and the techniques for
creating and manipulating that population. There are a number of techniques for
population encoding (e.g. binary, real number, etc.), initialisation (e.g. random binary,
random real, normal distribution, etc.) and deletion (e.g. delete all, delete last, etc.);

* Reproduction Module has a set of genetic operators responsible for selecting and
creating new chromosomes during the reproduction process. This module allows genetic
algorithm configurations with more than one genetic operator as well as its parameters'
settings. The system creates a list with the user selected operators and executes then in
sequence. There are a number of genetic operators for selection (e.g. roulette wheel),
crossover (e.g. one- and two-point crossover, mutate-and-crossover) and mutation. All
the parameters such as bit mutation rate and crossover rate, can be set by the user.

The last two modules are, in fact, a library of several different techniques which enables
the user to configure a particular genetic algorithm. When the genetic algorithm is run, the
Evaluation, Population and Reproduction modules work together to effect the evolution of a
population of chromosomes towards the best solution.

The system also supports some normalisation techniques (e.g. linear normalisation) and
parameterisation techniques, allowing the alteration of the genetic operators relative fitness
over the course of the run.
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6. Tool Kits

6.1. Educational systems

Educational programming systems are designed for the novice user to obtain hands-on
introduction to genetic algorithms concepts. They typically provide a rudimentary graphic
interface and a simple configuration menu.

Overview

Educational systems are typically implemented on PCs for portability and low cost
reasons. For ease of use, they have a nice graphical interface and are fully menu-driven. GA
Workbench is one of the best examples of this class of programming environments.

Case Study — GA Workbench

GA Workbench [9] has been developed by Mark Hughes from Cambridge Consultants
Ltd. It is a mouse-driven interactive GA program that runs on MS-DOS/PC-DOS
microcomputers. The system is aimed at people wishing to understand and get hands-on GA
practice. Evaluation functions are drawn on screen, using a mouse. The system produces run-
time plots of GA population distribution, peak and average fitness. Many useful population
statistics are also displayed. It is possible to change a range of parameters including the
settings of the genetic operators, the population size, breeder selection, etc.

Its graphical interface needs a VGA or EGA graphic adapter and it divides the screen into
seven fields:

« A Command Menu - this is a menu-bar that has general commands to start or stop a GA
execution, as well as let the user enter the target function.

« Target Function Graph - after selecting the "Enter Targ" command from the command
menu, the user inputs the target function by drawing it on a graph using the mouse
cursor.

« Algorithm Control Chapter - this field is called chapter because it can contain several
pages, but only one page is visible at a time. It initially displays a page called "Simple
Genetic Algorithm". Pages can be flipped through, forwards or backwards, by clicking
the left mouse button on the arrows in the top high hand corner of the chapter.
Following is a brief description of the available pages:

« Simple Genetic Algorithm Page - this page shows a number of input
variables used to control the operation of the algorithm. The variable values
can be numeric or text strings and the user can alter any of these values by
clicking the left mouse button on the up or down arrows to the left of each
value.

« General Program Control Variables Page - this page contains variables
related to general program operation rather than a specific algorithm. Here
the user can select the source of data for plotting on the output plot graph,
set the scale for the X or Y axis, determine the frequency with which the
population distribution histogram is updated or seeds the random number
generator.
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e Output Variables Box - this contains the current values of a number of variables
relating to the current algorithm. For the Simple Genetic Algorithm, a counter of
generations is presented as the optimum fitness value, the current best fitness, the
average fitness, the optimum x, current best x, and the average x.

« Population Distribution Histogram - this graph shows the genetic algorithm's
distribution of organisms by value of x. The histogram is updated according to the
frequency set in the general control variables page.

e Output Graph - this field is used to display plots of several output variables against
time.

« Axis Value Box - this box is used in combination with the mouse cursor to read values
from any of the graphs described above. When the mouse is moved over the plot area of
any graph, it changes to a cross hair and causes the Axis Value box to display the
coordinate values of the corresponding graph at the point indicated by the cursor.

By drawing the Target Function, varying several numeric control parameters, and
selecting different types of algorithms and genetic operators, the novice user can practise and
have a good idea on how quickly the algorithm is able to find the peak value, or indeed if it
succeeds at all.

6.2. General-purpose programming systems

General-purpose systems are the ultimate in flexible GA programming systems. Not only
do they allow the user to develop their own GA applications and algorithms, but also provide
users with the opportunity to customise the system to suit their own purposes.

Overview

These programming systems provide a comprehensive tool kit, including:

« asophisticated graphic interface;

« aparameterised algorithm library;

« ahigh level language for programming GAs; and
e anopen architecture.

Access to the system components is via a menu-driven graphic interface, and a graphic
display/monitor. The algorithm library is normally "open", allowing the user to modify or
enhance any module. A high level language — often object-oriented — may be provided which
supports the programming of GA applications, algorithms and operators through specialised
data structures and functions. Lastly, due to the growing importance of parallel GAs, systems
provide translators to parallel machines and distributed systems, such as networks of
workstations.

Jrvey

The number of general-purpose systems is increasing, stimulated by growing interest in
the application of GAs in many domains. Examples of systems in this category include Splicer,
which presents interchangeable libraries for developing applications, MicroGA that is an easy
to use object oriented environment for PCs and Macintoshes, and parallel environments like
EnGENEer, GAME and PeGAsuSsS.

ENGENEer — Logica Cambridge Ltd. developed EnGENEer [13] as an in-house Genetic
Algorithm environment to assist the development of GA applications on a wide range of
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domains. The software was written in "C" and runs on Unix systems as part of a consultancy
and systems package. It supports both interactive (X-Windows) and batch (command-line)
modes of operation. Also a certain degree of parallelism is supported for the execution of
application dependent evaluation functions.

ENGENEer provides a number of flexible mechanisms which allow the developer to rapidly
bring the power of GAs to bear on new problem domains. Starting with the Genetic Description
Language, the developer can describe, at high level, the structure of the "genetic material™ used.
The language supports discrete genes with user defined cardinality and includes features such
as multiple models of chromosomes, multiple species models and non-evolvable parsing
symbols, which can be used for decoding complex genetic material.

A descriptive high level language, the Evolutionary Model Language, is also available to
the user. It allows the description of the GA type used in terms of configurable options
including: population size, population structure and source, selection method, crossover type
and probability, mutation type and prob., inversion, dispersal method, and number of offspring
per generation.

Both the Genetic Description Language and the Evolutionary Model Language are fully
supported within the interactive interface (including on-line help system) and can be defined
either "on the fly" or loaded from audit files, which are automatically created during a GA run.

Monitoring of GA progress is provided via both graphical tools and automatic storage of
results (at user defined intervals). This allows the user to restart EnGENEer from any point in a
run, by loading both the population at that time and the evolutionary model that was being
used.

Connecting EnGENEger to different problem domains is achieved by specifying the name of
the program used to evaluate the problem specific fitness function and constructing a simple
parsing routine to interpret the genetic material. A library of standard interpretation routines is
also provided for commonly used representation schemes such as gray-coding, permutations,
etc. The fitness evaluation can then be run as either a slave process to the GA or via standard
handshaking routines. Better still, it can be run on either the machine hosting the EnGENEer or
on any, sequential or parallel, hardware capable of connecting to a Unix machine

GAME — Genetic Algorithm Manipulation Environment — being developed as part of the
main European Community (ESPRIT IIl) GA project, called PAPAGENA. It is an object-
oriented environment for programming parallel GAs applications and algorithms, and mapping
them on to parallel machines. The programming environment comprises 5 major modules:

e Virtual Machine — the machine independent low level code responsible for the
management and execution of a GA application. For parallel execution the virtual
machine should provide communication mechanisms for information exchange
between all the virtual machines in the system.

« Genetic Algorithms Libraries — parameterised algorithms, applications and
operators' libraries written in the high level language, and providing the user with a
number of validated modules for constructing applications.

«  Graphical Monitor (using X Windows) — the software environment for controlling
the execution and monitoring of a genetic algorithm application simulation. This
includes tools for configuring the graphical interface and a monitoring support
from the virtual machine that can be used by application specific data monitors to
visualise data and change its values.
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« High Level Language (GA-HLL) — the object-oriented programming language for
defining, in conjunction with the algorithm library, new genetic algorithm models
and applications.

« Compilers — to various UNIX-based workstations and parallel machines.

The environment is being programmed in C++, and will be available in source code form
to allow full user-modification.

MicroGA — marketed by Emergent Behavior, is designed to be used on a wide range of
complex problems, while at the same time being small and easy to use. The environment is
also designed to be expandable. The system is a framework of C++ objects. As such, it is
designed so that several pieces are used in conjunction with each other to give the user some
default behaviour. Therefore, it goes far from the library concept where a set of functions (or
classes) is offered to be incorporated into the user application. The framework is almost a
ready-to-use application, needing only a few user-defined parameters to start running. The
package comprises a compiled library of C++ objects, three sample programs, a sample
program with an Object Windows Library user interface (from Borland) and the Galapagos
code generation system. MicroGA runs on IBM-PCs compatible systems with Microsoft
Windows 3.x, using Turbo/Borland C++. It also runs on Macintosh computers.

The application developer can configure his application either using Galapagos or
manually. The Galapagos is a windows-based code generator that produces, from a set of
custom templates and a little information provided by the user, a complete standalone MicroGA
application. It helps on the creation of a subclass derived from its "TIndividual” class, required
by the environment to create the genetic data structure to be manipulated. The number of genes
for the prototype individual, as well as the range of possible values they can assume is
requested by Galapagos. The evaluation function can be specified, but the notation used does
not allow complex, or non-mathematical fitness functions to be entered via Galapagos. As a
result, Galapagos creates a class, derived from TIndividual, which contains specific member
functions according to user's requirements.

Applications requiring complex genetic data structures and fitness functions can be
defined manually by inheriting from the TIndividual class, and writing the code for its member
functions. After creating the application dependent genetic data structure and fitness function,
MicroGA compiles and links everything using the Borland C++ or Turbo C++ compiler, and
produces a MS-Windows executable file.

MicroGA is very easy to use and allows fast creation of genetic algorithms applications.
However, for real applications the user has to understand basic concepts of object oriented
programming and Windows interfacing.

PeGAsuS — is a Programming Environment for Parallel Genetic Algorithms developed at the
German National Research Center for Computer Science. In fact, it is a tool kit which can be
used for programming a wide range of genetic algorithms, as well as for educational purposes.

The environment is written in ANSI-C and is available for many different UNIX-based
machines. It runs on MIMD parallel machines, such as transputers, and distributed systems
with workstations. PeGAsuUS is structured in four hierarchical levels:

« the User Interface,
« the PeGAsuS Kernel and Library,
« compilers for several UNIX-based machines, and

« the sequential/distributed or parallel hardware
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The User Interface consists of three parts: the PeGAsuS script language, a graphical
interface and a user library. The user library has the same functionality of the PeGAsSUS GA
library. It allows the user to define application specific functions that are not provided by the
system library. The script language is used to specify the experiment. The user can use it to
define the application dependent data structures, attaches the genetic operators to them and
specifies the input/output interface. Whereas the script language specifies the construction of a
sub-population, the connections between these are specified through the graphical interface.

The Kernel includes the "base" and the "frame" functions. The "base" functions control the
execution order of the genetic operators, manage communication between different processes
and provide input/output facilities. They build general frames for simulating GAs, and can be
considered as autonomous processes. They interpret the PeGAsUS script, create appropriate
data structures, and describe the order of the frame functions. A "frame™ function controls the
execution of a single genetic operator, and is invoked by a base function. They prepare the data
representing the genetic material, and apply the genetic operators to it, according to the script
specification. The Library contains genetic operators, a collection of fitness functions, and
input/output and control procedures. It provides the user with a number of validated modules
for constructing applications.

Currently, PeGAsuS can be compiled with the GNU C, RS/6000 C, ACE-C, and Alliant's
FX/2800 C compilers. It runs on SUNs and RS/6000 workstations, as well as on the Alliant
FX/28 MIMD architecture.

Splicer — This software environment was created by the Software Technology Branch of the
Information Systems Directorate at NASA/Johnson Space Center, with support from the
MITRE Corporation [16]. It is one of the most comprehensive environment currently available,
and forms the case study below.

Case Study — Splicer

Splicer presents a modular architecture that includes: a Genetic Algorithm Kernel,
interchangeable Representation Libraries, Fitness Modules, and user interface Libraries. It was
originally developed in "C" on an Apple Macintosh and has been subsequently ported to UNIX
workstations (SUN3 and 4, IBM RS/6000) using X-Windows. The Genetic Algorithm Kernel,
Representation Libraries, and Fitness Modules are completely portable. The following is a
brief description of the major modules:

« Genetic Algorithm Kernel - the GA kernel comprises all functions necessary for the
manipulation of populations. It operates independently from the problem representation
(encoding), fitness function and user interface. Some of its supported functions are:
creation of populations and members, fitness scaling, parent selection and sampling, and
generation of population statistics.

* Representation Libraries - interchangeable representation libraries are able to store a
variety of pre-defined problem-encoding schemes and functions. This allows the GA kernel
to be used for any representation scheme. There are representation libraries for binary
strings and for permutations. These libraries contain functions for the definition, creation
and decoding of genetic strings as well as multiple crossover and mutation operators.
Furthermore, the Splicer tool defines the appropriate interfaces to allow the user to create
new representation libraries.
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»  Fitness Modules - these are interchangeable modules where fitness functions are defined
and stored. They are the only component of the environment a user will be required to
create or alter to solve a particular problem. It is possible to create a fitness (scoring)
function, set theinitia valuesfor various Splicer control parameters (e.g. population size),
create a function that graphically displays the best solutions as they are found, and
provide descriptive information about the problem.

e User Interface Libraries - there are two user interface libraries: a Macintosh and an X-
Window System user interface. They are event-driven interfaces and provide a graphic
output in windows.

Stand-alone Splicer applications can be used to solve problems without any need for
computer programming. However, to create a Splicer application for a particular problem, a
Fitness Module must be created using the C programming language.

Splicer version 1.0 is currently available free to NASA and its contractors for use on
government projects. In the future it will be possible to purchase Splicer for anominal fee.

Having surveyed some of the available GA environments, we now speculate on the likely
future developments of genetic algorithms programming environments.
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7. Future Developments

The following are some trends and possible future directions in each of the GA
programming environments.

Application-oriented

As with any new technology, in the early stages of development the emphasis for tools is
on the ease of use. Application-oriented systems have a crucia role in bringing the technology
to agrowing set of application domains, since they are targeted and tailored for specific groups
of users. Therefore we would expect the number and diversity of application-oriented systems
to expand rapidly in the next few years. One high growth area should be the association of
genetic algorithms and other optimisation agorithms in hybrid systems. By the end of the
century, hybrid GA-Neural Networks will have made significant progress toward solving some
currently intractable machine learning problems (promising domains include autonomous
vehicle control, signal processing, and intelligent process control).

Algorithm-specific & Libraries

With the further development of application-oriented systems, coupled with the discovery
of new agorithms and techniques, we expect to see an increase in agorithm specific systems
possibly leading to general-purpose GAs. Access to efficient versions of these agorithms will
be provided by agorithm libraries.

Educational

Interest in educational systems and demonstrators of GAs is rapidly growing. Their
contribution is at the start of a new technology, but their usage traditionaly diminishes as
genera-purpose systems mature. Thus we should expect a decline in educational systems as
sophisticated genera -purpose systems become available and easy to use.

General-purpose

General-purpose systems for GA programming are very recent. With the introduction of
Splicer, a growing number of commercia development systems are expected to appear in the
near future. We should find programming environments on an expanding range of sequential
and parallel computers. An increasing number of public domain open system programming
environments from universities and research centresis also expected.

Hybrid Systems

Recently there has been considerable interest in creating hybrid systems, of genetic
algorithms with expert systems, and genetic algorithms with neural networks. If a particularly
complex problem involves the use of both optimisation and either decision support or pattern
recognition processes, then hybrid systems are powerful candidates. For example with neural
networks, genetic algorithms have been used to train networks, and have achieved performance
levels exceeding that of the commonly used back propagation model. GAs have also been used
to select the optimal configurations for neural networks, such as the number of hidden units,
layers and learning rates.

To conclude, genetic algorithms are robust search and adaptive agorithms that may be
immediately tailored to real problems. The explosion of interest in GA applications is driving
the deveopment of GA programming environments, and many powerful commercia
environments can be expected in the near future. The two major influences on future
environments will be, we bdieve, firstly exploitation of paralld GAs, and secondly the
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programming of Hybrid applications linking GAs with Neural Networks, expert systems and
traditional utilities such as spreadsheets and database packages.
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Appendix A — Sequential GA C Listing

/*
IR RS R RS RS EE SRS RS RS R EEEEEEREEEEEESEEEEESEESEESSE]
* Sinple Genetic Al gorithm *
IR RS SRS RS RS SRS RS RS R EEEEEEREEEEEESEEEEESEESESSE]
*/

#i ncl ude <stdlib. h>

#i ncl ude <stdi o. h>

#i ncl ude <sys/tine. h>

#i ncl ude <math. h>

#def i ne RAND_MAX Ox7FFFFFFF

#defi ne random( num (rand() % num)

#defi ne randomi ze() srand( (unsi gned)ti me(NULL))
#defi ne POPULATION_SIZE 10

#def i ne CHROM_LENGTH 4

#def i ne PCROSS 0.6

#defi ne PMUT 0. 050

#def i ne MAX_CEN 50

struct popul ation

int val ue;
unsi gned char string[ CHROM LENGTH] ;
unsi gned int fitness;

struct popul ati on pool [ POPULATI ON_SI ZE] ;
struct popul ati on new_pool [ POPULATI ON_SI ZE] ;

int sel ect ed][ POPULATI ON_SI ZE] ;
int generations;

mai n()
int i;
doubl e sum fitness, avg fitness, old_avg_fitness;

generations = 1;
avg_fitness = 1;

initialise_population();

do
{

ol d_avg_fitness = avg_fitness;
sum fitness = O;

/* fitness evaluation */
for (i=0; i<POPULATI ON_SIZE; i++)

pool [i].value = decode(i);
pool[i].fitness = evaluate(pool[i].value);
sum fitness += pool [i].fitness;

}
avg_fitness = sumfitness / POPULATI ON_SI ZE

for (i=0; i<POPULATI ON_SIZE; i++)
selected[i] = select(sumfitness);

for (i=0; i<POPULATION_SIZE; i=i+2)
crossover(sel ected[i], selected[i+1],i,i+1);
mutation();

statistics();
printf ("\nlnprovnent: %\n", avg_fitness/old_avg_ fitness);

}

whil e ((++generations < MAX_CEN) &&
((avg_fitness/old_avg_fitness) > 1.005) ||
((avg_fitness/old_avg_fitness) < 1.0));



/*

EE R R R Sk Sk kR Sk Sk R Sk kR Sk kR R kR Rk R R R

* initialise_population *
* Creates and initialize a popul ation *
khkhkkhkhkhkhkhkhhhkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhk*k*k*x*x*x*x*x*xk*x*x*x*%x
*/
initialise_population()
t
int i;
random ze();
for (i=0; i < POPULATI ON_SIZE; i ++)
encode(i, randon(2”"CHROM LENGTH));
}
/*
EE R R R SR R R R Rk kR kR Sk kR R R R R
* sel ect *
* Sel ects strings for reproduction *

EE R R R R kR S R S R Sk kR Ik kR Sk kR R R R S

*/
sel ect (sum fitness)
doubl e sum fitness;

{

int i;

doubl e r, parsum

parsum = 0;

r = (double)(rand() % (int)sumfitness); /* spin the roulette */

for (i=0; i < POPULATION_SIZE, parsum <= r; i++)
parsum += pool [i].fitness;

return (--i);

/* returns a selected string */

}
/*
khkhkhkhkhkhkhkhkhhkhkhkhkhkhhhkhkhkhkhkhhkhkhkhkhkhkhkhk*k*x*x*x*x*x*x*x*x*x*%x
* crossover *
* Swaps 2 sub-strings *
EE R R R R R R R Sk kR R Sk kR Sk kR R R R S
*/
crossover (parentl, parent2, childl, child2)
int parentl;
int parent?2;
int childl;
int child2;
-
Int 1, site;
if (flip(PCROSS))
site = random CHROM LENGTH) ;
el se
site = CHROM LENGTH- 1;
for (i=0; i < CHROM LENGTH; i ++)
if ((i <=site) || (site==0))
{
new_pool [childl].string[i] = pool[parentl].string[i];
new_pool [child2].string[i] = pool[parent2].string[i];
}el se
{
new_pool [childl].string[i] = pool[parent2].string[i];
new_pool [child2].string[i] = pool[parentl].string[i];
}
}
}
/*

khkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkdkhkhkhkhkhkk**x*x*x*x*x*k*x*x*x*%x

* nut ation *
* Changes the values of string position *

EE R R R R R R R Sk Rk kR R Sk Sk kR Sk R R R R S

*/
mutation ()

for (i=0; i < POPULATION S| ZE; i++)
{

for (j=0; j

< CHROM LENGTH, j ++)
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if (flip(PMJT))

pool [i].string[j] = ~new pool[i].string[j] & 0x01
el se

pool [i].string[j] = new pool[i].string[j] & 0x01

}

}

/*
khkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhkhkhkhkhkhkhkhkhkhkhkhk*k*k*x*k*x*x*x*xk*x*x*x*%x
* encode *
* Code a integer into binary string *
EE R R R Sk R R R R Sk kR Sk ko kR Sk kR R R R S
*/

encode(index, val ue)

int index;

int val ue;

t

int i;
for (i=0; i < CHROM LENGTH, i++)
pool [i ndex] . string[ CHROM LENGTH-1-i] = (value >> i) & 0x01;

}

/*
khkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk*k*k*k*x*x*x*x*x*x*x*x*%x
* decode *

* Decode a binary string into an integer *

EE R R R R R R S R S R Sk kR Sk kS kR S Sk R Rk R R kR

*/

decode(i ndex)

int index;

t
int i, value;
val ue = 0;

for (i=0; i < CHROM LENGTH, i++)
val ue += (int)pow(2.0, (double)i) * pool[index].string][ CHROM LENGTH- 1-i1];

return(val ue);

}
/*
IR R SR RS RS EEEE SRS RS R EEEEEEREERESEESEREEESEESEESSE]
* eval uate *
* oj ective function f(x)=x"2 *
IR R SR RS RS EEEE SRS RS R EEEEEEREERESEESEREEESEESESSE]
*/
eval uat e(val ue)
int val ue;
{
return(pow( (doubl e)val ue, 2.0));
}
/*
IR R SR RS RS EEEE SRS RS R EEEEEEREERESEESEREEESEESEESSE]
* flip *
* Toss a biased coin *
IR R SR RS RS EEEE SRS RS R EEEEEEREERESEESEREEESEESEESSE]
*/
flip(prob)
doubl e prob
{ .
doubl e i;
i =((doubl e)rand())/ RAND_MAX;
if ((prob ==1.0) || (i < prob))
return (1);
el se
return (0);
}
/*
IR R SR RS RS EEEE SRS RS R EEEEEEREERESEESEREEESEESESSE]
* statistics *
* Print enternmediary results *
IR R SR RS RS EEEE SRS RS R EEEEEEREERESEESEREEESEESEESSES]
*/
statistics()
int i, J,;
printf("\n; Generation: %\ n; Sel ected Strings\n;", generations);

for (i=0; i< POPULATI ON_SI ZE; i ++)
printf(" %", selected[i]);



printf(''\n");

printfC"\n; X\tFf(x)\t New_String\tx"");

for (i=0; i< POPULATION_SIZE; i++)

{ printf(""\n %d\t%u\t;", pool[i].value, pool[i].-fitness);

for (J=0; J<CHROM_LENGTH; j++)
printf(" %d",pool[i].-string[j]);

printf(""\thd", decode(i));
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Appendix B — Developers Address List

C Darwin |l

Attar Software
Newlands Road
Leigh, Lancashire
England

Tel: +44 94 2608844
Fax: +44 94 2601991

EM — Evolution Machine
H.M. Voigt & J. Born

Institute for Informatics and Computing

Techniques

Rudower Chaussee 5

D — 1199 Berlin

Germany

Tel: +49 372 674 5958

Fax: +49

E-mail: voigt@iir-berlin.adw.dbp.de
born@iir-berlin.adw.dbp.de

ESCAPADE

Frank Hoffmeister

University of Dortmund
Department of Computer Science
Chair of Systems Analysis
P.0.Box 500500

D - 4600 Dortmund 50

Germany

Tel: +49 231 755 4678

Fax: +49 231 755 2047

E-mail: iwan@Is11.informatik.uni-
dortmund.de

EnGENEer

George Robbins

Systems Intelligence Division
Logica Cambridge Ltd.
Betjeman House

104 Hills Road

Cambridge CB2 1LQ

U.K.

Tel: +44 71 6379111

Fax: +44 223 322315

EVOLVER

Axcélis Inc.

4668 Eastern Avenue North
Seattle, WA 98103

U.S.A.

Tel: +1 206 632 0885

Fax: +1 206 632 3681

GA Workbench

Mark Hughes

Cambridge Consultants Ltd.
The Science Park

Milton Rd.

Cambridge CB4 4ADW

U.K.

Tel: +44 223 420024

Fax: +44 223 423373
E-mail: mrh@camcon.co.uk

GAGA

Jon Crowcroft

University College London
Gower Street

London WC1E 6BT

U.K.

Tel: +44 71 387 7050

Fax: +44 71 387 1398
E-mail: jon@cs.ucl.ac.uk

GAucsD

N.N. Schraudolph

Computer Science &

Engineering Department
University of California, San Diego
La Jolla. CA 92093-0114

US.A.

Fax: +1 619 534 7029

E-mail: nici@cs.ucsd.edu

GAME

Jose L. Ribeiro Filho

Computer Science Department
University College London

Gower Street

London WC1E 6BT

U.K.

Tel: +44 71 387 7050

Fax: +44 71 387 1398

E-mail: j.ribeirofilho@cs.ucl.ac.uk

GENESIS

J.J. Grefenstette

The Software Partnership
P.O. Box 991

Melrose, MA 02176

US.A.

Tel: +1 617 662 8991

E-mail: gref@aic.nrl.navy.mil
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GENITOR

Darrel Whitley

Computer Science Department
Colorado State University

Fort Collins, Colorado 80523
U.SA.

E-mail: whitley@cs.colostate.edu

MicroGA

Steve Wilson

Emergent Behavior

635 Wellsbury Way

Palo Alto, CA 94306
U.SA.

Tel: +1 415 494-6763
E-mail: emergent@aol.com

OMEGA

David Barrow

KiQ Ltd.

Easton Hall

Great Easton

Essex CM6 2HD
U.K.

Tel: +44 371 870254

OOGA

Lawrence Davis

The Software Partnership
P.O. Box 991

Méelrose, MA 02176
U.SA.

PC-BEAGLE

Richard Forsyth
Pathway Research Ltd.
59 Cronbrook Rd.
Bristol BS6 7BS

UK.

Tel: +44 272 428692

PeGAsuS

Dirk Schlierkamp-Voosen

Research Group for Adaptive Systems
German National Research Center for
Computer Science - GMD

P.O. Box 1316

D-5205 Sankt Augustin 1

F.R.G.

Tel: +49 2241/ 14 2466

E-mail: dirk.schlierkamp-voosen@gmd.de
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Splicer

CosmIC

382 E. Broad St.

Athens, GA 30602

U.SA.

Tel: +1 404 5423265

Fax: +1 706 542 4807

E-mail: bayer@galileo.jsc.nasa.gov

XpertRule GenAsys
Attar Software
Newlands Road
Leigh, Lancashire
U.K.

Tel: +44 942 608844
Fax: +44 942 601991

XYpe

Ed Swartz

Virtual Image, Inc.

75 Sandy Pond Road \#11
Ayer, MA 01432

U.SA.

Tel: +1 508 772 0888
Fax: +1



