
CSE5230: Back-propagation 1

CSE5230: Back-propagation
MONASH UNIVERSITY

Faculty of Information Technology

CSE5230 Data Mining

This document presents an explanation of the mathematics which underpin the back-propagation algo-
rithm (Rumelhart et al.; 1986). The key mathematical concepts required arepartial derivatives, which
are explained in appendix A, and thechain rule, which is explained in appendix B.

1 Definition of the network

Consider the standard feed-forward neural network shown in Figure 1, also known as a multilayer per-
ceptron (MLP). Notice that the nodes of the input layer are shown as simple black circles. This is to
indicate that no processing occurs in these nodes: they serve only to introduce the inputs to the network.

{ }

{ }

x1 x3x2 x4 xM

y1 y2 L
y

Nh

ijw

jkw
h1

Output Layer

Hidden Layer

Input Layer

Figure 1: Multilayer Perceptron: a standard feed-forward neural network

Each node computes the weighted sum of its inputs,net , and uses this as the input to its transfer function
f(). In the classic MLP, the transfer function is the sigmoid:

f(x) =
1

1 + e−x
(1)

Consider a nodek in the output layer. Its output,yk, is given by

yk = f(netk),

David McG. Squire, 2000–2004

CSE5230: Back-propagation 2

wherenetk, its net activation, is the weighted sum of the outputs of the nodeshj in the hidden layer:

netk =
N∑

j′=1

wj′khj′ . (2)

Likewise, the output of each nodej in the hidden layer is

hj = f(net j),

where

net j =
M∑

i′=1

wi′jxi′ (3)

and thexi are the inputs to the network.

2 Total squared error and gradient descent

For convenience, we can consider the inputs to the network as aninput vectorx, where

x =
[
x1 x2 . . . xM

]T
.

Likewise, the output of the network can be considered to be anoutput vectory, where

y =
[
y1 y2 . . . yL

]T
.

The training setfor the network can then be considered to be a set of pairs ofK input vectorsxl and
desired output vectorsdl:

training set= {(x1,d1), (x2,d2), . . . , (xl,dl), . . . , (xK ,dK)} .

Whenever an input vector from the training setxl is applied to the network, the network will produce an
actual outputyl according to the equations in section 1. We may thus define thesquared errorfor that
input vector by summing over the squared errors at each output node:

[squared error]l =
1
2

L∑
k′=1

(yk′ − dk′)2

The factor of1/2 in front of the sum is introduced for computational convenience only—the aim will be
to minimize the error; multiplying by a constant makes no difference to this goal.
We can thus define thetotal squared errorE by summing over the all the input/output pairs in the
training set:

E =
1
2

K∑
l′=1

L∑
k′=1

(yk′l′ − dk′l′)2 (4)

David McG. Squire, 2000–2004

CSE5230: Back-propagation 3

Our aim in training the network is to minimizeE, by finding an appropriate set of weights{{wij}, {wjk}}.
We will do this by using agradient descentalgorithm: we will find out which direction is “downhill” on
the error surface and modify each weightw so that we take a step in that direction. Mathematically, this
means that each weightw will be modified by a small amount∆w in the direction of decreasingE:

w(t + 1) = w(t) + ∆w(t), where ∆w(t) = −ε
∂E

∂w

∣∣∣∣
t

. (5)

Herew(t) is the weight at timet andw(t+1) is the updated weight. Equation 5 is called thegeneralized
delta rule. We see that the crucial thing we need in order to be able to perform gradient descent is the
partial derivative∂E

∂w of the error with respect to each weight.
The generalized delta rule is often augmented with a “momentum” term, which can increase the learning
rate and help to avoid oscillations:

∆w(t) = −ε
∂E

∂w

∣∣∣∣
t

+ α∆w(t− 1) (6)

The magnitude ofα determines the effect past weight changes have on the current direction of change
in weight space. This is known as the “heavy ball method” in numerical analysis (; maintainer).

3 Finding the partial derivatives with respect to the weights

3.1 Weights between the hidden and output layers

Let us begin by considering a weightwjk between a hidden nodej and and output nodek. We wish to
find ∂E

∂wjk
. Using thechain rule, we may write

∂E

∂wjk
=

∂E

∂yk

∂yk

∂netk

∂netk
∂wjk

. (7)

Equation 4 tells us that
∂E

∂yk
= yk − dk. (8)

Note that taking the partial derivative selects the particular term of the sum wherek′ = k, since only the
output of nodek depends onwjk. (The sum overl has been suppressed for clarity).
Using equation 25, derived in appendix C on the derivative of the sigmoid, we see that1

∂yk

∂netk
= yk(1− yk). (9)

From equation 2, we obtain
∂netk
∂wjk

= hj (10)

1Note that the choice of the sigmoid (equation 1) for the transfer functionf() is not necessary for back-propagation to work.
It is only necessary thatf() have a bounded derivative.

David McG. Squire, 2000–2004

CSE5230: Back-propagation 4

(again taking the partial derivative has selected a particular term from the sum). Substituting equations 8,
9 and 10 into equation 7, we see that

∂E

∂wjk
= (yk − dk)yk(1− yk)hj . (11)

We have thus found the partial derivative of the errorE with respect to weightwjk in terms of known
quantities and can employ this result in equation 5 in order to perform gradient descent for the weights
{wjk} between the hidden and output layers.

3.2 Weights between the input and hidden layers

We now consider the weightswij between the input layer and the hidden layer. Again we start from
equation 4 and apply the chain rule to find an expression for∂E

∂wij
:

∂E

∂wij
=

L∑
k′=1

∂E

∂yk′

∂yk′

∂netk′

∂netk′

∂hj

∂hj

∂net j

∂net j

∂wij
. (12)

Note that on this occasion taking the partial derivative does not select a particulark′ from the sum, since
all the outputsyk′ depend onwij , as shown in Figure 2.

x1 xi xM

y1 yk L
y

Nhh1

ijw

hj

Figure 2: All outputsyk depend on each weightwij between the input and the hidden layer.

We have already found the first two terms of this sum in section 3.1. From equation 2 we obtain

∂netk′

∂hj
= wjk′ , (13)

David McG. Squire, 2000–2004

CSE5230: Back-propagation 5

and by analogy with equation 9 we see that

∂hj

∂net j
= hj(1− hj). (14)

Finally, using equation 3, we find that
∂net j

∂wij
= xi. (15)

Substituting all these results into equation 12, we obtain the desired result:

∂E

∂wij
=

L∑
k′=1

(yk′ − dk′)yk′(1− yk′)wjk′hj(1− hj)xi (16)

We have thus found the partial derivative of the errorE with respect to weightwij in terms of known
quantities (many of which we had already calculated in obtaining∂E

∂wjk
). Together with equation 11 this

gives us all the∂E
∂w needed so that equation 5 can be used to perform gradient descent for all the weights

in the network.

4 Why “Back-propagation”?

The back-propagation algorithm, so named in (Rumelhart et al.; 1986), gets its name from the fact that
partial derivatives of the error with respect to the activations of nodes are “propagated back” through the
network to enable partial derivatives to be calculated for weights between earlier layers of the network.
This can be seen more clearly by rewriting equation 12 with terms not dependent onk′ outside the sum:

∂E

∂wij
=

∂hj

∂net j

∂net j

∂wij

L∑
k′=1

∂E

∂yk′

∂yk′

∂netk′

∂netk′

∂hj
.

Collapsing one level of chain rule expansion and using equation 13, we obtain

∂E

∂wij
=

∂hj

∂net j

∂net j

∂wij

L∑
k′=1

wjk′
∂E

∂netk′
.

Noting that
∂E

∂wij
=

∂E

∂hj

∂hj

∂net j

∂net j

∂wij
,

we may write

∂E

∂hj
=

L∑
k′=1

wjk′
∂E

∂netk′
. (17)

Equation 17 shows us that the partial derivatives of the error with respect to the activations of the output
nodes are propagated back through the network (using the same weights on the connectionswjk) to
permit the calculation of the partial derivatives of the error with respect to the outputs of the hidden

David McG. Squire, 2000–2004

CSE5230: Back-propagation 6

nodes. Once these are known it is trivial to find the partial derivatives of the error with respect to the
input weights of these nodes using equations 14 and 15.
It is important to note that equation 17 shows us how the partial derivatives can be propagated back
betweenanypair of layers: so long as∂E

∂net is known at a layer, then∂E
∂z can be calculated for the earlier

layer of network, where the{z} are the outputs of the nodes in that layer. Back-propagation can thus
cope withanynumber of layers. In practice it is never necessary to use a network with more than three
layers, since three-layer MLPs have been shown to be universal approximators (Hornik et al.; 1989).

A Partial Derivatives

Partial derivatives are defined as derivatives of a function of multiple variables when all but the variable
of interest are held fixed during the differentiation (Weisstein; accessed August 24, 2000).

∂f

∂xm
≡ lim

h→0

f(x1, . . . , xm + h, . . . , xn)− f(x1, . . . , xm, . . . , xn)
h

. (18)

This is probably easiest to understand via examples. Here we find partial derivatives with respect tox,
so the other variables (herey andz) are treated as constants:

f(x, y) = x + y g(x, y) = x2 + y2 h(x, y, z) = x2y + xy2 + x3z2

∂f

∂x
= 1

∂g

∂x
= 2x

∂h

∂x
= 2xy + y2 + 3x2z2

B The Chain Rule

If g(x) is differentiable at the pointx andf(x) is differentiable at the pointg(x), thenf ◦ g is differen-
tiable atx. Furthermore, lety = f(g(x)) andu = g(x), then

dy

dx
=

dy

du
· du

dx
. (19)

There are a number of related results which also go under the name of “chain rules.” For example, if
z = f(x, y), x = g(t), andy = h(t), then

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
. (20)

The “general” chain rule applies to two sets of functions

y1 = f1(u1, . . . , up)
... (21)

ym = fm(u1, . . . , up)

David McG. Squire, 2000–2004

CSE5230: Back-propagation 7

and

u1 = g1(x1, . . . , xn)
... (22)

up = gp(x1, . . . , xn).

Defining them× n Jacobi matrix by

(
∂yi

∂xj

)
=

∂y1

∂x1

∂y1

∂x2
· · · ∂y1

∂xn
...

...
...

...
∂ym

∂x1

∂ym

∂x2
· · · ∂ym

∂xn

 , (23)

and similarly for(∂yi

∂uj
) and(∂ui

∂xj
) then gives(

∂yi

∂xj

)
=

(
∂yi

∂uj

) (
∂ui

∂xj

)
. (24)

Equation 19 also applies for partial derivatives, as is indicated in matrix form by equation 24. This
explanation is adapted from (Weisstein; accessed August 24, 2000).
Again, simple examples should help to made this clear. Consider the function

y = sin(x2).

Using the notation of equation 19, we may write

y = f(g(x))

where
f(u) = sin(u)

and
g(x) = u = x2.

We then have

dy

du
= cos(u)

du

dx
= 2x.

Bringing these together and using equation 19, we obtain

dy

dx
=

dy

du
· du

dx
= cos(u) · 2x

= 2x cos(x2).

Here is a second example:
y = (x− d)2

David McG. Squire, 2000–2004

CSE5230: Back-propagation 8

We write
y = f(u)

where
f(u) = u2

and
u = x− d.

Differentiating,

dy

du
= 2u

du

dx
= 1.

We thus obtain

dy

dx
= 2u · 1

= 2(x− d)

C Derivative of the sigmoid

Examining equation 1 we see that

f(x) =
1

1 + e−x

therefore

df

dx
=

e−x

(1 + e−x)2

=
1

1 + e−x
· e−x

1 + e−x

= f(x)
(

1 + e−x

1 + e−x
− 1

1 + e−x

)
= f(x) (1− f(x)) . (25)

It is particularly convenient computationally that the derivative off(x) can be expressed solely in terms
of f(x) itself, since this is usually already known.

References

Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer feedforward networks are universal
approximators,Neural Networks2: 359–366.

(maintainer), W. S. S. (accessed August 11, 2000). Neural networks FAQ,
ftp://ftp.sas.com/pub/neural/FAQ.html .

David McG. Squire, 2000–2004

CSE5230: Back-propagation 9

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). Learning representations by back-
propagating errors,Nature323: 533–536.

Weisstein, E. W. (accessed August 24, 2000). Eric Weisstein’s world of mathematics,
http://mathworld.wolfram.com/ .

David McG. Squire, 2000–2004

